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Historical Context
● Early 2000s, people wants to 

scale up systems
o Non SQL or Non relational 

(nowadays, Not only SQL)

● Triggered by needs of Web 2.0 
companies (e.g., Facebook, 
Amazon, Google)

● Trades off consistency 
requirements of RDBMS for speed
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Image source: https://www.geeksforgeeks.org/what-is-internet-definition-uses-working-advantages-and-disadvantages/



Goal: managing large amounts of data quickly
● Ranking Web pages by importance

○ Iterated matrix-vector multiplication where dimension is many billions

● Search friends in social networks
○ Graphs with hundreds of millions of nodes and many billions of edges
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Solution: horizontal scaling
● Instead of a supercomputer (aka vertical scaling), we have large 

collections of commodity hardware connected by Ethernet cables 
or inexpensive switches
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Challenges
● How do you distribute computation?
● How can we make it easy to write distributed programs?
● Machines fail:

○ One server may stay up 3 years (1,000 days)
○ If you have 1,000 servers, expect to lose 1/day
○ With 1M machines, 1,000 machines fail every day!
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A new software stack
● Distributed file system

○ Large blocks, data replication, redundancy to protect against media failures

● MapReduce programming system
○ Enables common calculations on large-scale data to be performed on 

computing clusters efficiently
○ Tolerant to hardware failures
○ Extensions to acyclic workflows, recursive algorithms
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Physical organization of compute nodes
Parallel-computing architecture

○ Compute nodes are stored on racks (perhaps 8-64 on a rack)
○ The nodes on a single rack are connected by a network, typically gigabit 

Ethernet
○ There can be many racks of compute nodes connected by another level of 

network or a switch
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Switch

Racks of compute nodes



Physical organization of compute nodes
It is a fact of life that components fail

○ Loss of single node (e.g., disk crashes)
○ Loss of an entire rack (e.g., network fails)

Solutions
○ Files must be stored redundantly
○ Computations must be divided into tasks, such that if any one task fails to 

execute to completion, it can be restarted without affecting other tasks
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Large-scale file system organization
To exploit cluster computing, files must look and behave differently from 
conventional file systems on single computers

A Distributed File System (DFS) can be used when:
○ For very large files: TBs, PBs
○ Files are rarely updated and usually read or appended with data
○ Mostly sequential reads
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Distributed File System (DFS)
● Files are divided into chunks, which 

are typically 64 MBs
○ Chunks are replicated (say 3 times) at 

different compute nodes (called 
chunks ervers)

○ The compute nodes should be 
located on different racks

○ Chunk size and degree of replication 
decided by the user
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Distributed File System (DFS)
● Master node

○ Stores metadata: file names 
+ chunk ids + chunk 
locations, access control

○ Master node itself is 
replicated

● Client library for file access
○ Talks to master to find 

chunk servers
○ Connects directly to chunk 

servers to access data
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DFS implementations
The Google File System (GFS)

○ Previously used in Google
○ Proprietary

Hadoop Distributed File System (HDFS)
○ Open-source DFS used with Hadoop
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A brief history of MapReduce and Hadoop

14Image source: https://dzone.com/articles/lambda-architecture-with-apache-spark



MapReduce Overview

Read a lot of data
Map: extract something you care about from each record
Shuffle and Sort
Reduce: aggregate, summarize, filter, transform
Write the results 
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Paradigm stays the same, 
Change map and reduce 
functions for different problems

Slide source: Jeff Dean



Data Model 
Data is stored as flat files, not relations!

A file = a bag of (key, value) pairs

A MapReduce program
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs
• outputkey is optional
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MapReduce Overview

Input 
chunks

Key-value 
pairs (k, v)

Combined 
output

Keys with all their 
values (k, [v, w, …])

Map tasks Group by keys Reduce tasks
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Example: Word counting
● Count the number of times each distinct word appears in large 

collection of documents

● Many applications:
○ Analyze web server logs to find popular URLs
○ Statistical machine translation (e.g., count frequency of all 5-word 

sequences in documents)
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Map and Reduce functions for word counting
map(key, value):
// key: document name; value: text of the document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)
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MapReduce: word counting

To be, or not to be, that is 
the question:
Whether 'tis nobler in the 
mind to suffer
The slings and arrows of 
outrageous fortune,
Or to take Arms against a 
Sea of troubles,
And by opposing end 
them: to die, to sleep
No more; and by a sleep, 
to say we end
The heart-ache, …….

Big document

(to, 1),
(be, 1), ...

(mind, 1),
(to, 1), ...

(or, 1),
(to, 1), ...

(them, 1),
(to, 1), ...

Map: Read input and 
produce a set of key-

value pairs

(key, value)

Provided by programmer

(to, 1),
(to, 1),

(to, 1), ...
(be, 1),

(mind, 1),
(or, 1), ...
(them, 1),

(sleep, 1), ...

Group by key: Collect 
all pairs with same 

key

(key, value)

(to, 7)
(be, 2)

(mind, 1)
(or, 2)

(them, 1)
...

Reduce: Collect all 
values belonging to 
the key and output

(key, value)

O
nl

y 
se

qu
en

tia
l r

ea
ds

Provided by programmer
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MapReduce execution timeline

• When there are more tasks than workers, tasks execute in 
“waves” 
• Boundaries between waves are usually blurred 

• Reduce tasks can’t start until all map tasks are done
21Slides adapted from Duke CompSci 316



Fault Tolerance
• If one server fails every year… then a job with 10,000 servers 

will fail in less than an hour 

• MapReduce handles fault tolerance by writing intermediate 
files to disk:
• Mappers write file to local disk
• Reducers read the files as input; if the server fails, the reduce task is 

restarted on another server

22



MapReduce Summary
● A style of programming for managing many large-scale 

computations in a way that is tolerant of hardware faults
○ Just need to write two functions called Map and Reduce
○ The system manages parallel execution, coordination of tasks that execute 

Map or reduce, and dealing with failures

● It has several implementations, including Hadoop, Spark, Flink, and 
the original Google implementation just called “MapReduce”
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Workflow systems
● Extends MapReduce by supporting acyclic networks of functions

○ Simple two-step workflow → any acyclic workflow of functions
○ Each function implemented by a collection of tasks
○ A master controller is responsible for dividing work among tasks 

● Examples: Apache Spark and Google TensorFlow
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Blocking property
● Like MapReduce, workflow functions only deliver output after 

completion
● If task fails, no output is delivered to any successors in flow graph
● A master controller can therefore restart failed task at another 

compute node
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Spark: most popular workflow system
● Developed by UC Berkeley and 

Databricks, now maintained by 
Apache

● Advantages over early workflow 
systems
○ More efficient failure handling
○ More efficient grouping of tasks among 

compute nodes and scheduling 
function execution

○ Integration of programing language 
features such as looping and function 
libraries
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Data Model: Resilient distributed dataset (RDD)
● Central data abstraction of Spark

● A file of objects of one type
○ Statically typed: RDD[T] has objects of type T

● Immutable collections of objects, together with its lineage
○ Lineage = how a dataset is computed 

● Spark is resilient against loss of any or all chunks of RDD
○ If RDD in main memory is lost, can recompute lost partitions of 

RDD using lineage
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Spark program
Sequence of steps of

○ Transformations: apply some function to an RDD to produce another RDD
○ Actions: Turn RDD into data in surrounding file system and vice versa
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Example: average word length by letter
> avglens = sc.textFile(file)
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DFS:
mydata

RDD



Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split())
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DFS:
mydata

RDD RDD



Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word)))
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mydata
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Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey()
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Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey() \

.map(lambda (k, values): \
(k, sum(values)/len(values)))
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Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey() \

.map(lambda (k, values): \
(k, sum(values)/len(values)))
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Wide 
dependencies

Narrow 
dependencies



Map
● Transformation that takes function as parameter and applies it to 

every element of RDD
● Returns a new RDD where each input element is transformed into 

exactly one output element.
● Not exactly the same as Map of MapReduce

○ In MapReduce, a Map function is applied to a key-value pair and 
produces a set of key-value pairs

○ In Spark, a Map function can apply to any object type, but produces 
exactly one object
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> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
...



Flatmap
● Transformation analogous to MapReduce Map, but no restriction on 

the type
● In comparison to a Spark Map, each object maps to a list of 0 or 

more objects
● All the lists are then “flattened” into a single RDD of objects
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> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
...



Filter
● Transformation that takes a predicate that applies to the RDD object 

type and returns elements that satisfy predicate
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> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.filter(lambda word: word not in stoplist)) \
...



Reduce
● An action (not transformation) that returns a value instead of 

an RDD
● Takes parameter that is a function of type (V, V) => V

○ When applied to RDD, the function is repeatedly applied on pairs 
of elements to produce a single one

○ Function can be associative and commutative (e.g., addition), but 
this is not required 
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> totlen = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: len(word)) \
.reduce(lambda a, b: a + b)



Other examples of actions
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# Collect RDD elements to the drive program
collected_data = rdd.collect()

# Count the number of elements in the RDD
count = rdd.count()

# Get the first three elements of the RDD
element = rdd.take(3)

# Save RDD elements to a text file
rdd.saveAsTextFile(”output_folder”)

• Actions are operations that trigger the execution of the Spark 
computation and return results to the driver program or write data 
to external storage systems



Relational database operations
● Some Spark operations behave like relational algebra operations on 

relations that are represented by RDD’s
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Join 
● Takes two RDD’s of type key-value pair where the key types 

are the same
● For each pair (k, x) and (k, y), produce (k, (x, y))
● Output RDD consists of all such objects
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> x = sc.parallelize([("a", 1), ("b", 4)])
> y = sc.parallelize([("a", 2), ("a", 3)])
> x.join(y).collect()
[('a', (1, 2)), ('a', (1, 3))]



GroupByKey
● Takes RDD of key-value pairs, produces a set of key-value pairs

○ The value type for the output is a list of values of the input type
● Sorts input RDD by key
● For each key k produces the pair (k, [v1, v2, …, vn]) for vi’s associated 

with k
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> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
.groupByKey() \
...



Exercise
● There are many other transformations and actions supported by 

Spark
● For example, reduceByKey(func) is like groupByKey(), but also 

applies a reduce function func of the form (V, V) => V on the values

● Problem: implement word count using reduceByKey() 
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> avglens = sc.textFile(file) \
   .flatMap(lambda line: line.split()) \
   ... 



Spark implementation
● Similar to MapReduce,

○ RDD is divided into chunks, which are given to different compute nodes
○ Transformation on RDD can be performed in parallel on each of the chunks

● Two key improvements
○ Lazy evaluation of RDD’s
○ Lineage for RDD’s
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Lazy evaluation
● Spark does not actually apply transformations to RDD’s until it is 

required to do so (e.g., storing RDD to file system or returning a result 
to application)

● As a result, many RDD’s are not constructed all at once
○ A created RDD chunk can be used at the same compute node to apply another 

transformation
○ Benefit: This RDD is never stored on disk and never transmitted to another 

compute node

45

DFS:
mydata

R0 R1 R2

DFS:
output



Lazy evaluation example
● Count words in document that are not stop words

○ Apply Flatmap to input RDD R0 to create (w, 1) pairs
○ Apply Filter to each chunk R1 of resulting RDD to produce R2
○ If R2 is stored in DFS (action), it triggers the transformation in R1 and R2
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Data Sharing in MapReduce vs Spark
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This is why Spark is significantly faster for iterative algorithms

MapReduce: disk

Spark: memory



Resilience of RDD’s
● Spark records the lineage of every RDD, which can be used to re-

create any RDD
○ If R2 is lost, reconstruct from R1
○ If R1 is lost, reconstruct from R0
○ If R0 is lost, reconstruct from file system
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Why not store intermediate values (like MapReduce)?
● Trading off complex recovery for greater speed when things go 

right is generally good
● The faster Spark runs, the less chance there is a node failure
● Also storing intermediate values requires redundant file storage 

for a long period
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Spark programming guide and paper
● To  learn more about  writing  Spark  applications,  please  

read  the Spark programming guide:
https://spark.apache.org/docs/latest/rdd-programming-
guide.html

● We will read more technical details of Spark in this paper:
https://www.usenix.org/system/files/conference/nsdi12/nsdi
12-final138.pdf
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