Emerging Database
lechnologies

| ecture 14
03/13/24

So far: One query/update
One machine

Multiple query/updates One query/update
One machine Multiple machines
Transactions Distributed query processing

Map-Reduce, Spark

Slides adapted from Duke CompSci 316

Historical Context

o Early 2000s, people wants to

scale up systems
- Non SQL or Non relational
(nowadays, Not only SQL)

o Iriggered by needs of Web 2.0
companies (e.g., Facebook,
Amazon, Google)

o [rades off consistency
requirements of RDBMS for speed

Image source: https://www.geeksforgeeks.org/what-is-internet-definition-uses-working-advantages-and-disadvantages/

Goal: managing large amounts of data quickly

Ranking Web pages by importance
o lterated matrix-vector multiplication where dimension is many billions

Search friends in social networks

(@]

Graphs with hundreds of millions of nodes and many billions of edges

Solution: horizontal scaling

« Instead of a supercomputer (aka vertical scaling), we have large
collections of commodity hardware connected by Ethernet cables
or inexpensive switches

Challenges

o How do you distribute computation?
« How can we make it easy to write distributed programs?
o Machines fall:

> One server may stay up 3 years (1,000 days)

> If you have 1,000 servers, expect to lose 1/day
- With 1M machines, 1,000 machines fail every day!

A new software stack

o Distributed file system
o Large blocks, data replication, redundancy to protect against media failures

o MapReduce programming system
o Enables common calculations on large-scale data to be performed on
computing clusters efficiently
- lolerant to hardware failures
o Extensions to acyclic workflows, recursive algorithms

Physical organization of compute nodes

Parallel-computing architecture

- Gompute nodes are stored on racks (perhaps 8-64 on a rack)

- The nodes on a single rack are connected by a network, typically gigabit
Ethernet

> There can be many racks of compute nodes connected by another level of
network or a switch

Switch

Racks of compute nodes

Physical organization of compute nodes

It is a fact of life that components fall
- Loss of single node (e.g., disk crashes)
- Loss of an entire rack (e.g., network fails)

Solutions
o Files must be stored redundantly
- Computations must be divided into tasks, such that if any one task fails to
execute to completion, it can be restarted without affecting other tasks

Large-scale file system organization

To exploit cluster computing, files must look and behave differently from
conventional file systems on single computers

A Distributed File System (DFS) can be used when:
o Forvery large files: TBs, PBs
- Files are rarely updated and usually read or appended with data
- Mostly sequential reads

Distributed File System (

Files are divided into chunks, which

are typ|cally 04 MBs

Chunks are replicated (say 3 times) at
different compute nodes (called
chunks ervers)

- The compute nodes should be
located on different racks

- Chunk size and degree of replication
decided by the user

DFS)

File 1
Chunk 1

/[Chunk Server

File 1
Chunk 2

f
|
|
v

File 2
Chunk 1

File 1
Chunk 2

{ Chunk Server

File 1
Chunk 1

!
I
|
I

File 2
Chunk 2

File 1
Chunk 2

\[Chunk Server

File 2
Chunk 1

AN

File 2
Chunk 2

redundant

Master node

@)

Client library for file access

@)

@)

Stores metadata: file names
+ chunk i1ds + chunk
locations, access control
Master node itself is
replicated

Talks to master to find
chunk servers
Connects directly to chunk
servers to access data

Distributed File System (DFS)

%M

< Chunk Mappings |

Shadow N

File 1
Chunk 1

File 1
Chunk 2

File 2
Chunk 1

File 1
Chunk 2

Chunk Server]<
!
!
|
A 4

File 1
Chunk 1

File 2
Chunk 2

Chunk Server %
|
!
!
Y

File 1
Chunk 2

File 2
Chunk 1

Chunk Server J<

File 2
Chunk 2

redundant

DFES implementations

The Google File System (GFS)

(@]

(@]

Hadoop Distributed File System (HDFS)

(@]

File 1
Chunk 1

Chunk Server

File 1
Chunk 2

File 2
Chunk 1

Previously used in Google M
Proprietary

f
|
|
!

File 1
Chunk 2

Chunk Server

File 1
Chunk 1

< Chunk Mappings l

' ‘Shadow .

File 2
Chunk 2

. Master .

File 1
Chunk 2

f
|
i
i

Chunk Server

File 2
Chunk 1

File 2
Chunk 2

Open-source DFS used with Hadoop

Image source: https://en.wikipedia.org/wiki/Google_File_System#t/media/File:GoogleFileSystemGFS.svg

redundant

A brief history of MapReduce and Hadoop

GFS and
Google MapReduce Hadoop became a

published support added top-level Apache
GFS paper to Nutch project
)) '
Google Hadoop
published sub-project
MapReduce created
paper out of Nutch
)

: | |

2002 2003 2004 2005 2006 2008

Doug Cutting
started working
on Nutch

Image source: https://dzone.com/articles/lambda-architecture-with-apache-spark 14

MapReduce Overview

Read a lot of data
Map: extract something you care about from each record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results

Faradigm stays the same,
Change map and reduce
functions for different problems

Slide source: Jeff Dean

15

Data Model

Data Is stored as flat files, not relations!

A file = a bag of (key, value) pairs

A MapReduce program

* Input: a bag of (inputkey, value) pairs
 Qutput: a bag of (outputkey, value) pairs

* outputkey Is optional

Slide adapted from Berkeley CS 186

16

Map

Input
chunks

Reduce Overview

Key-value
pairs (k, v)

\
-

Map tasks Group by keys

Keys with all their
values (k, [v, w, ...])

/

/

 »

\

Reduce tasks

Combined
output

—xample: Word counting

« Count the number of times each distinct word appears in large
collection of documents

o Many applications:
o Analyze web server logs to find popular URLs
o Statistical machine translation (e.g., count frequency of all 5-word
sequences in documents)

18

Map and Reduce functions for word counting

map (key, value):
// key: document name; value: text of the document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts
result = ©
for each count v in values:
result += v
emit(key, result)

19

MapReduce: word counting

Provided by programmer

Map: Read input and
produce a set of key-

To be, or not to be, that is
the question:
Whether 'tis nobler in the

Group by key: Collect
all pairs with same

mind to suffer
The slings and arrows of
outrageous fortune,

Or to take Arms against a
Sea of troubles,
And by opposing end

them: to die, to sleep

No more; and by a sleep,
to say we end

The heart-ache,

Big document

value pairs key
(to, 1),
(be, 1), ... (to, 1),
(to, 1),
(mind, 1), (to, 1), ...
(to, 1), ... (be, 1),
(mind, 1),
(or, 1), (or, 1), ...
(to, 1), ... (them, 1),
(sleep, 1), ...
(them, 1),
(to, 1), ...

(key, value)

(key, value)

Provided by programmer

Reduce: Collect all
values belonging to
the key and output

(to, 7)
(be, 2)
(mind, 1)
(or, 2)
(them, 1)

(key, value)

Only sequential reads

<

20

MapReduce execution timeline

time

>

—— R R
| I [ROCR
owm v [CROJCR

 When there are more tasks than workers, tasks execute in
“waves”

» Boundaries between waves are usually blurred
* Reduce tasks can’t start until all map tasks are done

Slides adapted from Duke CompSci 316

21

Fault Tolerance

* |[f one server fails every year... then a job with 10,000 servers
will fail in less than an hour

* MapReduce handles fault tolerance by writing intermediate
files to disk:
« Mappers write file to local disk

« Reducers read the files as input; if the server fails, the reduce task is
restarted on another server

MapReduce Summary

o A style of programming for managing many large-scale

computations in a way that is tolerant of hardware faults
> Just need to write two functions called Map and Reduce

o The system manages parallel execution, coordination of tasks that execute
Map or reduce, and dealing with failures

« It has several implementations, including Hadoop, Spark, Flink, and
the original Google implementation just called “MapReduce”

o TEGEbE Spc.fll(\z

™

23

Workflow systems

o Extends MapReduce by supporting acyclic networks of functions
> Simple two-step workflow — any acyclic workflow of functions
- Each function implemented by a collection of tasks
o A master controller is responsible for dividing work among tasks

« Examples: Apache Spark and Google TensorFlow

——f -

Slocking property

o Like MapReduce, workflow functions only deliver output after

completion
o If task fails, no output is delivered to any successors in flow graph
o A master controller can therefore restart failed task at another

compute node

Spark: most popular workflow system

« Developed by UC Berkeley and

Databricks, now maintained by e ——————
o Advantages over early workflow “ N il £ AT
systems o o
- More efficient failure handling oo~

- More efficient grouping of tasks among @
compute nodes and scheduling R e <

function execution P . S
o Integration of programing language T Qi RO, N ETYE

features such as looping and function

libraries

\

26

Data Model;

Resilient distributed dataset (

« Central data abstraction of Spark

o A file of objects of one type
o Statically typed: RDD[T] has objects of type T

« Immutable collections of objects, together with its lineage

o Lineage = how a dataset is computed

« Spark is resilient against loss of any or all chunks of RDD
- |[f RDD in main memory is lost, can recompute lost partitions of

RDD using lineage

RDD

Spark program

Sequence of steps of
o [ransformations: apply some function to an RDD to produce another RDD
o Actions: Turn RDD into data in surrounding file system and vice versa

action transformation transformation action

T I g |

DFS: g DFS:
mydata N output

A 4
A 4
/

A 4
A
\

—xample: average word length by letter

> avglens = sc.textFile(file)

RDD

DFS: o
mydata N

Example: average word length by letter

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split())

RDD RDD

DFS: g
mydata .

Example: average word length by letter

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word)))

RDD [RDD [— RDD |

DFS: i
mydata N

Example: average word length by letter

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word))) \

.groupByKey ()

RDD RDD [RDD [

DFS: o " " S|){
mydata N R R <§
> > /#

RDD

Example: average word length by letter

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word))) \
.groupByKey () \
.map(lambda (k, values): \
(k, sum(values)/len(values)))

RDD RDD [RDD [

RDD [— RDD

DFS: o " " S| ’{
myd ata L > > <§
P > /#

33

Example: average word length by letter

> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[@], len(word))) \

.groupByKey () \
.map(lambda (k, values): \

(k, sum(values)/len(values)))

DFS:
mydata

RDD

RDD

RDD

Wide

l

dependencies

B

RDD

l

Narrow
dependencies

RDD

\ 4

A 4

34

Map

o [ransformation that takes function as parameter and applies it to
every element of RDD

o Returns a new RDD where each input element is transformed into
exactly one output element.

o Not exactly the same as Map of MapReduce

- In MapReduce, a Map function is applied to a key-value pair and
produces a set of key-value pairs

> In Spark, a Map function can apply to any object type, but produces
exactly one object

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word))) \

-latmap

« Iransformation analogous to MapReduce Map, but no restriction on
the type

« In comparison to a Spark Map, each object maps to a list of O or
more objects

« Allthe lists are then “flattened” into a single RDD of objects

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word))) \

-1lter

Transformation that takes a predicate that applies to the RDD object
type and returns elements that satisfy predicate

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.filter(lambda word: word not in stoplist)) \

37

Reduce

« An action (not transformation) that returns a value instead of
an RDD

o lakes parameter that is a function of type (V, V) =>V
- When applied to RDD, the function is repeatedly applied on pairs
of elements to produce a single one
- Function can be associative and commutative (e.g., addition), but
this is not required

> totlen = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: len(word)) \
.reduce(lambda a, b: a + b)

Other examples of actions

« Actions are operations that trigger the execution of the Spark
computation and return results to the driver program or write data
to external storage systems

Collect RDD elements to the drive program
collected data = rdd.collect()

Count the number of elements in the RDD
count = rdd.count()

Get the first three elements of the RDD
element = rdd.take(3)

Save RDD elements to a text file
rdd.saveAsTextFile(”output_folder”)

Relational datalbase operations

« Some Spark operations behave like relational algebra operations on
relations that are represented by RDD’s

Join

o Jakes two RDD'’s of type key-value pair where the key types
are the same

o Foreach pair (k, x) and (k, y), produce (k, (x, y))

« Output RDD consists of all such objects

sc.parallelize([("a", 1), ("b", 4)])
sc.parallelize([("a", 2), ("a", 3)])
.join(y).collect()

(‘a’, (1, 2)), ("a’, (1, 3))]

>
>
>
[

GroupByKey

« [akes RDD of key-value pairs, produces a set of key-value pairs

- The value type for the output is a list of values of the input type
« Sorts input RDD by key

« For each key k produces the pair (k, [v4, V5, ..., V,]) fOr v/'s associated
with k

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[@], len(word))) \
.groupByKey () \

—Xercise

o [here are many other transformations and actions supported by
Spark

« For example, reduceByKey(func) is like groupByKey(), but also
applies a reduce function func of the form (V, V) => V on the values

« Problem: implement word count using reduceByKey()

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \

Spark implementation

o Similar to MapReduce,
- RDD is divided into chunks, which are given to different compute nodes
o Transformation on RDD can be performed in parallel on each of the chunks

o [Iwo key improvements
o Lazy evaluation of RDD’s
o Lineage for RDD’s

Lazy evaluation

e Spark does not actually apply transformations to RDD’s until it is
required to do so (e.g., storing RDD to file system or returning a result

to application)

e As aresult, many RDD’s are not constructed all at once

o A created RDD chunk can be used at the same compute node to apply another

transformation

o Benefit: This RDD is never stored on disk and never transmitted to another

compute node

RO

R1

R2

DFS: o
mydata N

DFS:
output

45

Lazy evaluation example

« Count words in document that are not stop words

- Apply Flatmap to input RDD R, to create (w, 1) pairs
o Apply Filter to each chunk Ry of resulting RDD to produce R,
- If Ry is stored in DFS (action), it triggers the transformation in Ry and R,

RO [Rl R2

DFS: o)) N DFS:
mydata N N N | output
R S -

Data Sharing in MapReduce vs Spark

HDFS HDFS HDFS HDFS

read write read write
ﬁ—m‘@—m‘@— - MapReduce: disk
Input
ﬁ_ €T Spark: memory
Input

This is why Spark is significantly faster for iterative algorithms

47

Resllience of RDD’s

« Spark records the lineage of every RDD, which can be used to re-

create any RDD
o It Ry is lost, reconstruct from R;
o If Ry Is lost, reconstruct from R,
o If Ry is lost, reconstruct from file system

RO [Rl R2

DFS: o)) N DFS:
mydata N N N | output
R S -

Why not store intermediate values (like MapReduce)?

o Irading off complex recovery for greater speed when things go
right is generally good

« [The faster Spark runs, the less chance there is a node failure

« Also storing intermediate values requires redundant file storage
for a long period

Spark programming guide and paper

« 10 learn more about writing Spark applications, please
read the Spark programming guide:

https.//spark.apache.org/docs/latest/rdd-programming-
guide.htmi

« We will read more technical details of Spark in this paper:

https://www.usenix.org/system/files/conference/nsdil 2/nsdi
12-final138.pdf

50

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

