
CS 4440 A
Emerging Database
Technologies

Lecture 14
03/13/24

2

One query/update
One machine

Multiple query/updates
One machine

One query/update
Multiple machines

So far:

Transactions Distributed query processing
Map-Reduce, Spark

Slides adapted from Duke CompSci 316

Historical Context
● Early 2000s, people wants to

scale up systems
o Non SQL or Non relational

(nowadays, Not only SQL)

● Triggered by needs of Web 2.0
companies (e.g., Facebook,
Amazon, Google)

● Trades off consistency
requirements of RDBMS for speed

3
Image source: https://www.geeksforgeeks.org/what-is-internet-definition-uses-working-advantages-and-disadvantages/

Goal: managing large amounts of data quickly
● Ranking Web pages by importance

○ Iterated matrix-vector multiplication where dimension is many billions

● Search friends in social networks
○ Graphs with hundreds of millions of nodes and many billions of edges

4

Solution: horizontal scaling
● Instead of a supercomputer (aka vertical scaling), we have large

collections of commodity hardware connected by Ethernet cables
or inexpensive switches

5

Challenges
● How do you distribute computation?
● How can we make it easy to write distributed programs?
● Machines fail:

○ One server may stay up 3 years (1,000 days)
○ If you have 1,000 servers, expect to lose 1/day
○ With 1M machines, 1,000 machines fail every day!

6

A new software stack
● Distributed file system

○ Large blocks, data replication, redundancy to protect against media failures

● MapReduce programming system
○ Enables common calculations on large-scale data to be performed on

computing clusters efficiently
○ Tolerant to hardware failures
○ Extensions to acyclic workflows, recursive algorithms

7

Physical organization of compute nodes
Parallel-computing architecture

○ Compute nodes are stored on racks (perhaps 8-64 on a rack)
○ The nodes on a single rack are connected by a network, typically gigabit

Ethernet
○ There can be many racks of compute nodes connected by another level of

network or a switch

8

Switch

Racks of compute nodes

Physical organization of compute nodes
It is a fact of life that components fail

○ Loss of single node (e.g., disk crashes)
○ Loss of an entire rack (e.g., network fails)

Solutions
○ Files must be stored redundantly
○ Computations must be divided into tasks, such that if any one task fails to

execute to completion, it can be restarted without affecting other tasks

9

Large-scale file system organization
To exploit cluster computing, files must look and behave differently from
conventional file systems on single computers

A Distributed File System (DFS) can be used when:
○ For very large files: TBs, PBs
○ Files are rarely updated and usually read or appended with data
○ Mostly sequential reads

10

Distributed File System (DFS)
● Files are divided into chunks, which

are typically 64 MBs
○ Chunks are replicated (say 3 times) at

different compute nodes (called
chunks ervers)

○ The compute nodes should be
located on different racks

○ Chunk size and degree of replication
decided by the user

11

Distributed File System (DFS)
● Master node

○ Stores metadata: file names
+ chunk ids + chunk
locations, access control

○ Master node itself is
replicated

● Client library for file access
○ Talks to master to find

chunk servers
○ Connects directly to chunk

servers to access data
12

DFS implementations
The Google File System (GFS)

○ Previously used in Google
○ Proprietary

Hadoop Distributed File System (HDFS)
○ Open-source DFS used with Hadoop

13
Image source: https://en.wikipedia.org/wiki/Google_File_System#/media/File:GoogleFileSystemGFS.svg

A brief history of MapReduce and Hadoop

14Image source: https://dzone.com/articles/lambda-architecture-with-apache-spark

MapReduce Overview

Read a lot of data
Map: extract something you care about from each record
Shuffle and Sort
Reduce: aggregate, summarize, filter, transform
Write the results

15

Paradigm stays the same,
Change map and reduce
functions for different problems

Slide source: Jeff Dean

Data Model
Data is stored as flat files, not relations!

A file = a bag of (key, value) pairs

A MapReduce program
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs
• outputkey is optional

16Slide adapted from Berkeley CS 186

MapReduce Overview

Input
chunks

Key-value
pairs (k, v)

Combined
output

Keys with all their
values (k, [v, w, …])

Map tasks Group by keys Reduce tasks

17

Example: Word counting
● Count the number of times each distinct word appears in large

collection of documents

● Many applications:
○ Analyze web server logs to find popular URLs
○ Statistical machine translation (e.g., count frequency of all 5-word

sequences in documents)

18

Map and Reduce functions for word counting
map(key, value):
// key: document name; value: text of the document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

19

MapReduce: word counting

To be, or not to be, that is
the question:
Whether 'tis nobler in the
mind to suffer
The slings and arrows of
outrageous fortune,
Or to take Arms against a
Sea of troubles,
And by opposing end
them: to die, to sleep
No more; and by a sleep,
to say we end
The heart-ache, …….

Big document

(to, 1),
(be, 1), ...

(mind, 1),
(to, 1), ...

(or, 1),
(to, 1), ...

(them, 1),
(to, 1), ...

Map: Read input and
produce a set of key-

value pairs

(key, value)

Provided by programmer

(to, 1),
(to, 1),

(to, 1), ...
(be, 1),

(mind, 1),
(or, 1), ...
(them, 1),

(sleep, 1), ...

Group by key: Collect
all pairs with same

key

(key, value)

(to, 7)
(be, 2)

(mind, 1)
(or, 2)

(them, 1)
...

Reduce: Collect all
values belonging to
the key and output

(key, value)

O
nl

y
se

qu
en

tia
l r

ea
ds

Provided by programmer

20

MapReduce execution timeline

• When there are more tasks than workers, tasks execute in
“waves”
• Boundaries between waves are usually blurred

• Reduce tasks can’t start until all map tasks are done
21Slides adapted from Duke CompSci 316

Fault Tolerance
• If one server fails every year… then a job with 10,000 servers

will fail in less than an hour

• MapReduce handles fault tolerance by writing intermediate
files to disk:
• Mappers write file to local disk
• Reducers read the files as input; if the server fails, the reduce task is

restarted on another server

22

MapReduce Summary
● A style of programming for managing many large-scale

computations in a way that is tolerant of hardware faults
○ Just need to write two functions called Map and Reduce
○ The system manages parallel execution, coordination of tasks that execute

Map or reduce, and dealing with failures

● It has several implementations, including Hadoop, Spark, Flink, and
the original Google implementation just called “MapReduce”

23

Workflow systems
● Extends MapReduce by supporting acyclic networks of functions

○ Simple two-step workflow → any acyclic workflow of functions
○ Each function implemented by a collection of tasks
○ A master controller is responsible for dividing work among tasks

● Examples: Apache Spark and Google TensorFlow

f g

h i

j

24

Blocking property
● Like MapReduce, workflow functions only deliver output after

completion
● If task fails, no output is delivered to any successors in flow graph
● A master controller can therefore restart failed task at another

compute node

25

f g

Spark: most popular workflow system
● Developed by UC Berkeley and

Databricks, now maintained by
Apache

● Advantages over early workflow
systems
○ More efficient failure handling
○ More efficient grouping of tasks among

compute nodes and scheduling
function execution

○ Integration of programing language
features such as looping and function
libraries

26

Data Model: Resilient distributed dataset (RDD)
● Central data abstraction of Spark

● A file of objects of one type
○ Statically typed: RDD[T] has objects of type T

● Immutable collections of objects, together with its lineage
○ Lineage = how a dataset is computed

● Spark is resilient against loss of any or all chunks of RDD
○ If RDD in main memory is lost, can recompute lost partitions of

RDD using lineage

27

RDD

Spark program
Sequence of steps of

○ Transformations: apply some function to an RDD to produce another RDD
○ Actions: Turn RDD into data in surrounding file system and vice versa

28

DFS:
mydata

R0 R1 R2

DFS:
output

transformation transformationaction action

Example: average word length by letter
> avglens = sc.textFile(file)

29

DFS:
mydata

RDD

Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split())

30

DFS:
mydata

RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word)))

31

DFS:
mydata

RDD RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey()

32

DFS:
mydata

RDD RDD RDD
RDD

Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey() \

.map(lambda (k, values): \
(k, sum(values)/len(values)))

33

DFS:
mydata

RDD RDD RDD
RDD RDD

Example: average word length by letter
> avglens = sc.textFile(file) \

.flatMap(lambda line: line.split()) \

.map(lambda word: (word[0], len(word))) \

.groupByKey() \

.map(lambda (k, values): \
(k, sum(values)/len(values)))

34

DFS:
mydata

RDD RDD RDD
RDD RDD

Wide
dependencies

Narrow
dependencies

Map
● Transformation that takes function as parameter and applies it to

every element of RDD
● Returns a new RDD where each input element is transformed into

exactly one output element.
● Not exactly the same as Map of MapReduce

○ In MapReduce, a Map function is applied to a key-value pair and
produces a set of key-value pairs

○ In Spark, a Map function can apply to any object type, but produces
exactly one object

35

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
...

Flatmap
● Transformation analogous to MapReduce Map, but no restriction on

the type
● In comparison to a Spark Map, each object maps to a list of 0 or

more objects
● All the lists are then “flattened” into a single RDD of objects

36

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
...

Filter
● Transformation that takes a predicate that applies to the RDD object

type and returns elements that satisfy predicate

37

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.filter(lambda word: word not in stoplist)) \
...

Reduce
● An action (not transformation) that returns a value instead of

an RDD
● Takes parameter that is a function of type (V, V) => V

○ When applied to RDD, the function is repeatedly applied on pairs
of elements to produce a single one

○ Function can be associative and commutative (e.g., addition), but
this is not required

38

> totlen = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: len(word)) \
.reduce(lambda a, b: a + b)

Other examples of actions

39

Collect RDD elements to the drive program
collected_data = rdd.collect()

Count the number of elements in the RDD
count = rdd.count()

Get the first three elements of the RDD
element = rdd.take(3)

Save RDD elements to a text file
rdd.saveAsTextFile(”output_folder”)

• Actions are operations that trigger the execution of the Spark
computation and return results to the driver program or write data
to external storage systems

Relational database operations
● Some Spark operations behave like relational algebra operations on

relations that are represented by RDD’s

40

Join
● Takes two RDD’s of type key-value pair where the key types

are the same
● For each pair (k, x) and (k, y), produce (k, (x, y))
● Output RDD consists of all such objects

41

> x = sc.parallelize([("a", 1), ("b", 4)])
> y = sc.parallelize([("a", 2), ("a", 3)])
> x.join(y).collect()
[('a', (1, 2)), ('a', (1, 3))]

GroupByKey
● Takes RDD of key-value pairs, produces a set of key-value pairs

○ The value type for the output is a list of values of the input type
● Sorts input RDD by key
● For each key k produces the pair (k, [v1, v2, …, vn]) for vi’s associated

with k

42

> avglens = sc.textFile(file) \
.flatMap(lambda line: line.split()) \
.map(lambda word: (word[0], len(word))) \
.groupByKey() \
...

Exercise
● There are many other transformations and actions supported by

Spark
● For example, reduceByKey(func) is like groupByKey(), but also

applies a reduce function func of the form (V, V) => V on the values

● Problem: implement word count using reduceByKey()

43

> avglens = sc.textFile(file) \
 .flatMap(lambda line: line.split()) \
 ...

Spark implementation
● Similar to MapReduce,

○ RDD is divided into chunks, which are given to different compute nodes
○ Transformation on RDD can be performed in parallel on each of the chunks

● Two key improvements
○ Lazy evaluation of RDD’s
○ Lineage for RDD’s

44

Lazy evaluation
● Spark does not actually apply transformations to RDD’s until it is

required to do so (e.g., storing RDD to file system or returning a result
to application)

● As a result, many RDD’s are not constructed all at once
○ A created RDD chunk can be used at the same compute node to apply another

transformation
○ Benefit: This RDD is never stored on disk and never transmitted to another

compute node

45

DFS:
mydata

R0 R1 R2

DFS:
output

Lazy evaluation example
● Count words in document that are not stop words

○ Apply Flatmap to input RDD R0 to create (w, 1) pairs
○ Apply Filter to each chunk R1 of resulting RDD to produce R2
○ If R2 is stored in DFS (action), it triggers the transformation in R1 and R2

46

DFS:
mydata

R0 R1 R2

DFS:
output

Data Sharing in MapReduce vs Spark

47

This is why Spark is significantly faster for iterative algorithms

MapReduce: disk

Spark: memory

Resilience of RDD’s
● Spark records the lineage of every RDD, which can be used to re-

create any RDD
○ If R2 is lost, reconstruct from R1
○ If R1 is lost, reconstruct from R0
○ If R0 is lost, reconstruct from file system

48

DFS:
mydata

R0 R1 R2

DFS:
output

Why not store intermediate values (like MapReduce)?
● Trading off complex recovery for greater speed when things go

right is generally good
● The faster Spark runs, the less chance there is a node failure
● Also storing intermediate values requires redundant file storage

for a long period

49

Spark programming guide and paper
● To learn more about writing Spark applications, please

read the Spark programming guide:
https://spark.apache.org/docs/latest/rdd-programming-
guide.html

● We will read more technical details of Spark in this paper:
https://www.usenix.org/system/files/conference/nsdi12/nsdi
12-final138.pdf

50

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

