CS 4440 A
 Emerging Database Technologies

Lecture 13

02/21/24

By Hantian Zhang

If we just have a bunch of data sets in a repository, it is unlikely anyone will ever be able to find, let alone reuse, any of this data. With adequate metadata, there is some hope, but even so, challenges will remain..

It is important to understand your data aka data mining

- Stats of the data
- Association Rule Mining
- Classification
- Regression
- Clustering
- Anomaly Detection
- etc

Two Main Categories of Algorithms

- Schema-Driven
- Has candidate generation
- Has pruning
- Can quickly check if a candidate is interesting or not
- Usually sensitive to the size of the schema
- Data-Driven
- No candidate generation
- Have a novel data structure to summarize the data
- Usually sensitive to the size of the instance

Today's class

Association rules mining

- Schema-Driven: Apriori algorithm
- Data-Driven: FP-Growth algorithm

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

$$
\begin{aligned}
& \{\text { Diaper }\} \rightarrow\{\text { Beer }\}, \\
& \{\text { Milk, Bread }\} \rightarrow\{\text { Eggs,Coke }\}, \\
& \{\text { Beer, Bread }\} \rightarrow\{\text { Milk }\},
\end{aligned}
$$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$

Support

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Fraction of transactions that contain an itemset
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$

Frequent Itemset

- An itemset whose support is greater than or equal to a minsup threshold

Definition: Association Rule

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow\{$ Beer $\}$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

Example:

$\{$ Milk, Diaper $\} \Rightarrow$ Beer $\}$

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper,Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk,Diaper,Beer })}{\sigma(\text { Milk,Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Computational Complexity

Given d unique items:

- Total number of itemsets $=2^{\text {d }}$
- Total number of possible association rules:

$$
\begin{aligned}
& \begin{aligned}
R & =\sum_{k=1}^{d-1}\left[\binom{d}{k} \times \sum_{j=1}^{d-k}\binom{d-k}{j}\right] \\
& =3^{d}-2^{d+1}+1
\end{aligned} \\
& \text { If d }=6, \mathrm{R}=602 \text { rules }
\end{aligned}
$$

Mining Association Rules

$T I D$	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Given d items, there are $2^{\text {d }}$ possible candidate itemsets

Frequent Itemset Generation

Brute-force approach:

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since $\mathrm{M}=2^{\text {d }}$!!!

Frequent Itemset Generation Strategies

Reduce the number of candidates (M)

- Complete search: M=2 ${ }^{\text {d }}$
- Use pruning techniques to reduce M

Reduce the number of comparisons (NM)

- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:

- If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support measure:

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

TID	Items					
$\mathbf{1}$	Bread, Milk	Items (1-itemsets)				
2	Beer, Bread, Diaper, Eggs					
3	Beer, Coke, Diaper, Milk					
4	Beer, Bread, Diaper, Milk					
$\mathbf{5}$	Bread, Coke, Diaper, Milk			\quad	Item	Count
:---	:---	:---				
Bread	4					
Coke	2					
Milk	4					
Beer	3					
Diaper	4					
Eggs	1					

Minimum Support $=3$
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}
$$

$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

TID	Items	Items (1-itemsets)	
1	Bread, Milk	Item	Count
2	Beer, B read, Diaper, Eggs	Bread	4
3	Beer, Coke, Diaper, Milk	Coke	2
4	Beer, B read, Diaper, Milk	Beer	3
5	Bread, Coke, Diaper, Milk	Diaper	4

Minimum Support $=3$
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}
$$

$6+15+20=41$
With support-based pruning,
$6+6+4=16$

Illustrating Apriori Principle

Item	Count	Items (1-itemsets)
Bread	4	
Coke	2	,
Milk	4	- Itemset
Beer	3	\{Bread, Milk
Diaper	4	\{Bread, Beer \}
Eggs	1	\{Bread, Diaper\}
		\{Beer, Milk\}
		\{Diaper, Milk
		\{Beer,Diaper\}

Minimum Support $=3$
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}
$$

$$
6+15+20=41
$$

With support-based pruning, $6+6+4=16$

Illustrating Apriori Principle

Item	Count	Items (1-itemsets)			
Bread	4				
Coke	2				Pairs (2-itemsets)
Milk Beer Diaper	4		Itemset	Count	
	3		\{Bread, Milk	3	
	4		\{Beer, Bread\}	2	(No need to generate candidates involving Coke or Eggs)
Eggs	1		\{Bread,Diaper\}	3	
			\{Beer,Milk	2	
			\{Diaper,Milk\} \{Beer,Diaper\}	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	
Minim	Suppor				

$$
\begin{aligned}
& \text { If every subset is considered, } \\
& \qquad{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3} \\
& 6+15+20=41 \\
& \text { With support-based pruning, } \\
& 6+6+4=16
\end{aligned}
$$

Illustrating Apriori Principle

Item	Count
Bread	I
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets) \mathbb{M}

Itemset	Count
\{Bread,Milk	3
\{Beer, Bread\}	$\mathbf{3}$
\{Bread,Diaper $\}$	3
\{Beer,MHIk\}	2
\{Diaper,Milk	$\mathbf{3}$
\{Beer,Diaper\}	3

Minimum Support $=3$
Triplets (3-itemsets)

$$
\begin{aligned}
& \text { If every subset is considered, } \\
& { }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3} \\
& 6+15+20=41 \\
& \text { With support-based pruning, } \\
& 6+6+4=16
\end{aligned}
$$

Itemset
\{Beer, Diaper, MIlk\}
\{Beer,Bread,Diaper\}
\{Bread, Diaper, Milk\}
\{Beer, Bread, Milk\}

Illustrating Apriori Principle

Item	Count
Bread	I
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
\{Bread, Milk	3
\{Beer, Bread\}	2
\{Bread,Diaper\}	3
\{Beer,Milk	2
\{Diaper,Milk \}	3
\{Beer,Diaper\}	3

Minimum Support $=3$
Triplets (3-itemsets)
If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}
$$

$$
6+15+20=41
$$

With support-based pruning,
$6+6+4=16$

Itemset	Count
\{Beer, Diaper, Milk\}	2
\{Beer, Bread, Diaper\}	2
\{Bread, Diaper, Milk\}	2
\{Beer, Bread, Milk\}	1

Apriori Algorithm

F_{k} : frequent k-itemsets
L_{k} : candidate k-itemsets

Algorithm

- Let k=1
- Generate $F_{1}=\{$ frequent 1-itemsets $\}$
- Repeat until F_{k} is empty
- Candidate Generation: Generate L_{k+1} from F_{k}
- Candidate Pruning: Prune candidate itemsets in $\mathrm{L}_{\mathrm{k}+1}$ containing subsets of length k that are infrequent
- Support Counting: Count the support of each candidate in $\mathrm{L}_{\mathrm{k}+1}$ by scanning the DB
- Candidate Elimination: Eliminate candidates in $\mathrm{L}_{\mathrm{k}+1}$ that are infrequent, leaving only those that are frequent $=>F_{k+1}$

Candidate Generation: $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

Merge two frequent ($k-1$)-itemsets if their first ($k-2$) items are identical

- $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$
- Merge $(A B C, \underline{A B D})=\underline{A B C D}$
- $\operatorname{Merge}(A B C, A B E)=A B C E$
- $\operatorname{Merge}(\underline{A B D}, \underline{A B E})=\underline{A B D E}$
- Do not merge($\mathbf{A B D}, \mathbf{A C D})$ because they share only prefix of length 1 instead of length 2

Candidate Pruning

- Let $F_{3}=\{A B C, A B D, A B E, A C D, B C D, B D E, C D E\}$ be the set of frequent 3-itemsets
- $L_{4}=\{A B C D, A B C E, A B D E\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune ABCE because ACE and BCE are infrequent
- Prune ABDE because ADE is infrequent
- After candidate pruning: $L_{4}=\{A B C D\}$

Illustrating Apriori Principle

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets) M

Itemset	Count
\{Bread, Milk	3
\{Beer, Bread\}	2
\{Bread,Diaper\}	3
\{Beer,Milk\}	2
\{Diaper,Milk\}	3
\{Beer,Diaper\}	3

Minimum Support $=3$
If every subset is considered, ${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}$

$$
6+15+20=41
$$

With support-based pruning, $6+4+1=11$

Itemset	Count
\{Bread, Diaper, Milk\}	2

Support Counting of Candidate Itemsets

Scan the database of transactions to determine the support of each candidate itemset

- Must match every candidate itemset against every transaction, which is an expensive operation

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

```
Itemset
{ Beer, Diaper, Milk}
{ Beer,Bread,Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}
```


Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \rightarrow L-f$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{rlll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB}, & &
\end{array}
$$

- If $|\mathrm{L}|=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring $L \rightarrow \varnothing$ and $\varnothing \rightarrow L$)

Rule Generation

- In general, confidence does not have an anti-monotone property $\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})$
- But confidence of rules generated from the same itemset has an anti-monotone property
- E.g., Suppose $\{A, B, C, D\}$ is a frequent 4-itemset:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

The Data Driven Approach: The FP-TREE and THE FPGrowth Algorithm

Core Data Structure: FP-Tree

Transaction Data Set
TID Items 1 $\{\mathrm{a}, \mathrm{b}\}$ 2 $\{\mathrm{~b}, \mathrm{c}, \mathrm{d}\}$ 3 $\{\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ 4 $\{\mathrm{a}, \mathrm{d}, \mathrm{e}\}$ 5 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ 6 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ 7 $\{\mathrm{a}\}$ 8 $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ 9 $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$ 10 $\{\mathrm{~b}, \mathrm{c}, \mathrm{e}\}$

(i) After reading TID=1 (ii) After reading TID=2

(iii) After reading TID=3

(iv) After reading TID=10

- Nodes correspond to items and have a counter
- FP-Growth reads 1 transaction at a time and maps it to a path
- Fixed order is used, so paths can overlap when transactions share items (when they have the same prefix).
- In this case, counters are incremented
- Pointers are maintained between nodes containing the same item, creating singly linked lists (dotted lines)
- The more paths that overlap, the higher the compression. FP-tree may fit in memory.
- Frequent itemsets extracted from the FP-Tree.

Step 1: FP-Tree Construction (Example)

FP-Tree is constructed using 2 passes over the data-set:

- Pass 1:
- Scan data and find support for each item.
- Discard infrequent items.
- Sort frequent items in decreasing order based on their support.
- For our example: a, b, c, d, e
- Use this order when building the FP-Tree, so common prefixes can be shared.

Step 1: FP-Tree Construction (Example)

- Pass 2: construct the FP-Tree (see diagram on next slide)
- Read transaction 1: $\{a, b\}$
- Create 2 nodes a and b and the path null $\rightarrow a \rightarrow b$. Set counts of a and b to 1 .
- Read transaction 2: $\{b, c, d\}$
- Create 3 nodes for b, c and d and the path null $\rightarrow b \rightarrow c \rightarrow d$. Set counts to 1 .
- Note that although transaction 1 and 2 share b, the paths are disjoint as they don't share a common prefix. Add the link between the b 's.
- Read transaction 3: $\{a, c, d, e\}$
- It shares common prefix item a with transaction 1 so the path for transaction 1 and 3 will overlap and the frequency count for node a will be incremented by 1 . Add links between the c 's and d 's.
- Continue until all transactions are mapped to a path in the FP-tree.

Step 1: FP-Tree Construction (Example)

(iii) After reading TID=3

(iv) After reading TID=10

FP-Tree size

- The FP-Tree usually has a smaller size than the uncompressed data - typically many transactions share items (and hence prefixes).
- Best case scenario: all transactions contain the same set of items.
- 1 path in the FP-tree
- Worst case scenario: every transaction has a unique set of items (no items in common)
- Size of the FP-tree is at least as large as the original data.
- Storage requirements for the FP-tree are higher - need to store the pointers between the nodes and the counters.
- The size of the FP-tree depends on how the items are ordered
- Ordering by decreasing support is typically used but it does not always lead to the smallest tree (it's a heuristic).

Step 2: Frequent Itemset Generation

- FP-Growth extracts frequent itemsets from the FP-tree.
- Bottom-up algorithm - from the leaves towards the root
- Divide and conquer: first look for frequent itemsets ending in e, then $d e$, etc. . . then d, then $c d$, etc. . .
- First, extract prefix path sub-trees ending in an item(set). (hint: use the linked lists)

Complete FP-tree
\rightarrow Example: prefix path sub-trees

(c) Paths containing node c
(d) Paths containing node b
(e) Paths containing node a

Step 2: Frequent Itemset Generation

- Each prefix path sub-tree is processed recursively to extract the frequent itemsets. Solutions are then merged.
- E.g. the prefix path sub-tree for e will be used to extract frequent itemsets ending in e, then in $d e, c e, b e$ and $a e$, then in cde, bde, cde, etc.
- Divide and conquer approach

Prefix path sub-tree ending in e.

Example

Let minSup $=2$ and extract all frequent itemsets containing e．
－1．Obtain the prefix path sub－tree for e ：

－2．Check if e is a frequent item by adding the counts along the linked list（dotted line）．If so，extract it．
－Yes，count $=3$ so $\{e\}$ is extracted as a frequent itemset．
－3．As e is frequent，find frequent itemsets ending in e．i．e．de， $c e, b e$ and $a e$ ．
－i．e．decompose the problem recursively．
－To do this，we must first to obtain the conditional FP－tree for e．

Conditional FP-Tree

- The FP-Tree that would be built if we only consider transactions containing a particular itemset (and then removing that itemset from all transactions).
- Example: FP-Tree conditional on e.

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree ending in e :

- Update the support counts along the prefix paths (from e) to reflect the number of transactions containing e.
- b and c should be set to 1 and a to 2 .

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree ending in e :

- Remove the nodes containing e - information about node e is no longer needed because of the previous step

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree ending in e :

- Remove infrequent items (nodes) from the prefix paths
- E.g. b has a support of 1 (note this really means be has a support of 1). i.e. there is only 1 transaction containing b and e so be is infrequent - can remove b.

Question: why were c and d not removed?

Example (continued)

- 4. Use the the conditional FP-tree for e to find frequent itemsets ending in de, ce and ae
- Note that be is not considered as b is not in the conditional FP-tree for e.
- For each of them (e.g. de), find the prefix paths from the conditional tree for e, extract frequent itemsets, generate conditional FP-tree, etc... (recursive)
- Example: $e \rightarrow d e \rightarrow$ ade ($\{d, e\},\{a, d, e\}$ are found to be frequent)

Result

- Frequent itemsets found (ordered by suffix and order in which they are found):

Suffix	Frequent Itemsets
e	$\{\mathrm{e}\},\{\mathrm{d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{d}, \mathrm{e}\},\{\mathrm{c}, \mathrm{e}\},\{\mathrm{a}, \mathrm{e}\}$
d	$\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{d}\}$
c	$\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}$
b	$\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}$
a	$\{\mathrm{a}\}$

Discussion

- Advantages of FP-Growth
- only 2 passes over data-set
- "compresses" data-set
- no candidate generation
- much faster than Apriori
- Disadvantages of FP-Growth
- FP-Tree may not fit in memory!!
- FP-Tree is expensive to build
- Trade-off: takes time to build, but once it is built, frequent itemsets are read off easily.
- Time is wasted (especially if support threshold is high), as the only pruning that can be done is on single items.
- support can only be calculated once the entire data-set is added to the FP-Tree.
- Apriori: uses a generate-and-test approach - generates candidate itemsets and tests if they are frequent
- Generation of candidate itemsets is expensive (in both space and time)
- Support counting is expensive
- Subset checking (computationally expensive)
- Multiple Database scans (I/O)
- FP-Growth: allows frequent itemset discovery without candidate itemset generation. Two step approach:
- Step 1: Build a compact data structure called the $F P$-tree
- Built using 2 passes over the data-set.
- Step 2: Extracts frequent itemsets directly from the FP-tree
- Traversal through FP-Tree

