Emerging Database
lTechnologies

Lecture 13
02/21/24
By Hantian Zhang

If we just have a bunch of data sets in a repository, it is
unlikely anyone will ever be able to find, let alone
reuse, any of this data. With adequate metadata, there
IS some hope, but even so, challenges will remain..

[D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin, J. Gehrke, L. Haas, A. Halevy, J. Han, H. V. Jagadish, A.
Labrinidis, S. Madden, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, K. Ross, C. Shahabi, D. Suciu, S. Vaithyanathan, and J.
Widom. Challenges and opportunities with Big Data. Technical report, Computing Community Consortium, http://cra.org/ccc/docs/

init/bigdatawhitepaper.pdf, 2012.]

Chart 2

't Is Important to understand your data aka
data mining

« Stats of the data

* Association Rule Mining
* Classification

* Regression

* Clustering

* Anomaly Detection

e efc

Two Main Categories of Algorithms

» Schema-Driven
» Has candidate generation
« Has pruning
« Can quickly check if a candidate is interesting or not
« Usually sensitive to the size of the schema

* Data-Driven
* No candidate generation
 Have a novel data structure to summarize the data
» Usually sensitive to the size of the instance

Today's class

Association rules mining
« Schema-Driven: Apriori algorithm
« Data-Driven: FP-Growth algorithm

Acknowledgement: Slides adapted from Prof. Xu Chu’s CS4400-X

Assoclation Rule Mining

« Given a set of transactions, find rules that will predict the occurrence of
an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID Items
1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

< Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} — {Beer},
{Milk, Bread} — {Eggs,Coke},
{Beer, Bread} —» {Milk},

Implication means co-occurrence,
not causality!

		TID

		Items

		1

		Bread, Milk

		2

		Bread, Diaper, Beer, Eggs

		3

		Milk, Diaper, Beer, Coke

		4

		Bread, Milk, Diaper, Beer

		5

		Bread, Milk, Diaper, Coke

Definition: Frequent ltemset

ltemset
« A collection of one or more items
« Example: {Milk, Bread, Diaper}
e Kk-itemset
* An itemset that contains k items

Support count (o)

« Frequency of occurrence of an itemset
 E.g. o({Milk, Bread,Diaper}) = 2

Support
* Fraction of transactions that contain an itemset
« E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent ltemset

* An itemset whose support is greater than or equal to
a minsup threshold

TiD

Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

N| | W N -

Bread, Milk, Diaper, Coke

		TID

		Items

		1

		Bread, Milk

		2

		Bread, Diaper, Beer, Eggs

		3

		Milk, Diaper, Beer, Coke

		4

		Bread, Milk, Diaper, Beer

		5

		Bread, Milk, Diaper, Coke

Definition: Association Rule

0 Association Rule | e
— An implication expression of the form X — Y, 1 Bread, Milk
where X and Y are itemsets 2 Bread, Diaper, Beer, Eggs
— Examp|e: 3 Milk, Diaper, Beer, Coke
{Milk, Diaper} — {Beer} 4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

0 Rule Evaluation Metrics
— Support (s) Example:
 Fraction of transactions that contain both X and Y {Milk, Diaper} = {Beer}

— Confidence (c
(c) , _ o(Milk, Diaper, Beer) _ 2 _

¢ Measures how often items in Y 04
appear in transactions that | T| 5
contain X

o(Milk, Diaper,Beer) 2 0.67

o (Milk, Diaper) 3

		TID

		Items

		1

		Bread, Milk

		2

		Bread, Diaper, Beer, Eggs

		3

		Milk, Diaper, Beer, Coke

		4

		Bread, Milk, Diaper, Beer

		5

		Bread, Milk, Diaper, Coke

Association Rule Mining Task

« (Given a set of transactions T, the goal of association rule mining is
to find all rules having
 support =2 minsup threshold
 confidence =2 minconf threshold

 Brute-force approach:
« List all possible association rules
« Compute the support and confidence for each rule
* Prune rules that fail the minsup and minconf thresholds
= Computationally prohibitive!

Computational Complexity

Given d unique items:
« Total number of itemsets = 2¢
 Total number of possible association rules:

107

d-1 (dj dk(d _ kj
R = XY
k=1 k j=1]

=3 —2" +1

Number of rules

If d=6, R =602 rules

Mining Association Rules

TID Items
Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

N K| W) DN -

Bread, Milk, Diaper, Coke

Observations:

Example of Rules:

{Milk,Diaper} — {Beer} (s=0.4, c=0.67)
{Milk,Beer} — {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} - {Milk} (s=0.4, c=0.67)
{Beer} — {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} — {Milk,Beer} (s=0.4, c=0.5)
{Milk} — {Diaper,Beer} (s=0.4, c=0.5)

* All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

* Rules originating from the same itemset have identical support but

can have different confidence

* Thus, we may decouple the support and confidence requirements

		TID

		Items

		1

		Bread, Milk

		2

		Bread, Diaper, Beer, Eggs

		3

		Milk, Diaper, Beer, Coke

		4

		Bread, Milk, Diaper, Beer

		5

		Bread, Milk, Diaper, Coke

Mining Association Rules

Two-step approach:

1. Frequent ltemset Generation
— Generate all itemsets whose support > minsup

2. Rule Generation
Generate high confidence rules from each frequent itemset, where each rule is a

binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

12

Frequent Iltemset Generation

o
e
)
L
e
S!
&
O]
=
©
(-
o
=
O

are 29 possible

candidate itemsets

Frequent Iltemset Generation

Brute-force approach:
« Each itemset in the lattice is a candidate frequent itemset
« Count the support of each candidate by scanning the database

Transactions List of
Candidates
TID | Items
Bread, Milk

Bread, Diaper, Beer, Eggs

N Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

- W >
« Match each transaction against every candidate
« Complexity ~ O(NMw) => Expensive since M = 29 11!

T

N | DN |-

-—=

Frequent ltemset Generation Strategies

Reduce the number of candidates (M)
« Complete search: M=2d
» Use pruning techniques to reduce M

Reduce the number of comparisons (NM)
o Use efficient data structures to store the candidates or transactions
* No need to match every candidate against every transaction

Reducing Number of Candidates

Apriori principle:
e |f an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support
measure.

« Support of an itemset never exceeds the support of its subsets

 This is known as the anti-monotone property of support

VX,Y (X V)= s(X)>s(Y)

llustrating Apriori Principle

()]
=
=3
2T
5
=

llustrating Apriori Principle

TID Items
Bread, Milk

Beer, Bread, Diaper, Eggs

Beer, Coke, Diaper, Milk

Beer, Bread, Diaper, Milk

DN| K| W N| -

Bread, Coke, Diaper, Milk

Minimum Support = 3

If every subset is considered,
5C, + ¢C, + 6C;
6+ 15 + 20 = 41
With support-based pruning,
6+6+4=16

—

Items (1-itemsets)

ltem Count
Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

		TID

		Items

		1

		Bread, Milk

		2

		Beer, Bread, Diaper, Eggs

		3

		Beer, Coke, Diaper, Milk

		4

		Beer, Bread, Diaper, Milk

		5

		Bread, Coke, Diaper, Milk

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

llustrating Apriori Principle

TID Items Items (1-itemsets)
1 Bread, Milk ltem Count
2 Beer, Bread, Diaper, Eggs Bread 4
3 Beer, Coke, Diaper, Milk Milk 4
4 Beer, Bread, Diaper, Milk Beer 3

- - Diaper 4
5 Bread, Coke, Diaper, Milk

Minimum Support = 3

If every subset is considered,
5C, + ¢C, + 6C;
6+ 15 + 20 = 41
With support-based pruning,
6+6+4=16

		TID

		Items

		1

		Bread, Milk

		2

		Beer, Bread, Diaper, Eggs

		3

		Beer, Coke, Diaper, Milk

		4

		Beer, Bread, Diaper, Milk

		5

		Bread, Coke, Diaper, Milk

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

llustrating Aprior

Minimum Support = 3

ltem Count | Items (1-itemsets)
Bread 4
Milk 4 N ltemset
Beer 3 {Bread,Milk}
Diaper 4 {Bread, Beer}
Eggs 1 {Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

If every subset is considered,
6C, + 6C, + 6C;
6+ 15 + 20 = 41
With support-based pruning,
6+6+4=16

°rinciple

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

20

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

		Itemset

		{Bread,Milk}

		{Bread, Beer }

		{Bread,Diaper}

		{Beer, Milk}

		{Diaper, Milk}

		{Beer,Diaper}

llustrating Apriori Principle

ltem Count | Items (1-itemsets)
Bread 4
\
Milk 4 [r— Count | Pairs (2-itemsets)
Beer 2 {Bread, Milk} 3
g‘;‘;’;r_- {Beer, Bread) 2 (No need to generate
_readper} candidates involving Coke
eer,ivil
’ rE
{Diaper,Milk} 3 or Eggs)
{Beer,Diaper} 3

Minimum Support = 3

If every subset is considered,
6C, + 6C, + 6C;
6+ 15 + 20 = 41
With support-based pruning,
6+6+4=16

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

		Itemset

		Count

		{Bread,Milk}

		3

		{Beer, Bread}

		2

		{Bread,Diaper}

		3

		{Beer,Milk}

		2

		{Diaper,Milk}

		3

		{Beer,Diaper}

		3

llustrating Apriori Principle

5C, + 6C, + ¢C;

6+ 15 + 20 = 41
With support-based pruning,

6+6+4=16

ltem Count Items (1-itemsets)
Bread 4
\
Milk 4 [r— Count | Pairs (2-itemsets)
g_eer 2 {Bread, Milk} 3
h {Beer, Bread} 2 (No need to generate
candidates involving Coke
eer,Mi
{Diaper,Milk} 3 or Eggs)
{Beer,Diaper} 3
Minimum Support = 3 N Triplets (3-itemsets)
If every subset is considered, fermeat

{ Beer, Diaper, Milk}

{ Beer,Bread,Diaper}

{Bread, Diaper, Milk}
{ Beer, Bread, Milk}

22

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

		Itemset

		Count

		{Bread,Milk}

		3

		{Beer, Bread}

		2

		{Bread,Diaper}

		3

		{Beer,Milk}

		2

		{Diaper,Milk}

		3

		{Beer,Diaper}

		3

		Itemset

		{ Beer, Diaper, Milk}

{ Beer,Bread,Diaper}

{Bread, Diaper, Milk}

{ Beer, Bread, Milk}

llustrating Apriori Principle

ltem Count | Items (1-itemsets)
Bread 4
\
Milk 4 [r— Count | Pairs (2-itemsets)
Beer 3 {Bread, Milk} 3
Diaper 4 {Beer, Bread) 2 (No need to generate
Eggs 1 candidates involving Coke
eer,Mi
{Diaper,Milk} 3 or Eggs)
{Beer,Diaper} 3
Minimum Support = 3 N Triplets (3-itemsets)
If every subset is considered
! ltemset Count
6 6 e EEE——————
°Cy + °C; + G { Beer, Diaper, Milk} 2
_ 6+ 15+ 20 = ‘_}1 { Beer,Bread, Diaper} 2
With support-based pruning, {Bread, Diaper, Milk} | 2 |
6+6+4=16 {Beer, Bread, Milk} 1

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

		Itemset

		Count

		{Bread,Milk}

		3

		{Beer, Bread}

		2

		{Bread,Diaper}

		3

		{Beer,Milk}

		2

		{Diaper,Milk}

		3

		{Beer,Diaper}

		3

		Itemset

		Count

		{ Beer, Diaper, Milk}

{ Beer,Bread, Diaper}

{Bread, Diaper, Milk}

{Beer, Bread, Milk}

		2

2

2

1

Apriori Algorithm

F: frequent k-itemsets
L,: candidate k-itemsets

Algorithm
* Let k=1
» Generate F, = {frequent 1-itemsets}
* Repeat until F, is empty
 Candidate Generation: Generate L, , from F,

 Candidate Pruning: Prune candidate itemsets in L, ., containing subsets of length k
that are infrequent

 Support Counting: Count the support of each candidate in L,, by scanning the DB

 Candidate Elimination: Eliminate candidates in L., that are infrequent, leaving only
those that are frequent => F,_,

Candidate Generation: F, , x F,_, Method

Merge two frequent (k-1)-itemsets if their first (k-2) items are
identical

- F, = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
« Merge(ABC, ABD) = ABCD
- Merge(ABC, ABE) = ABCE
- Merge(ABD, ABE) = ABDE

* Do not merge(ABD,ACD) because they share only prefix of length 1
instead of length 2

Candidate Pruning

 Let F; = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of
frequent 3-itemsets

- L, = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets
generated (from previous slide)

« Candidate pruning
* Prune ABCE because ACE and BCE are infrequent
* Prune ABDE because ADE is infrequent

» After candidate pruning: L, = {ABCD}

llustrating Apriori Principle

Minimum Support = 3

ltem Count | Items (1-itemsets)
Bread 4
\
Milk 4 [r— Count | Pairs (2-itemsets)
g_eer 2 {Bread, Milk} 3
laper {Beer, Bread} (No need to generate

2
{Bread,Diaper} 3 candidates involving Coke

If every subset is considered
6C, + 6C, + 6C;
6+ 15 + 20 = 41
With support-based pruning,
6+4+1=11

{Beer,Milk} 2
{Diaper,Milk} 3 or Eggs)
{Beer,Diaper} 3
N Triplets (3-itemsets)
'

{Bread, Diaper, Milk} | 2 |

Use of F,_,xF,_; method for candidate generation results in
only one 3-itemset. This is eliminated after the support counting step.

27

		Item

		Count

		Bread

		4

		Coke

		2

		Milk

		4

		Beer

		3

		Diaper

		4

		Eggs

		1

		Itemset

		Count

		{Bread,Milk}

		3

		{Beer, Bread}

		2

		{Bread,Diaper}

		3

		{Beer,Milk}

		2

		{Diaper,Milk}

		3

		{Beer,Diaper}

		3

		Itemset

		Count

		{Bread, Diaper, Milk}

		2

Support Counting of Candidate Itemsets

Scan the database of transactions to determine the support
of each candidate itemset

* Must match every candidate itemset against every transaction,
which is an expensive operation

TID Items

1 Bread, Milk
. { Beer, Diaper, Milk}

2 Beer, Bread, Diaper, Eggs { Beer,Bread,Diaper}

3 Beer, Coke, Diaper, Milk {Bread, Diaper, Milk}

4 Beer, Bread, Diaper, Milk { Beer, Bread, Milk}

5 Bread, Coke, Diaper, Milk

		TID

		Items

		1

		Bread, Milk

		2

		Beer, Bread, Diaper, Eggs

		3

		Beer, Coke, Diaper, Milk

		4

		Beer, Bread, Diaper, Milk

		5

		Bread, Coke, Diaper, Milk

		Itemset

		{ Beer, Diaper, Milk}

{ Beer,Bread,Diaper}

{Bread, Diaper, Milk}

{ Beer, Bread, Milk}

Rule Generation

* Given a frequent itemset L, find all non-empty subsets f < L such
that f —> L — f satisfies the minimum confidence requirement

* It {A,B,C,D} is a frequent itemset, candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —-BCD, B ->ACD, C —>ABD, D ->ABC
AB —»CD, AC — BD, AD — BC, BC —»AD,

BD —-AC, CD —AB,

« [f |L| = k, then there are 2% — 2 candidate association rules
(ignoring L > J and & — L)

Rule Generation

* In general, confidence does not have an anti-monotone property
c(ABC —D) can be larger or smaller than c(AB —D)

« But confidence of rules generated from the same itemset has an
anti-monotone property

* E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

c(ABC — D) > c(AB —> CD) > (A — BCD)

* Confidence is anti-monotone w.r.t. number of items on the RHS of the
rule

Rule Generation for Apriori Algorithm

Lattice of rules

ABCD=>{}
Low o~ =

~
Confiderfce
Rule /

-— -
Rues = T ~em e e e ==

The Data Driven Approach:

The FP-TREE and THE FP-
Growth Algorithm

Core Data Structure: FP-Tree

Transaction nty“
Data Set) \h
null ¢ at < > b
A S

TID Items a1 / j P \
1 {a,b} 10 s
b:1 O) ¢
2 | {bcd) - (_f C k\
3 {a,c,d,e] N ,\') d:1
4 | f{ade} | (i After reading TID=1 (ii) After reading TID=2
5 {a,b,c}
6 {a,b,c,d} K
7 {a} . .
5 T abg a:2 B b:1
9 | {abd) bl %"
10 (77 (p=——— > c:1

(b,.c.e) 1 \
1 ==————- =) d:1
el

(iv) After reading TID=10

Nodes correspond to items and have a
counter

FP-Growth reads 1 transaction at a
time and maps it to a path

Fixed order is used, so paths can
overlap when transactions share items
(when they have the same prefix).

In this case, counters are incremented

Pointers are maintained between
nodes containing the same item,
creating singly linked lists (dotted
lines)

The more paths that overlap, the
higher the compression. FP-tree may
fit in memory.

Frequent itemsets extracted from the
FP-Tree. 33

Step 1: FP-Tree Construction (Example)

FP-Tree is constructed using 2 passes over the data-set:

» Pass 1:

» Scan data and find support for each item.
» Discard infrequent items.
» Sort frequent items in decreasing order based on their support.

» For our example: a, b, c,d, e
» Use this order when building the FP-Tree, so common prefixes
can be shared.

34

Step 1: FP-Tree Construction (Example)

» Pass 2: construct the FP-Tree (see diagram on next slide)

» Read transaction 1: {a, b}

» Create 2 nodes a and b and the path null — a — b. Set
counts of a and b to 1.

» Read transaction 2: {b, ¢, d}

» Create 3 nodes for b, ¢ and d and the path
null - b — ¢ — d. Set counts to 1.

» Note that although transaction 1 and 2 share b, the paths are
disjoint as they don’t share a common prefix. Add the link
between the b's.

» Read transaction 3: {a, ¢, d, e}

> It shares common prefix item a with transaction 1 so the path
for transaction 1 and 3 will overlap and the frequency count
for node a will be incremented by 1. Add links between the ¢'s
and d'’s.

» Continue until all transactions are mapped to a path in the
FP-tree.

35

Step 1. FP-Tree Construction (Example)

Transaction

Data Set

null

ltems

{a,b}

a:i

{b,c,d}

{a,c,d,e}

b:1

{a,d,e}

{a,b,c}

{a,b,c,d}

null

{a}

{a,b,c}

{a,b,d}

_|
—
o|©|®(N|o n|a|win|= 5

{b,c,e}

(iv) After reading TID=10

(i) After reading TID=1 (ii) After reading TID=2

36

FP-Tree size

» The FP-Tree usually has a smaller size than the uncompressed
data — typically many transactions share items (and hence
prefixes).

» Best case scenario: all transactions contain the same set of
items.

» 1 path in the FP-tree

» Worst case scenario: every transaction has a unique set of
items (no items in common)

> Size of the FP-tree is at least as large as the original data.
» Storage requirements for the FP-tree are higher — need to
store the pointers between the nodes and the counters.

» The size of the FP-tree depends on how the items are ordered

» Ordering by decreasing support is typically used but it does
not always lead to the smallest tree (it's a heuristic).

37

Step 2: Frequent ltemset Generation

» FP-Growth extracts frequent itemsets from the FP-tree.

» Bottom-up algorithm — from the leaves towards the root

» Divide and conquer: first look for frequent itemsets ending in

e, then de, etc. ..

then d, then cd, etc. ..

» First, extract prefix path sub-trees ending in an item(set). (hint: use

the linked lists)

T Complete FP-tree
— Example: prefix path
sub-trees

N RUON-H
d1Cr” 1

e1(r-"" e e
(a) Paths containing node e

null

b:5 (J _)'_'b'_) c.2
o7 ¢
c:3(7)

(c) Paths containing node c

. B _/ /
R d:1 d:1 d:1
(b) Paths containing node d

ngll null
A
as(f D (L
-7 b:2 a:8
r*f’
-y
b:5

(d) Paths containing node b (e) Paths containing node a

38

Step 2: Frequent ltemset Generation

» Each prefix path sub-tree is processed recursively to extract
the frequent itemsets. Solutions are then merged.

» E.g. the prefix path sub-tree for e will be used to extract
frequent itemsets ending in e, then in de, ce, be and ae, then
in cde, bde, cde, etc.

» Divide and conquer approach

e de cde ...
§ bde ...

ade
ce bce ...

Y ace

be —» abe

ae

d.. Prefix path sub-tree ending in e.

39

Example
Let minSup = 2 and extract all frequent itemsets containing e.
» 1. Obtain the prefix path sub-tree for e:

null

» 2. Check if e is a frequent item by adding the counts along the
linked list (dotted line). If so, extract it.

> Yes, count =3 so {e} is extracted as a frequent itemset.
» 3. As e is frequent, find frequent itemsets ending in e. i.e. de,
ce, be and ae.

» i.e. decompose the problem recursively.

» To do this, we must first to obtain the conditional FP-tree for
e.

40

Conditional FP-Tree

» The FP-Tree that would be built if we only consider
transactions containing a particular itemset (and then
removing that itemset from all transactions).

» Example: FP-Tree conditional on e.

-
O

ltems
[~ |h]

L= ™)

UUUUUUU

1"1"“?””*

-
o
—_—
O
uo -
&

41

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree
ending in e:

» Update the support counts along the prefix paths (from e) to
reflect the number of transactions containing e.

» b and ¢ should be set to 1 and a to 2.

42

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree
ending in e:

» Remove the nodes containing e — information about node e is
no longer needed because of the previous step

43

Conditional FP-Tree

To obtain the conditional FP-tree for e from the prefix sub-tree
ending in e:

» Remove infrequent items (nodes) from the prefix paths

» E.g. b has a support of 1 (note this really means be has a
support of 1). i.e. there is only 1 transaction containing b and
e so be is infrequent — can remove b.

Question: why were ¢ and d not removed?

44

Example (continued)

» 4. Use the the conditional FP-tree for e to find frequent
itemsets ending in de, ce and ae

» Note that be is not considered as b is not in the conditional
FP-tree for e.

» For each of them (e.g. de), find the prefix paths from the
conditional tree for e, extract frequent itemsets, generate

conditional FP-tree, etc... (recursive)
» Example: e — de — ade ({d, e} {a, d, e} are found to be

frequent)
() null
/\ null O
H {\.__/|
a2

Conditional FP-tree for e Prefix paths ending in de Conditional FP-tree for de

45

Result

» Frequent itemsets found (ordered by suffix and order in which
they are found):

Suffix Frequent Itemsets
e {e}. {d.e}. {a.d.e}, {c.e}.{a.e}
d {d}, {c.d}, {b.c.d}, {a.c.d}, {b.d}. {a.b.d}, {a.d}
c {c}. {b.c}, {ab.c}, {ac}

b {b}, {a,b}

a {a}

Discussion

» Advantages of FP-Growth

only 2 passes over data-set
“compresses’ data-set

no candidate generation
much faster than Apriori

v v vY

» Disadvantages of FP-Growth

» FP-Tree may not fit in memory!!
» FP-Tree is expensive to build

» Trade-off: takes time to build, but once it is built, frequent
itemsets are read off easily.

» Time is wasted (especially if support threshold is high), as the
only pruning that can be done is on single items.

» support can only be calculated once the entire data-set is
added to the FP-Tree.

47

» Apriori: uses a generate-and-test approach — generates
candidate itemsets and tests if they are frequent

» Generation of candidate itemsets is expensive (in both space
and time)
» Support counting is expensive

» Subset checking (computationally expensive)
» Multiple Database scans (1/0)

» FP-Growth: allows frequent itemset discovery without
candidate itemset generation. Two step approach:

» Step 1: Build a compact data structure called the FP-tree
» Built using 2 passes over the data-set.

» Step 2: Extracts frequent itemsets directly from the FP-tree
» Traversal through FP-Tree

48

	CS 4440 A�Emerging Database Technologies
	Slide Number 2
	It is important to understand your data aka data mining
	Two Main Categories of Algorithms
	Today’s class
	Association Rule Mining
	Definition: Frequent Itemset
	Definition: Association Rule
	Association Rule Mining Task
	Computational Complexity
	Mining Association Rules
	Mining Association Rules
	Frequent Itemset Generation
	Frequent Itemset Generation
	Frequent Itemset Generation Strategies
	Reducing Number of Candidates
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Illustrating Apriori Principle
	Apriori Algorithm
	Candidate Generation: Fk-1 x Fk-1 Method
	Candidate Pruning
	Illustrating Apriori Principle
	Support Counting of Candidate Itemsets
	Rule Generation
	Rule Generation
	Rule Generation for Apriori Algorithm
	The Data Driven Approach:�The FP-TREE and THE FP-Growth Algorithm
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

