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If we just have a bunch of data sets in a repository, it is 
unlikely anyone will ever be able to find, let alone 

reuse, any of this data. With adequate metadata, there 
is some hope, but even so, challenges will remain..
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It is important to understand your data aka 
data mining
• Stats of the data

• Association Rule Mining

• Classification

• Regression

• Clustering

• Anomaly Detection

• etc
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Two Main Categories of Algorithms

• Schema-Driven
• Has candidate generation
• Has pruning
• Can quickly check if a candidate is interesting or not
• Usually sensitive to the size of the schema

• Data-Driven
• No candidate generation
• Have a novel data structure to summarize the data
• Usually sensitive to the size of the instance
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Today’s class

Association rules mining
• Schema-Driven: Apriori algorithm
• Data-Driven: FP-Growth algorithm
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Association Rule Mining
• Given a set of transactions, find rules that will predict the occurrence of 

an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},

Implication means co-occurrence, 
not causality!
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		TID

		Items



		1

		Bread, Milk



		2

		Bread, Diaper, Beer, Eggs



		3

		Milk, Diaper, Beer, Coke 



		4

		Bread, Milk, Diaper, Beer



		5

		Bread, Milk, Diaper, Coke 







Definition: Frequent Itemset
Itemset

• A collection of one or more items
• Example: {Milk, Bread, Diaper}

• k-itemset
• An itemset that contains k items

Support count (σ)
• Frequency of occurrence of an itemset
• E.g.   σ({Milk, Bread,Diaper}) = 2 

Support
• Fraction of transactions that contain an itemset
• E.g.   s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset
• An itemset whose support is greater than or equal to 

a minsup threshold

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 


		TID

		Items



		1

		Bread, Milk



		2

		Bread, Diaper, Beer, Eggs



		3

		Milk, Diaper, Beer, Coke 



		4

		Bread, Milk, Diaper, Beer



		5

		Bread, Milk, Diaper, Coke 







Definition: Association Rule

Example:
Beer}{}Diaper,Milk{ ⇒

4.0
5
2

|T|
)BeerDiaper,,Milk(

===
σs

67.0
3
2

)Diaper,Milk(
)BeerDiaper,Milk,(

===
σ

σc

 Association Rule
– An implication expression of the form X → Y, 

where X and Y are itemsets
– Example:

   {Milk, Diaper} → {Beer} 

 Rule Evaluation Metrics
– Support (s)

 Fraction of transactions that contain both X and Y

– Confidence (c)
 Measures how often items in Y 

appear in transactions that
contain X

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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		TID

		Items



		1

		Bread, Milk



		2

		Bread, Diaper, Beer, Eggs



		3

		Milk, Diaper, Beer, Coke 



		4

		Bread, Milk, Diaper, Beer



		5

		Bread, Milk, Diaper, Coke 







Association Rule Mining Task

• Given a set of transactions T, the goal of association rule mining is 
to find all rules having 

• support ≥ minsup threshold
• confidence ≥ minconf threshold

• Brute-force approach:
• List all possible association rules
• Compute the support and confidence for each rule
• Prune rules that fail the minsup and minconf thresholds
⇒ Computationally prohibitive!
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Computational Complexity
Given d unique items:

• Total number of itemsets = 2d

• Total number of possible association rules: 
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Mining Association Rules
Example of Rules:
{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67) 
{Diaper} → {Milk,Beer} (s=0.4, c=0.5) 
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Observations:
• All the above rules are binary partitions of the same itemset: 
 {Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
  can have different confidence

• Thus, we may decouple the support and confidence requirements
11


		TID

		Items



		1

		Bread, Milk



		2

		Bread, Diaper, Beer, Eggs



		3

		Milk, Diaper, Beer, Coke 



		4

		Bread, Milk, Diaper, Beer



		5

		Bread, Milk, Diaper, Coke 







Mining Association Rules

Two-step approach: 
1. Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup

2. Rule Generation
– Generate high confidence rules from each frequent itemset, where each rule is a 

binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive
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Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 
are 2d possible 
candidate itemsets
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Frequent Itemset Generation
Brute-force approach: 

• Each itemset in the lattice is a candidate frequent itemset
• Count the support of each candidate by scanning the database

• Match each transaction against every candidate
• Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions List of
Candidates

M

w
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Frequent Itemset Generation Strategies

Reduce the number of candidates (M)
• Complete search: M=2d

• Use pruning techniques to reduce M

Reduce the number of comparisons (NM)
• Use efficient data structures to store the candidates or transactions
• No need to match every candidate against every transaction
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Reducing Number of Candidates

Apriori principle:
• If an itemset is frequent, then all of its subsets must also be frequent

Apriori principle holds due to the following property of the support 
measure:

• Support of an itemset never exceeds the support of its subsets
• This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀
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Found to be 
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned 
supersets 17



Illustrating Apriori Principle

Minimum Support = 3

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16

Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
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		TID

		Items



		1

		Bread, Milk



		2

		Beer, Bread, Diaper, Eggs



		3

		Beer, Coke, Diaper, Milk 



		4

		Beer, Bread, Diaper, Milk



		5

		Bread, Coke, Diaper, Milk 






		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1







Illustrating Apriori Principle

Minimum Support = 3

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Items (1-itemsets)

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16

Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
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		TID

		Items



		1

		Bread, Milk



		2

		Beer, Bread, Diaper, Eggs



		3

		Beer, Coke, Diaper, Milk 



		4

		Beer, Bread, Diaper, Milk



		5

		Bread, Coke, Diaper, Milk 






		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1







Illustrating Apriori Principle
Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
 

Itemset 
{Bread,Milk}  
{Bread, Beer } 
{Bread,Diaper} 
{Beer, Milk} 
{Diaper, Milk} 
{Beer,Diaper} 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16
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		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1






		Itemset



		{Bread,Milk}




		{Bread, Beer }



		{Bread,Diaper}



		{Beer, Milk}



		{Diaper, Milk}



		{Beer,Diaper}







Illustrating Apriori Principle
Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16

Itemset Count 
{Bread,Milk} 3 
{Beer, Bread} 2 
{Bread,Diaper} 3 
{Beer,Milk} 2 
{Diaper,Milk} 3 
{Beer,Diaper} 3 
 

21


		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1






		Itemset

		Count



		{Bread,Milk}

		3



		{Beer, Bread}

		2



		{Bread,Diaper}

		3



		{Beer,Milk}

		2



		{Diaper,Milk}

		3



		{Beer,Diaper}

		3







Illustrating Apriori Principle
Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16

Itemset Count 
{Bread,Milk} 3 
{Beer, Bread} 2 
{Bread,Diaper} 3 
{Beer,Milk} 2 
{Diaper,Milk} 3 
{Beer,Diaper} 3 
 

Itemset 
{ Beer, Diaper, Milk} 
{ Beer,Bread,Diaper} 
{Bread, Diaper, Milk} 
{ Beer, Bread, Milk} 
 

Triplets (3-itemsets)

22


		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1






		Itemset

		Count



		{Bread,Milk}

		3



		{Beer, Bread}

		2



		{Bread,Diaper}

		3



		{Beer,Milk}

		2



		{Diaper,Milk}

		3



		{Beer,Diaper}

		3






		Itemset



		{ Beer, Diaper, Milk}


{ Beer,Bread,Diaper}


{Bread, Diaper, Milk}


{ Beer, Bread, Milk}







Illustrating Apriori Principle
Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 6 + 4 = 16

Itemset Count 
{Bread,Milk} 3 
{Beer, Bread} 2 
{Bread,Diaper} 3 
{Beer,Milk} 2 
{Diaper,Milk} 3 
{Beer,Diaper} 3 
 Triplets (3-itemsets)

Itemset Count 
{ Beer, Diaper, Milk} 
{ Beer,Bread, Diaper} 
{Bread, Diaper, Milk} 
{Beer, Bread, Milk} 

2 
2 
2 
1 
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		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1






		Itemset

		Count



		{Bread,Milk}

		3



		{Beer, Bread}

		2



		{Bread,Diaper}

		3



		{Beer,Milk}

		2



		{Diaper,Milk}

		3



		{Beer,Diaper}

		3






		Itemset

		Count



		{ Beer, Diaper, Milk}


{ Beer,Bread, Diaper}


{Bread, Diaper, Milk}


{Beer, Bread, Milk}

		2


2


2

1







Apriori Algorithm
Fk: frequent k-itemsets
Lk: candidate k-itemsets

Algorithm
• Let k=1
• Generate F1 = {frequent 1-itemsets}
• Repeat until Fk is empty

• Candidate Generation: Generate Lk+1 from Fk

• Candidate Pruning: Prune candidate itemsets in Lk+1 containing subsets of length k 
that are infrequent 

• Support Counting: Count the support of each candidate in Lk+1 by scanning the DB
• Candidate Elimination: Eliminate candidates in Lk+1 that are infrequent, leaving only 

those that are frequent => Fk+1

24



Candidate Generation: Fk-1 x Fk-1 Method

Merge two frequent (k-1)-itemsets if their first (k-2) items are 
identical

• F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
• Merge(ABC, ABD) = ABCD
• Merge(ABC, ABE) = ABCE
• Merge(ABD, ABE) = ABDE

• Do not merge(ABD,ACD) because they share only prefix of length 1 
instead of length 2
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Candidate Pruning

• Let F3 = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of 
frequent 3-itemsets

• L4 = {ABCD,ABCE,ABDE} is the set of candidate 4-itemsets 
generated (from previous slide)

• Candidate pruning
• Prune ABCE because ACE and BCE are infrequent
• Prune ABDE because ADE is infrequent

• After candidate pruning: L4 = {ABCD} 

26



Illustrating Apriori Principle
Item Count 
Bread 4 
Coke 2 
Milk 4 
Beer 3 
Diaper 4 
Eggs 1 
 

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Minimum Support = 3

If every subset is considered, 
 6C1 + 6C2 + 6C3 
 6 + 15 + 20 = 41
With support-based pruning,
 6 + 4 + 1 = 11

Itemset Count 
{Bread,Milk} 3 
{Beer, Bread} 2 
{Bread,Diaper} 3 
{Beer,Milk} 2 
{Diaper,Milk} 3 
{Beer,Diaper} 3 
 Triplets (3-itemsets)

Itemset Count 
 
{Bread, Diaper, Milk} 
 

 
2 
 

 
Use of Fk-1xFk-1 method for candidate generation results in

 only one 3-itemset.  This is eliminated after the support counting step. 27


		Item

		Count



		Bread

		4



		Coke

		2



		Milk

		4



		Beer

		3



		Diaper

		4



		Eggs

		1






		Itemset

		Count



		{Bread,Milk}

		3



		{Beer, Bread}

		2



		{Bread,Diaper}

		3



		{Beer,Milk}

		2



		{Diaper,Milk}

		3



		{Beer,Diaper}

		3






		Itemset

		Count



		{Bread, Diaper, Milk}




		2









Support Counting of Candidate Itemsets

Scan the database of transactions to determine the support 
of each candidate itemset

• Must match every candidate itemset against every transaction, 
which is an expensive operation

TID Items 

1 Bread, Milk 

2 Beer, Bread, Diaper, Eggs 

3 Beer, Coke, Diaper, Milk  

4 Beer, Bread, Diaper, Milk 

5 Bread, Coke, Diaper, Milk  

 

Itemset 
{ Beer, Diaper, Milk} 
{ Beer,Bread,Diaper} 
{Bread, Diaper, Milk} 
{ Beer, Bread, Milk} 
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		TID

		Items



		1

		Bread, Milk



		2

		Beer, Bread, Diaper, Eggs



		3

		Beer, Coke, Diaper, Milk 



		4

		Beer, Bread, Diaper, Milk



		5

		Bread, Coke, Diaper, Milk 






		Itemset



		{ Beer, Diaper, Milk}


{ Beer,Bread,Diaper}


{Bread, Diaper, Milk}


{ Beer, Bread, Milk}







Rule Generation

• Given a frequent itemset L, find all non-empty subsets f ⊂ L such 
that f → L – f satisfies the minimum confidence requirement

• If {A,B,C,D} is a frequent itemset, candidate rules:
ABC →D, ABD →C, ACD →B, BCD →A, 

A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD, 
BD →AC, CD →AB,

• If |L| = k, then there are 2k – 2 candidate association rules 
(ignoring L →∅ and ∅→ L)

29



Rule Generation

• In general, confidence does not have an anti-monotone property
c(ABC →D) can be larger or smaller than c(AB →D)

• But confidence of rules generated from the same itemset has an 
anti-monotone property

• E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)

• Confidence is anti-monotone w.r.t. number of items on the RHS of the 
rule

30



Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules

Low 
Confidence 
Rule

31



The Data Driven Approach:
The FP-TREE and THE FP-
Growth Algorithm
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