
CS 4440 A
Emerging Database
Technologies

Lecture 12
02/19/24

Recap: Approaches to Concurrency Control

Lock-based CC
• 2PL
• Multiple granularity

Optimistic CC
• CC by validation
• Time-stamp-based CC

• Not covered, Chapter 18.8

2

Slide 17- 3

Recap: ACID properties
• Atomicity: A transaction is an atomic unit of processing; it is either performed

in its entirety or not performed at all.
• Consistency: A correct execution of the transaction must take the database

from one consistent state to another.
• Isolation: A transaction should not make its updates visible to other

transactions until it is committed.
• Durability: Once a transaction changes the database and the changes are

committed, these changes must never be lost because of subsequent failure.

Ensuring atomicity and durability with logging and recovery manager

Recovery using undo logging
● Simplifying assumption: use entire log, no matter how long

4

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Ignore (T was committed)

Crash

A = 16
B = 16

Nonquiescent checkpointing
● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

5

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonquiescent checkpointing
● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

6

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

Nonquiescent checkpointing
● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

7

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <START CKPT (T1, T2)>,
only need to recover until <START T1>

#2 Redo logging
● Motivation: undo logging uses many disk I/O’s because it cannot commit a

transaction without writing all its changes to disk

● Redo logging lets database changes reside in memory longer

● Redo logging ignores incomplete transactions and repeats committed ones
○ Undo logging cancels incomplete transactions and ignores committed ones

● <T, X, v> now means T wrote new value v for database element X

● One rule: all log records (e.g., <T, X, v> and <COMMIT T>) must appear on
disk before modifying any database element X on disk

8

Redo logging
● Example

9

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Recovery with redo logging
● Scan log forward and redo committed transactions

10

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
B = 8

Recovery with redo logging
● Scan log forward and redo committed transactions

11

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery with redo logging
● Scan log forward and redo committed transactions

12

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
B = 8

Recovery with redo logging
● Scan log forward and redo committed transactions

13

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
B = 8

Do nothing

Nonquiescent checkpointing for redo log
● Write to disk all DB elements modified by committed transactions

14

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for redo log
● Write to disk all DB elements modified by committed transactions

15

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log
● Write to disk all DB elements modified by committed transactions

16

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log
● After crash, redo committed transactions that either started after

START CKPT or were active during START CKPT

17

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Nonquiescent checkpointing for redo log
● After crash, redo committed transactions that either started after

START CKPT or were active during START CKPT

18

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Only redo writes by T2
Write <ABORT T3> in log after recovery

#3 Undo/redo logging
● More flexible than undo or redo logging in ordering actions
● <T, X, v, w> : T changed value of X from v to w
● One rule: <T, X, v, w> must appear on disk before modifying X on

disk

19

Undo/redo logging
● Example

20

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16
8

16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t A B A B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Recovery with undo/redo logging
● Redo all committed transactions and undo all incomplete transactions

21

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16
8

16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t A B A B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 8

Recovery with undo/redo logging
● Redo all committed transactions and undo all incomplete transactions

22

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16
8

16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t A B A B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery with undo/redo logging
● Redo all committed transactions and undo all incomplete transactions

23

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16
8

16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t A B A B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 8

Recovery with undo/redo logging
● Redo all committed transactions and undo all incomplete transactions

24

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16
8

16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t A B A B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 8
B = 8

Nonquiescent checkpointing for undo/redo logging
● Simpler than other logging methods

25

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for undo/redo logging
● Simpler than other logging methods

26

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging
● Simpler than other logging methods

27

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging
● After a crash, redo committed transactions, and undo uncommitted

ones

28

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Nonquiescent checkpointing for undo/redo logging
● After a crash, redo committed transactions, and undo uncommitted

ones

29

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Redo T2 by setting C to 15 on disk
(No need to set B to 10 thanks to CKPT)
Undo T3 by setting D to 19 on disk

Summary
Coping with System Failures
- Undo logging
- Redo logging
- Undo/redo logging
- Checkpointing

30

Today’s class
OLAP and Data Warehousing
• OLTP vs OLAP

• Data Model
• Storage format

• Data warehouses vs Data Lakes
• Data cubes
• HTAP

31

Reading Materials
Fundamental of Database Systems (7th Edition)
• Chapter 29 - Overview of Data Warehousing

and OLAP

32

So far we’ve been dealing with OLTP

OLTP: OnLine Transactional Processing
• Often used to store and manage relevant data to the day-to-day

operations of a system or company
• e.g., ATM transactions, online hotel bookings

• INSERT, UPDATE, DELETE commands
• Handles real-time transactions (response times often in

milliseconds)
• ACID properties are often important

This is where relational databases shine!

33

Ok, so what’s OLAP?
OLAP: OnLine Analytical Processing
• Also known as decision support or business intelligence (BI), but now BI has

grown to include more (e.g., AI)
• A specialization of relational databases that prioritizes the reading and

summarizing large volumes (TB, PB) of relational data to understand high-
level trends and patterns
• E.g., the total sales figures of each type of Honda car over time for each county

• “Read-only” queries

Contrast this to OLTP
• “Read-write” queries
• Usually touch a small amount of data

• e.g., append a new car sale into the sales table
34Adapted from Berkeley Info 290T

How is OLAP Performed?

Usually, OLAP is performed on a separate data warehouse away from
the critical path of OLTP transactions (a live/transactional database).

This data warehouse is periodically updated with data from various
sources (e.g., once an hour or once a day)
• This is through a process of ETL (Extract, Transform, Load)
• Extract useful business that needs to be summarized, transform it (e.g.,

canonicalize values, clean it up), load it in the data warehouse
• By doing it periodically, this data warehouse can become stale

35Adapted from Berkeley Info 290T

How is OLAP Performed?

Usually, OLAP is performed on a separate data warehouse away from
the critical path of OLTP transactions (a live/transactional database).

Why?
• Because OLAP queries end up reading most of the data, and will prevent

OLTP queries from taking precedence
• it is more important to ensure that sales are not prevented than to make

sure that a report for a manager is generated promptly
• the latter will anyway take a long time, so might as well have them wait a bit

longer
• It’s OK if the warehouse data is a bit stale.

36Adapted from Berkeley Info 290T

OLAP in Data Warehouses

37

Here are some data warehouses that you might have heard of

Data Warehouse vs Data Lake

Data warehouse:
 structured data (schema-on-write)
 expensive for large data volumes
 managers and business analysts

38
Image source: https://www.sap.com/insights/what-is-a-data-lake.html

Data Lake vs Data Warehouse

Data lake:
 raw data, can be unstructured
 low-cost storage, but no transactions, data quality checks
 data scientists and engineers

39
Image source: https://www.sap.com/insights/what-is-a-data-lake.html

We will focus on the following two aspects
of OLAP systems
#1 Data Model
• Relational vs multi-dimensional schema

#2 Storage Format
• Row vs column store

40

Slide 29- 41

#1 Data Model: Multi-dimensional Model
The multi-dimensional data model includes two types of tables:
• Fact table

• Each tuple is a recorded fact. This fact contains some measured or
observed variable (s) and identifies it with pointers to dimension
tables. The fact table contains the data, and the dimensions to
identify each tuple in the data.

• A fact table is as an agglomerated view of transaction data whereas
each dimension table represents “master data” that those
transactions belonged to.

• Dimension table
• It consists of tuples of attributes of the dimension.

Slide 29- 42

Multi-dimensional Schemas
Star schema:
• Consists of a fact table with a single table for each dimension.

Figure 29.7 A star
schema with fact and
dimensional tables.

Slide 29- 43

Multi-dimensional Schemas
Snowflake Schema:
• It is a variation of star schema, in which the dimensional tables from a star

schema are normalized to eliminate redundancy

Figure 29.8 A snowflake schema.

Comparison with the Relational Model
The relational model (used by OLTP) keeps tables normalized
• Minimal updates required for data inserts and deletes => help improve

transaction performance

In the multi-dimensional model, the fact table is often in 3NF, but
the dimensional tables are denormalized.
• This means columns in a table contains data which is repeated

throughout the table => help improve read performance.
• Data is stored in fewer tables, which removes the overhead of having to

perform complex joins => helps improve read performance.

44

#2 Storage Format: Row vs Column Store

45Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

• Store all attributes of a tuple together
• Storage like “row-major order” in a matrix

• Store all rows for an attribute together
• Storage like “column-major order” in a matrix

Q: Which format do you think is better suited for OLTP vs OLAP?

#2 Storage Format: Row vs Column Store

46Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

+ easy to add/modify a record + only need to read in relevant data
- tuple write require multiple accesses- need to read unnecessary data

Telco Data Warehousing example

47

“One Size Fits All? - Part 2: Benchmarking Results”
Stonebraker et al. CIDR 2007

Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

Telco example explained: read efficiency

48
Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

Telco example explained: compression efficiency

Columns compress better than rows
• Typical row-store compression ratio 1 : 3
• Column-store 1 : 10

Why?
• Rows contain values from different domains

• More entropy, difficult to dense-pack
• Columns are much more homogeneous
• Caveat: CPU cost (use lightweight compression)

49

We’ll read more about
column stores
• C-Store: A Column-oriented DBMS

50

https://dl.acm.org/doi/10.5555/1083592.1083658

Introducing Data Cubes
Dimensions
Item
season
location

Measure
volume

SELECT SUM(volume) …
GROUP BY item, season, location

51
Image source: https://galaktika-soft.com/blog/olap-operations-in-data-mining.html

Operations: Slicing and Dicing

52

Slicing: select a single value in one of the dimensions
to create a smaller cube with one less dimension

Slice for
(season = winter)

Image source: https://galaktika-soft.com/blog/olap-operations-in-data-mining.html

Operations: Slicing and Dicing

53

Dicing: select specific values of multiple dimensions to
create a new subcube

Dice for
(season = winter or spring)
and
(location = Venice or Florence)
and
(item = components or clothing)

Image source: https://galaktika-soft.com/blog/olap-operations-in-data-mining.html

Operations: Roll up and drill down

54

Rollup: Moving from a finer to a coarser granularity

Roll up location
(from cities to countries)

Image source: https://galaktika-soft.com/blog/olap-operations-in-data-mining.html

Operations: Roll up and drill down

55

Drill-down: Moving from a coarser to a finer granularity

Drill down time
(from quarters to months)

Image source: https://galaktika-soft.com/blog/olap-operations-in-data-mining.html

Partitioning granularity in data cubes

56

Different partitioning may be
useful for different applications
• Q: I want the aggregates per

month. What if I set my
partitioning based on Full Date
and computed the data cube?
Can I avoid recomputing the
cube?

• Q: What about if I had set my
partitioning based on Year?

Adapted from Berkeley Info 290T

How to pick the right partitioning
granularity?
First, why does this matter?
• If this query is being run once on a petabyte sized warehouse, it is

important to get it right!

Think about all the ways you want to slice and dice your data

Pick as fine a granularity of partitioning so that you can recreate all
the aggregates, but not so fine as to blow up the query result
• The query result size grows exponentially in the attributes
• This is known as the curse of dimensionality

57Adapted from Berkeley Info 290T

OLAP summary

58

OLAP is a specialization of relational databases to support
analytical processing and report generation
• Typically done in large “batch” operations on the entire database
• Rule of thumb: pick as “coarse-grained” materialized views or

query results as will allow you to construct all the cross-tabs that
may be necessary

The concepts of OLAP data cubes, hierarchies,
slicing/dicing, and rollup/drilldown are valuable to describe
what you’re doing when you are exploring your data

Adapted from Berkeley Info 290T

OLAP summary
OLAP vs OLTP
• Data Model
• Storage Format

Data warehouses vs Data Lakes

Data cubes
• Slicing and dicing
• Rollup and drill-down
• Selecting partitioning granularity

59

A brief intro to HTAP
Databases

Slides adapted from
SIGMOD’22 Tutorial HTAP
Databases: A Tutorial by

Guoliang Li and Chao Zhang

60

Motivation
HTAP: Hybrid Transaction Analytical Processing
• Gartner’s new definition in 2018: supports weaving analytical and

transaction processing techniques together as needed to accomplish
the business task.

61Slides Adapted from SIGMOD’22 Tutorial

Motivation
• Rule of thumb 1: row store is ideal for OLTP workloads
• Row-wise, update-heavy, short-lived transactions

• Rule of thumb 2: column store is best suited for OLAP workload
• Column-wise, read-heavy, bandwidth-intensive queries

62Slides Adapted from SIGMOD’22 Tutorial

A trade-off for HTAP databases
• Workload isolation: the isolation level of handling the mixed workloads
• Data freshness: the portion of latest transaction data that is read by OLAP
• Trade-off for workload isolation and data freshness
• High workload isolation leads to low data freshness
• Low workload isolation results in high data freshness

63Slides Adapted from SIGMOD’22 Tutorial

64Slides Adapted from SIGMOD’22 Tutorial

65Slides Adapted from SIGMOD’22 Tutorial

* Readings: HTAP Databases: What is New and What is Next

https://dl.acm.org/doi/pdf/10.1145/3514221.3522565

