Emerging Database
lechnologies

| ecture 12
02/19/24

Recap: Approaches to Concurrency Control

Lock-based CC
« 2PL
« Multiple granularity

Optimistic CC
« CC by validation

* Time-stamp-based CC
» Not covered, Chapter 18.8

Recap: ACID properties

« Atomicity: A transaction is an atomic unit of processing; it is either performed
IN its entirety or not performed at all.

« Consistency: A correct execution of the transaction must take the database
from one consistent state to another.

* |solation: A transaction should not make its updates visible to other
transactions until it is committed.

 Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent failure.

Ensuring atomicity and durability with logging and recovery manager

Slide 17- 3

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8 | <T, A4, 8> Ignore (T was committed)
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8 ﬁ
WRITE(B, 1) 16 | 16| 16 8 8 | <7, B, 8> Ignore (T was committed)
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8 ﬁ
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT 7> Observe <COMMIT 7> record
FLUSH LOG

Crash 4

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system
<START T1>

<T1, 4, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<Tl1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>

<START CKPT (T1, T2)>

<12, C, 15>
<START T3>
<T1, D, 20>
<COMMIT TI>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

4

»

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system
<START T1> A

<TI1, 4, 5>

<START T2>
<T2, B, 10> If we first meet <START CKPT (T1, T2)>,

<START CKPT (T1, T2)> only need to recover until <START T1>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

2 Redo logging

Motivation: undo logging uses many disk |/O’s because it cannot commit a
transaction without writing all its changes to disk

Redo logging lets datalbase changes reside in memory longer

Redo logging ignores incomplete transactions and repeats committed ones
o Undo logging cancels incomplete transactions and ignores committed ones

<I, X, v>now means [wrote new value v for database element X

One rule: all log records (e.g., <T, X, v> and <COMMIT T>) must appear on
disk before modifying any database element X on disk

Redo logging

o Example
Memory Disk
Action t| A B| 4 B | Log
<START 7>
READ(A4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ?) 16 | 16 8 8| <T,A4, 16>
READ(B, ?) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 16>
<COMMIT 7>
FLUSH LOG
OUTPUT(A) 16| 16 | 16 | 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T, A, 16>
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 16>

<COMMIT 7>
FLUSH LOG Crash
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16 | 16 | 16

10

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T, A, 16>
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 16>

<COMMIT 7> v
FLUSH LOG Crash
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16 | 16 | 16

11

Recovery with redo logging

« Scan log forward and redo committed transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T, A, 16>
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8 Crash
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 16>

<COMMIT 7>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16 | 16 | 16

12

Recovery with redo logging

Scan log forward and redo committed transactions

Memory Disk
Action t| A B| 4 B | Log
<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8 | <T, A, 16>
READ(B, t) 81 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 16>
<COMMIT 7>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

Do nothing

Crash

Recovery

13

Nonquiescent checkpointing for redo log
o Write to disk all DB elements modified by committed transactions

<START T1>
<T1, 4, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT (T2)>

14

Nonquiescent checkpointing for redo log
o Write to disk all DB elements modified by committed transactions

<START T1>

<T1, 4, 5>

<START T2>

<COMMIT T1>

<12, B, 10>

<START CKPT (T2)>

<12, C, 15> Write to disk all DB elements by transactions
<START T3> that already committed when START CKPT was
<T3, D, 20> written to log (i.e., T1)

<END CKPT>

15

Nonquiescent checkpointing for redo log
o Write to disk all DB elements modified by committed transactions

<START T1>

<T1, 4, 5>

<START T2>

<COMMIT TI1>

<12, B, 10>

<START CKPT (T2)>

<12, C, 15> Write to disk all DB elements by transactions
<START T3> that already committed when START CKPT was
<T3, D, 20> written to log (i.e., T1)

<END CKPT>

<COMMIT T2>

<COMMIT T3>

16

Nonquiescent checkpointing for redo log

o After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

<START T1>
<T1, 4, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT (T2)>
<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>
<COMMIT T2>

h
—COMMITT3S =™

Nonquiescent checkpointing for redo log

o After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

<START T1>
<T1, 4, 5>

<START T2>
<COMMIT T1>

<T2, B, 10>

<START CKPT (T2)>
<T2, C, 15>

<START T3>

<T3, D, 20>

<END CKPT>
<COMMIT T2>

h
—COMMITT3S =™

Only redo writes by T2
Write <ABORT T3> in log after recovery

18

3 Undo/redo logging

« More flexible than undo or redo logging in ordering actions

e <I,X,v,w>:T changed value of X from v to

« Onerule: <7, X, v, w> must appear on disk before modifying X on
disk

Undo/redo logging

o Example
Memory Disk
Action t| A B| 4 B | Log
<START 7>
READ(A4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ?) 16 | 16 8 8 | <T, A,8, 16>
READ(B, ?) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 8, 16>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8
<COMMIT 7>
OUTPUT(B) 16 | 16 | 16 | 16| 16

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START T>
READ(4, 1) 8| 8 8| 8
t=1%2 16| 8 8| 8
WRITE(4, 7) 16 | 16 8| 8|<T,4,8, 16>
READ(B, 1) 8| 16| 8| 8| 8
t=1%2 16| 16| 8| 8| 8
WRITE(B, ?) 16| 16| 16| 8| 8|<T, B8, 16>
FLUSH LOG
OUTPUT(A) 16| 16| 16| 16| 8

<COMMIT T>
OUTPUT(B) 6 16| 16| 16| 16 Crash

21

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery
Action t| A B| 4 B | Log
<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T,A,8, 16>
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8| <T,B,8, 16>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8 v
<COMMIT 7>

Crash

OUTPUT(B) l6e | 16| 16| 16| 16

22

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
[=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8 | <T,A4,8, 16>
READ(B, ©) 8| 16 8 8 8
[=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T,B,8, 16>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8

<COMMIT 7> Crash
OUTPUT(B) 16| 16 | 16| 16| 16

23

Recovery with undo/redo logging

o Redo all committed transactions and undo all incomplete transactions

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7> 1
READ(4, t) 8 8 8 8
[=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8 | <T,A4,8, 16>
READ(B, ©) 8| 16 8 8 8
[=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T,B,8, 16>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8

<COMMIT 7> Crash
OUTPUT(B) 16| 16 | 16| 16| 16

24

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>
<Tl, 4, 4, 5>
<START T2>
<COMMIT T1>

<T2, B, 9, 10>
<START CKPT (T2)>

25

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>

<T1, A4, 4, 5>

<START T2>

<COMMIT T1>

<T2,B,9, 10>

<START CKPT (T2)>

<12, C, 14, 15>

<START T3> Write to disk all the buffers that are dirty
<T3, D, 19, 20>

<END CKPT>

26

Nonquiescent checkpointing for undo/redo logging

« Simpler than other logging methods

<START T1>

<T1, A4, 4, 5>
<START T2>
<COMMIT T1>
<T2,B,9, 10>
<START CKPT (T2)>
<12, C, 14, 15>
<START T3> Write to disk all the buffers that are dirty
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Nonquiescent checkpointing for undo/redo logging

o After a crash, redo committed transactions, and undo uncommitted
ones

<START T1>
<T1, 4, 4,5>
<START T2>
<COMMITTI1>
<T2.B.9, 10>
<START CKPT (T2)>
<T2. C, 14, 15>
<START T3>
<T3. D, 19, 20>
<END CKPT>
<COMMIT T2>
—coOMMITT3S — Crash

Nonquiescent checkpointing for undo/redo logging

o After a crash, redo committed transactions, and undo uncommitted

ones

<START T1>
<Tl, 4, 4, 5>
<START T2>
<COMMIT T1>

<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>

<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>

—COMMIT TS Crash

Redo T2 by setting C to 15 on disk
(No need to set B to 10 thanks to CKPT)
Undo T3 by setting D to 19 on disk

29

Summary

Coping with System Failures
- Undo logging

- Redo logging

- Undo/redo logging

- Checkpointing

Today’s class

OLAP and Data Warehousing

 OLTP vs OLAP
« Data Model
» Storage format

e Data warehouses vs Data Lakes
* Data cubes
e HTAP

Reading Materials

Fundamental of Database Systems (7/th Edition)

« Chapter 29 - Overview of Data Warehousing
and OLAP

i

NavaTE L

Y i SR |

i

$ Lot -l B 1 :
MR R

32

So far we've been dealing with OLTP

OLTP: OnLine Transactional Processing

» Often used to store and manage relevant data to the day-to-day
operations of a system or company

* e.9., ATM transactions, online hotel bookings
« INSERT, UPDATE, DELETE commands

« Handles real-time transactions (response times often in
milliseconds)

« ACID properties are often important

This iIs where relational databases shine!

33

Ok, so what’s OLAP?

OLAP: OnLine Analytical Processing

 Also known as decision support or business intelligence (Bl), but now Bl has
grown to include more (e.g., Al)

A specialization of relational databases that prioritizes the reading and
summarizing large volumes (1B, PB) of relational data to understand high-
level trends and patterns

* E.g., the total sales figures of each type of Honda car over time for each county

» “Read-only” queries

Contrast this to OLTP

« “Read-write” queries

« Usually touch a small amount of data
* e.9., append a new car sale into the sales table

Transactions Analytic queries

How is OLAP Performed? |

OLTP system

ETL l
OLAP system

Y

Usually, OLAP is performed on a separate data warehouse away from
the critical path of OLTP transactions (a live/transactional database).

This data warehouse is periodically updated with data from various
sources (e.g., once an hour or once a day)

* This is through a process of ETL (Extract, Transform, Load)

 Extract useful business that needs to be summarized, transform it (e.qg.,
canonicalize values, clean it up), load it in the data warehouse

* By doing it periodically, this data warehouse can become stale

35

Transactions Analytic queries

How is OLAP Performed? | |

OLTP system OLAP system

Y

Usually, OLAP is performed on a separate data warehouse away from
the critical path of OLTP transactions (a live/transactional database).

Why*?
» Because OLAP queries end up reading most of the data, and will prevent

OLTP queries from taking precedence
e it Is more important to ensure that sales are not prevented than to make
sure that a report for a manager is generated promptly
« the latter will anyway take a long time, so might as well have them wait a bit

longer
e [t's OK if the warehouse data is a bit stale.

36

OLAP In Data Warehouses

Here are some data warehouses that you might have heard of

i:o:g snowflake . REDCHIET

Google
BigQuery

Data \Warehouse vs Data Lake

Data warehouse:

structured data (schema-on-write)
expensive for large data volumes
managers and business analysts

Data warehouse

0:.{]0
; — b
(o] a 000 aoono
O o O — coo OOO — = —
_o.mo. 00O OOoo ~
i - » UO'[]O

Raw data Formatted and Data warehouse Users
processed data

Data Lake vs Data Warehouse

Data lake:

raw data, can be unstructured
low-cost storage, but no transactions, data quality checks
data scientists and engineers

Data lake
0. {J0
nﬂ] 000 OOono U'U
(o] o e | 000 ooo
O o O e f‘;’h’ g 000 @OOono —_—
== - - []0'[]0

Raw data Data lake Formatted and Users
processed data

We will focus on the following two aspects
of OLAP systems

#1 Data Model

» Relational vs multi-dimensional schema

#2 Storage Format
 Row vs column store

1 Data Model: Multi-dimensional Model

The multi-dimensional data model includes two types of tables:

* Fact table

« Each tuple is a recorded fact. This fact contains some measured or
observed variable (s) and identifies it with pointers to dimension
tables. The fact table contains the data, and the dimensions to
identify each tuple in the data.

« A fact table is as an agglomerated view of transaction data whereas
each dimension table represents “master data” that those
transactions belonged to.

« Dimension table
* |t consists of tuples of attributes of the dimension.

Slide 29- 41

Multi-dimensional Schemas

Star schema:

» Consists of a fact table with a single table for each dimension.

Dimension table

Product

Prod_no
Prod_name
Prod_descr
Prod_style
Prod_line

Figure 29.7 A star
schema with fact and
dimensional tables.

Slide 29- 42

Fact table

Business results

/

Product
Quarter
Region
Sales_revenue

N

Dimension table

Fiscal quarter

Qtr

Year
Beg_date
End_date

Dimension table

AN

Region
Subregion

Multi-dimensional Schemas

Snowflake Schema:

|t IS a variation of star schema, in which the dimensional tables from a star
schema are normalized to eliminate redundancy

Dimension tables Dimension tables
Pname Fiscal quarter FQ dates
Prod_name Fact table Qtr Beg_date
Prod_descr Product Year End_date
\ Business results Beg_date
Prod. no |~ —" —"™"—/ | T 7
\0 Prod _name

Syle

Product

Quarter

Region

Revenue
Pline /

Sales revenue

Prod line_no
Prod_line_name Subregion

Region

Figure 29.8 A snowflake schema.

Slide 29- 43

Comparison with the Relational Model

The relational model (used by OLTP) keeps tables normalized

« Minimal updates required for data inserts and deletes => help improve
transaction performance

In the multi-dimensional model, the fact table is often in SNF, but
the dimensional tables are denormalized.

* This means columns in a table contains data which is repeated
throughout the table => help improve read performance.

« Data is stored in fewer tables, which removes the overhead of having to
perform complex joins => helps improve read performance.

44

2 Storage Format: Row vs Column Store

row-store column-store

Date |Store [Product |Customer| Price M M M Customer ﬁ

—_— RS

« Store all attributes of a tuple together « Store all rows for an attribute together
* Storage like “row-major order” ina matrix « Storage like “column-major order” in a matrix

Q: Which format do you think is better suited for OLTP vs OLAP?

Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores 45

2 Storage Format: Row vs Column Store

row-store column-store

Date |Store |Product |Customer| Price m @

e CUA S

+ easy to add/modify a record + only need to read in relevant data

- need to read unnecessary data - tuple write require multiple accesses

Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores 46

Telco Data Warehousing example

“One Size Fits All? - Part 2: Benchmarking Results”

Stonebraker et al. CIDR 2007

QUERY 2
SELECT account.account_number,
sum (usage.toll_airtime),
sum (usage.toll_price)
FROM usage, toll, source, account
WHERE usage.toll_id = toll.toll_id
AND usage.source_id = source.source_id
AND usage.account_id = account.account_id
AND toll.type_ind in ("AE’. ‘AA’)
AND usage.toll_price > 0
AND source.type !='CIBER’
AND toll.rating_method ='IS’
AND usage.invoice_date = 20051013
GROUP BY account.account_number

dimension tables

fact table

-or RAM

S888

Column-store
Query 1 2.06
Query 2 2.20
Query 3 0.09
Query 4 5.24
Query 5 2.88

Row-store
300
300
300
300
300

Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

elco example explained

row store
| | — |
| | 1 |
LLL | | 1 |

read pages containing entire rows

one row = 212 columns!

IS this typical? (it depends)

. read efficiency

column store

read only columns needed

In this example: 7 columns

caveats:
"select * " not any faster
clever disk prefetching
clever tuple reconstruction

48

Acknowledgement: Slides adapted from VLDB 2009 Tutorial on Column Stores

Telco example explained: compression efficiency

Columns compress better than rows row store
* Typical row-store compression ratio 1 : 3 e o
« Column-store 1 : 10 Ll—L

Why*?

» Rows contain values from different domains column store

» More entropy, difficult to dense-pack “‘
) ‘

« Columns are much more homogeneous
49

« Caveat: CPU cost (use lightweight compression

We'll read more about
column stores

e C-Store: A Column-oriented DBMS

C-Store: A Column-oriented DBMS

Mike Stonebraker’, Daniel J. Abadi’, Adam Batkin®, Xuedong Chen', Mitch Cherniack”,
Miguel Ferreira’, Edmond Lau®, Amerson Lin’, Sam Madden", Elizabeth O’Neil’,
Pat O’Neil", Alex Rasin*, Nga Tran®, Stan Zdonik*

‘MIT CSAIL
Cambridge, MA

'Brandeis University
Waltham, MA

Abstract

This paper presents the design of a read-optimized
relational DBMS that contrasts sharply with most
current systems, which are write-optimized.
Among the many differences in its design are:
storage of data by column rather than by row,
careful coding and packing of objects into storage
including main memory during query processing,
storing an overlapping collection of column-
oriented projections, rather than the current fare of
tables and indexes, a non-traditional
implementation of transactions which includes high
availability and snapshot isolation for read-only
transactions, and the extensive use of bitmap
indexes to complement B-tree structures.

We present preliminary performance data on a
subset of TPC-H and show that the system we are
building, C-Store, is substantially faster than
popular commercial products. Hence, the
architecture looks very encouraging.

1. Introduction

Most major DBMS vendors implement record-oriented
storage systems, where the attributes of a record (or tuple)
are placed contiguously in storage. With this row store
architecture, a single disk write suffices to push all of the
fields of a single record out to disk. Hence, high
performance writes are achieved, and we call a DBMS
with a row store architecture a write-optimized system.
These are especially effective on OLTP-style applications.

In contrast, systems oriented toward ad-hoc querying
of large amounts of data should be read-optimized. Data
warehouses represent one class of read-optimized system,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment

Proceedings of the 31" VLDB Conference,

Trondheim, Norway, 2005

"UMass Boston
Boston, MA

*Brown University
Providence, RI

in which periodically a bulk load of new data is
performed, followed by a relatively long period of ad-hoc
queries. Other read-mostly applications include customer
relationship management (CRM) systems, electronic
library card catalogs, and other ad-hoc inquiry systems. In
such environments, a column store architecture, in which
the values for each single column (or attribute) are stored
contiguously, should be more efficient. This efficiency
has been demonstrated in the warehouse marketplace by
products like Sybase 1Q [FREN9S, SYBA04), Addamark
[ADDAO4], and KDB [KDBO04]. In this paper, we discuss
the design of a column store called C-Store that includes a
number of novel features relative to existing systems.

With a column store architecture, a DBMS need only
read the values of columns required for processing a given
query, and can avoid bringing into memory irrelevant
attributes. In warchouse environments where typical
queries involve aggregates performed over large numbers
of data items, a column store has a sizeable performance
advantage. However, there are several other major
distinctions that can be drawn between an architecture that
is read-optimized and one that is write-optimized.

Current relational DBMSs were designed to pad
attributes to byte or word boundaries and to store values in
their native data format. It was thought that it was too
expensive to shift data values onto byte or word
boundaries in main memory for processing. However,
CPUs are getting faster at a much greater rate than disk
bandwidth is increasing. Hence, it makes sense to trade
CPU cycles, which are abundant, for disk bandwidth,
which is not. This tradeoff appears especially profitable in
a read-mostly environment.

There are two ways a column store can use CPU cycles
to save disk bandwidth. First, it can code data elements
into a more compact form. For example, if one is storing
an attribute that is a customer’s state of residence, then US
states can be coded into six bits, whereas the two-
character abbreviation requires 16 bits and a variable
length character string for the name of the state requires
many more. Second, one should densepack values in
storage. For example, in a column store it is
straightforward to pack N values, each K bits long, into N
* K bits. The coding and compressibility advantages of a

50

https://dl.acm.org/doi/10.5555/1083592.1083658

Introducing Data Cubes

Dimensions
ltem
season
location

Measure
volume

SELECT SUM(volume) ..
GROUP BY 1item, season,

Lyon .
Nice 4 _-,
Venice &

Florence

Components, clothing, bikes,
accessories

location

51

Operations: Slicing and Dicing

Slicing: select a single value in one of the dimensions
to create a smaller cube with one less dimension

Lyon 7e9
Nice yas:
Venice &
Florence

z Slice for
z (season = winter)
B S
32 2
X5 &
-
=

Components, clothing, bikes,

Components, clothing, bikes, accessories

accessories

52

Operations: Slicing and Dicing

Dicing: select specific values of multiple dimensions to
create a new subcube

Winter Spring

-l

Lyon s¢q
Nice a5 7 3)
Venice gz)
Florence 4 4] I I | Dice for
z “ 17 ‘ (season = winter or spring)
. I] and -
5 g -. .] (location = Venice or FIOrence) Florence . ==y
c = I and I
a2 o
4% E .. .]] (item = components or clothing)
T 111
£
omponents, c

=
&

SSSSSSSSSS

Season

Operations: Roll up and drill down

Rollup: Moving from a finer to a coarser granularity

Roll up location
(from cities to countries)

=

ofthe year
Season
of the year
Spring Summer Fall

Wirker

Components, clothing, bikes, Components, clothing, bikes,
accessories accessories

54

Operations: Roll up and drill down

Drill-down: Moving from a coarser to a finer granularity

Lyon 1
Nice _.'_,

Venice &
Florence

Drill down time Florence

(from quarters to months) Febniny
March

April

May
June

July
August

ofthe year

Season

October
November

December

Components, clothing, bikes, Components, dothing, bikes,
accessories accessories

Winter SprAng Summer Fall

55

Partitioning granularity in data cubes

Different partitioning may e
useful for different applications Quarter Year

» Q: | want the aggregates per \
month. What if | set my Month Specific Quarter

partitioning based on Full Date
and computed the data cube”? \
Can | avoid recomputing the Day of week Specific Month
cube? S /
Q: What about if | had set Hour Full Date
* Q: What about if | had set my
partitioning based on Year? S /

Datetime

How to pick the right partitioning
granularity?

First, why does this matter?

* |f this query is being run once on a petabyte sized warehouse, it is
important to get it right!

Think about all the ways you want to slice and dice your data

Pick as fine a granularity of partitioning so that you can recreate all
the aggregates, but not so fine as to blow up the query result

* The query result size grows exponentially in the attributes

* This is known as the curse of dimensionality

OLAP summary

OLAP is a specialization of relational databases to support
analytical processing and report generation
* Typically done in large “batch” operations on the entire database

* Rule of thumb: pick as “coarse-grained” materialized views or
guery results as will allow you to construct all the cross-tabs that
may be necessary

The concepts of OLAP data cubes, hierarchies,
slicing/dicing, and rollup/drilldown are valuable to describe
what you’re doing when you are exploring your data

OLAP summary

Extract

Transform

OLAP vs OLTP —— Loac
* Data Model
« Storage Format 1.OLTP 2. ETL 3. OLAP

Data warehouses vs Data Lakes

Data cubes
« Slicing and dicing
 Rollup and drill-down
« Selecting partitioning granularity

59

A brief intro to HTAP
Databases

Slides adapted from
SIGMQOD’22 Tutorial HTAP
Databases: A Tutorial by
Guoliang Li and Chao Zhang

HTAP Architecture

Coue) (o)

K //
HTAP Databases

~HEH

60

Motivation

HTAP: Hybrid Transaction Analytical Processing

« Gartner’s new definition in 2018: supports weaving analytical and
transaction processing techniques together as needed to accomplish
the business task.

Traditional Architecture HTAP Architecture
(oup) (oup) E
%

HTAP Databases

gilile

ETL

RDBMS

Slides Adapted from SIGMOD’22 Tutorial

Motivation

* Rule of thumb 1: row store is ideal for OLTP workloads
« Row-wise, update-heavy, short-lived transactions

* Rule of thumb 2: column store is best suited for OLAP workload
« Column-wise, read-heavy, bandwidth-intensive queries

— [
\ _/

HTAP Databases
I [] |
Txn 1: Insert/Delete/Update > E [j E
Txn 2: Insert/Delete/Update —
/

Slides Adapted from SIGMOD’22 Tutorial

A trade-off for HTAP databases

* Workload isolation: the isolation level of handling the mixed workloads

» Data freshness: the portion of latest transaction data that is read by OLAP

* Trade-off for workload isolation and data freshness
» High workload isolation leads to low data freshness
* Low workload isolation results in high data freshness

High workload isolation High data freshness
Low data freshness Low workload isolation
(OLTP) (OLAP > < OLTP > (OLAP >
OLTP instance OLAP instance Memory
——— !... ——— IF @EEE f— !... ! ®EEEE
|

Slides Adapted from SIGMOD’22 Tutorial v

An Overview of HTAP Architectures

(a)

(b)

(c)

(d)

Primary Row Store + In-
Memory Column Store

Distributed Row Store +
Column Store Replica

Disk Row Store +
Distributed Column Store

Primary Column Store +
Delta Row Store

. QW |
oLP “b‘LAKP‘
v Memory ;
F—=—— Merge E gg
Delta
Row Store Column Store
AN Disk
Log
Persistent Storage

A

l

Master

| Partition 1 | | Partition 3 | .
ran: rm

Partition 2 [\ Partition 1 ——»m

"Partition 3 || ‘[Partition 1|4 [Partition 2 |

EJEfE

olumn Store

(@) Primary Row Store+In-Memory Column Store

Cilent

Q

\

A

v OLTP

Transform

Row Store

il %

v

Transform E g
<>

Column Store

T

Persistent Storage

(c) Disk Row Store+Distributed Column Store

Slides Adapted from SIGMOD’22 Tutorial

(d) Primary Column Store+Delta Row Store

64

A summary of HTAP databases
Category HTAP OLTP (0] WA OLTP OLAP Workload Data
Databases Throughput | Throughput | Scalability Scalablllty Isolation | Freshness

Primary Row Store+ In Oracle Dual-Format High High Medium High
Memory Column Store SQL Server,

DB2 BLU
Distributed Row Store + TiDB, F1 Lightning Medium Medium High High High Low
Column Store Replica SingleStore
Disk Row Store + MySQL Heatwave, Medium Medium Medium High High Medium

Distributed Column Store Oracle RAC

Primary Column Store + SAP HANA (without Medium High Low Medium Low High
Delta Row Store scale-out),
Hyper

* Readings: HTAP Databases: What is New and What is Next

Slides Adapted from SIGMOD’22 Tutorial

65

https://dl.acm.org/doi/pdf/10.1145/3514221.3522565

