Emerging Database
lechnologies

Lecture 11
02/14/24

Recap

Schedule
« Serial schedule and serializable schedule
« Conflicting actions
« Conflict-serializable schedule

Dependency (or Precedence) graphs
* their relation to conflict serializability (by acyclicity)

Ensuring serializability via locking
* Two phase locking
» Shared lock, exclusive lock, update lock, increment lock

Locking scheduler

o Part 1 takes stream of requests and inserts appropriate lock actions
o Part 2 executes the sequences from Part 1

From transactions

l READ(A); WRITE(B); COMMIT(T); ...

Scheduler, part 1

loc 1(A); READ(A); 1(B); WRITE(B); ...
table

A 4

/

Scheduler, part 2

READ(A); WRITE(B); ...

| ock table

o Maps database elements to lock information

DB element A

D S S

-\

Lock information of A

| ock table

Can implement with hash table

If element is not Iin table, it Is unlocked

DB element A —

Hash Fn.

O\

Lock information of A

Locks With Multiple Granularity

o Relations — |Least concurrency
« Pages or data blocks
o Juples — Most concurrency, but also expensive

Locks With Multiple Granularity

o Relations — |Least concurrency
« Pages or data blocks
o Juples — Most concurrency, but also expensive

We can have 1t all ways using warning locks

stall 1 stall 2 stall 3 stall 4
B / - / - / o /
restroom

hall

Just ask any janitor

Warning locks

o Ordinary locks: S and X
« Warning locks: | (shows intention to lock)

Relations

Blocks

Warning locks

o Ordinary locks: S and X EEWanis foreadis
« Warning locks: | (shows intention to lock)

Relations

Blocks

Warning locks

o Ordinary locks: S and X T1wants to read 3
« Warning locks: | (shows intention to lock)

Blocks

10

Warning locks

o Ordinary locks: S and X T1 wants to read t3
« Warning locks: | (shows intention to lock)

Blocks

11

Warning locks

o Ordinary locks: S and X
« Warning locks: | (shows intention to lock)

Blocks

T1 wants to read t3

12

Warning locks

o Ordinary locks: S and X
« Warning locks: | (shows intention to lock)

Blocks

T1 wants to read t3
T2 wants to write B2

13

Warning locks

o Ordinary locks: S and X T1 wants to read t3
« Warning locks: | (shows intention to lock) T2 wants to write B2

TI-IS

Blocks

14

Warning locks

o Ordinary locks: S and X
« Warning locks: | (shows intention to lock)

TI-IS

Blocks

T1 wants to read t3
T2 wants to write B2

15

Compatibility matrix
o For shared, exclusive, and intention locks

Requestor

IS IX S X

IS Yes Yes Yes No
Holder IX Yes Yes No No

Yes No Yes No
X No No No No

Inserts and Deletes

Get exclusive lock on X before deleting it

For inserts, need to be more careful
- GCannot lock “future” elements
o If no exclusive lock is held, then datalbase can become inconsistent
due to “phantoms”

Added by Tl Added by T2

17

Inserts and Deletes

Solution for inserts: use exclusive lock on the parent of the new tuple

T1-X
T2-X Denied

Added by T1

18

—xercise #1

o (Given the hierarchy of objects, what is the sequence of lock requests
by T1 and T2 for the sequence of requests: r1(ts); Wol(ts); ro(ts);

19

Concurrency control by validation

o [his method is optimistic
o Assume no unserializable behavior
o Abort transactions when violation is apparent

« In comparison, locking methods are pessimistic
o Assume things will go wrong
o Prevent nonserializable behavior

20

Validation
o FEach transaction T has a read set RS(T) and write set WS(T)

« Ihree phases of a transaction

o Read from DB all elements in RS(T) and compute locally everything it is going to write
o Validate T by comparing RS(T) and WS(T) with other transactions
o Write elements in WS(T) to disk, if validation is OK

o \alidation needs to be done atomically
o Validation order = hypothetical serial order

21

To validate, scheduler maintains three sets

o« START: set of transactions that started, but have not validated
o VAL.: set of transactions that validated, but not yet finished

write phase
o FIN: set of transactions that have completed write phase

22

Validation rules (assume U validated)

Rule 1: RS(T) N WS(U) = @ if FIN(U) > START(T)

WS(U) = {A, B} RS(T) = {B, C!

U start T start U validate T validate

D B B

23

Validation rules (assume U validated)

Rule 1: RS(T) N WS(U) = @ if FIN(U) > START(T)
WS(U) = {A, B} RS(T) = {B, C!

This violates rule 1 because T may be reading B before U writes B

U start T start U validate T validate

D B B

24

Validation rules (assume U validated)

Rule 1: RS(T) N WS(U) = @ if FIN(U) > START(T)
WS(U) = {A, B} RS(T) = {B, C!

This satisfies rule 1

U start U validate U finish T start T validate

N |

25

Validation rules (assume U validated)

Rule 2: WS(T) N WS(U) = @ if FIN(U) > VAL(T)

WS(U) = {A, B! WS(T) = {B, C}

U validate T validate U finish

26

Validation rules (assume U validated)

Rule 2: WS(T) N WS(U) = @ if FIN(U) > VAL(T)
WS(U) = {A, B} WS(T) = {B, C}

This violates rule 2 because T may write B before U writes B

U validate T validate U finish

27

Validation rules (assume U validated)

Rule 2: WS(T) N WS(U) = @ if FIN(U) > VAL(T)
WS(U) = {A, B} WS(T) = {B, C}

This satisfies rule 2

U validate U finish T validate

|

28

Running example

RS = (B}
WS = {D}

M~

RS = {A,D}
WS = {A,C)

<

T
RS = {A,B}
WS = {A,C)

v
RS = {B}
WS = {D,E}

29

Running example

RS = {B!} RS = {A,D}
WS = {D} WS = {A,C}

U Success W

AN

<

RS = {A,B} RS = {B}
WS = {A,C) WS = {D,E}

30

Running example

RS = {B!} RS = {A,D}
WS = {D} WS = {A,C}

M~

T Success \Y%

RS = {A,B} RS = {B}
WS = {A,C) WS = {D,E}

Running example

RS = (B}
WS = {D}

M~

RS = {A,D}
WS = {A,C)

<

T
RS = {A,B}
WS = {A,C)

v
RS = {B}
WS = {D,E}

32

Running example

RS = (B}
WS = {D}

M~

RS = {A,D}
WS = {A,C)

<

T
RS = {A,B}
WS = {A,C)

V Success
RS = {B}
WS ={D,E}

33

Running example

RS = (B}
WS = {D}

M~

RS = {A,D}
WS = {A,C)

Ww Rollback

<

T
RS = {A,B}
WS = {A,C}

v
RS = {B}
WS = {D,E}

34

Validation I1s useful when

o Conflicts are rare
o System resources are plentiful
o Application has real-time constraints

35

Summary: Approaches to Concurrency Control

Lock-based CC
« 2PL
« Multiple granularity

Optimistic CC
« CC by validation

* Time-stamp-based CC
» Not covered, Chapter 18.8

Recap: ACID properties

« Atomicity: A transaction is an atomic unit of processing; it is either performed
IN its entirety or not performed at all.

« Consistency: A correct execution of the transaction must take the database
from one consistent state to another.

* |solation: A transaction should not make its updates visible to other
transactions until it is committed.

 Durability: Once a transaction changes the database and the changes are
committed, these changes must never be lost because of subsequent failure.

Ensuring atomicity and durability with logging and recovery manager

Slide 17- 37

Reading Materials

Database Systems: The Complete Book (2nd edition)
« Chapter 17 - Copying with System Failures

Supplementary materials
Fundamental of Database Systems (7th Edition)
» Chapter 22 - Database Recovery Techniques

DATABASE
SYSTEMS

THE
s COMPLETE
BOOK

38

-allure modes and solutions

o Erroneous data entry
o Iypos
— Write constraints and triggers
« Media failures
o Local disk failure, head crashes
— Parity checks, RAID, archiving and copying
o Catastrophic failures
- EXplosions, fires
— Archiving and copying

o System failures

— Logging

> Iransaction state lost due to power loss and software errors

Today’s focus

39

Recovery

Atomicity
* by "undo”ing actions of “aborted transactions”

Durability

* by making sure that all actions of committed transactions survive
crashes and system failure

« —l.e. by “redo”-Iing actions of “committed transactions”

Slide 17- 40

The Correctness Principle

A fundamental assumption about transaction is:

If a transaction executes in the absence of any other transactions or
system errors, and it starts with the database in a consistent state, then
the database is also in a consistent state when the transactions ends.

DB 1n consistent state Run 1n 1solation DB 1n consistent state

SLELAS

41

Transaction primitives

Example transaction

(@]

Consistent state: A =B

Logical steps

A=A4%2
B=B*2

Execution

Memory Disk
Action t| A| B| A| B
READ(, 1) 8| & 8| 8
t=t*2 16| 8 8| 8
WRITE(4,¢) |16|16 8| 8
READ(B,) 8116 8| 8| 8
t=t*2 16|16 8| 8| 8
WRITE(B,) |16 |16 16| 8| 8
OUTPUT) |16|16 |16 |16 | 8
OUTPUT(B) |16|16|16|16| 16

42

Transaction primitives

o Example transaction

- Consistent state: A =B Execution

Memory Disk

Action t| A| B| A| B
Logical steps
READ(4,7) | 8| 8 3| 8
t=t*2 16| 8 8| 8
éf;é:; WRITE(4, /) | 16 16 3| 8
' READB,7) | 8|16| 8| 8| 8
t=t*2 16|16 8| 8| 8
WRITE(B,/) |16|16|16| 8| 8| . .
OUTPUT(A) | 16]16]16|16] 8
OUTPUT(B) | 16|16 |16 16|16

Transaction primitives

o Example transaction

- Consistent state: A =B Execution

Memory Disk

. Action t| A| B| A| B
Logical steps
READ(A, 1) 8| 8 8| 8
t=t*2 16| 8 8| 8
— A *
;1;_;1 *3 WRITE(4, 1) | 16 | 16 3| 8
o READ(B, 1) 81 16| 8| 8| 8
t=t*2 16|16 8| 8| 8
WRITEB,¢) |16 |16 |16| 8| 8
OUTPUTA) (16|16 |16 | 16| 8
OUTPUT((B) |16 16| 16|16 16 .
Consistent "

Transaction primitives

o Example transaction

- Consistent state: A =B Execution

Memory Disk

. Action t| A| B| A| B
Logical steps
READ(4,7) | 8| 8 8| 8
t=1%2 16| 8 8| 8
— A %
é:_g*g WRITE(4, 1) | 16| 16 8| 8
o READ(B,7) | 8|16| 8| 8| 8
t=t%*2 161161 8! 8| 8§ Not consistent!
WRITE(B,?) |16|16|16| 8| 8| Eitherreset4 =8
OUTPUT(4) | 16|16|16|16| 8| oradvanceB=16
OUTPUT(B) [16]16]16[16] 16

45

1 Undo logging

o Lo0g: afile of log records telling what transaction has done
Memory Disk

Action t| A| B| A| B|Log
<START 7>
READ(4, t) g | 8 8| 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8| 8|<T 4,8
READ(B, /) 8| 16| 8| 8| 8
t=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16 | 16 | 16 | 16 8
OUTPUT(B) 16 | 16 | 16 | 16 | 16
<COMMIT 7>
FLUSH LOG

1 Undo logging

o Lo0g: afile of log records telling what transaction has done
Memory Disk

Action t| A B| 4 B | Log

<START 7> T started
READ(4, t) 8 8 8]
t=t*2 16 8 8 8 '
WRITE(4, ?) 16 | 16] 8 | <7.4, 8> T changed A4, .and its
READ(B, f) 8| 16]] 3 former value is 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8
OUTPUT(B) 16 | 16 | 16 | 16| 16

<COMMIT 7> Tcompleted
FLUSH LOG successfully

47

o Lo0g: afile of log records telling what transaction has done

Rule 1:
<T A, 8 must be
flushed to disk before

new A 1s written to
disk (same for B)

1 Undo logging

Memory Disk

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8 »
WRITE(4, ©) 16 | 16 8 8 | <T, A, 8>
READ(B, t) 81 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <7, B, 8>
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

<COMMIT 7>
FLUSH LOG

Log

48

1 Undo logging

o Lo0g: afile of log records telling what transaction has done
Memory Disk

Action t| A B| 4 B | Log
<START T>
READ(4, 1) g | 8 g | 8
. 16| 8 8| 8 >
WRITE(4, 7) 16| 16 8 | 8|<7 4,8 @
READ(B, 1) 8| 16| 8| 8| 8
Rule 1: P 16 | 16 8 8 8
<I. 4, 8> must be flushed | ywpyTRp, 16| 16| 16| 8| 8|<7B 8
to Q1sk befo‘re new A 1is FLUSH LOG Rule 2:
written to disk (same for | 5 pyT(4) 16| 16| 16| 16| 8 <COMMIT T> must be
B) OUTPUT(B) 16| 16| 16| 16| 16 flushed to disk after 4
<COMMIT 7> || and B are written to disk
FLUSH LOG

49

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T, A, 8
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16 | 16 | 16

<COMMIT 7>
FLUSH LOG

Crash 50

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8| <T, A, 8
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

<COMMIT 7> Observe <COMMIT 7> record
FLUSH LOG

Crash 51

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8 | <T, A, 8>
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16| 16 8 8 | <7, B, 8> Ignore (T was committed)
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8 ﬁ
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT 7> Observe <COMMIT 7> record
FLUSH LOG

Crash 52

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8 | <T, A4, 8> Ignore (T was committed)
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8 ﬁ
WRITE(B, 1) 16 | 16| 16 8 8 | <7, B, 8> Ignore (T was committed)
FLUSH LOG
OUTPUT(A) 16 | 16 | 16| 16 8 ﬁ
OUTPUT(B) 16 | 16 | 16 | 16 | 16

<COMMIT 7> Observe <COMMIT 7> record
FLUSH LOG

Crash 53

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
[=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8 | <T, A, 8
READ(B, ©) 8| 16 8 8 8
[=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 8
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

<COMMIT 7>
FLUSHLOG Crash

54

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ?) 16 | 16 8 8| <T, A4, 8>
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 7) 16| 16| 16| 8| 8|<I,B,8> <COMMIT 7> may or may not
FLUSH LOG have been flushed to disk. If so,
OUTPUT(A) 16| 16| 16| 16 o same as previous scenario. If not, 7
OUTPUT(B) 16| 16| 16| 16| 16 / 1s considered incomplete

<COMMIT 7>
FLUSHLOG Crash

55

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8| <T, A, 8
READ(B, ©) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8 _
WRITE(B, 1) 161 16| 16 3 8 | <T.B,8> < If7T was incomplete, s'et Bto
FLUSH LOG previous value 8 on disk
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16 | 16| 16| 16

<COMMIT 7>
FLUSHLOG Crash

56

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
t=t*2 16 8 8 8 _
WRITE(4, 7) 161 16 3 8 | <T. A4.8> < Itr was incomplete, s:etA to
READ(B, 7) 3| 16 3 3 3 previous value 8 on disk
t=t*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT 7>
FLUSHLOG Crash

57

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7> Write <ABORT 7> to log
READ(4, t) 8 8 8 8 and flush to disk
t=1*2 16 8 8 8
WRITE(4, ?) 16 | 16 8 8| <T, A4, 8>
READ(B, ©) 8| 16 8 8 8
t=1*2 16 | 16 8 8 8
WRITE(B, ?) 16 | 16 | 16 8 8 | <T,B, 8
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8
OUTPUT(B) 16| 16| 16| 16| 16

<COMMIT 7>
FLUSHTLOG Crash

58

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(A, t) 8 8 8 8
t=t*2 16 8 8 8
WRITE(4, ©) 16 | 16 8 8| <T, A, 8
READ(B, t) 8| 16 8 8 8
t=t*2 16 | 16 8 8 8
WRITE(B, 1) 16 | 16 | 16 8 8 | <T, B, 8>
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8 Crash
OUTPUT(B) 16| 16 | 16 | 16| 16

<COMMIT 7>
FLUSH LOG

59

Recovery using undo logging

« Simplifying assumption: use entire log, no matter how long

Memory Disk Recovery

Action t| A B| 4 B | Log

<START 7>
READ(4, t) 8 8 8 8
[=t*2 16 8 8 8
WRITE(A, ?) 16 | 16 8 8 | <T, A, 8
READ(B, ©) 8| 16 8 8 8
fo= %0 16 | 16] 8] Same recovery as before, but only 4
WRITE(B, 7) 161 161 16] 8 | <T. B, & is set to previous value
FLUSH LOG
OUTPUT(A) 16| 16 | 16| 16 8 Crash
OUTPUT(B) 16| 16 | 16| 16| 16

<COMMIT 7>
FLUSH LOG

60

What happens if the system crashes during
the recovery”?
o Undo-log recovery is

idempotent, so repeating the
recovery is OK

61

Exercise #2

Given the undo log, describe the action of the recovery manager

<START T>
<T, 4, 10>
<START U>
<U, B, 20>

<T, C, 30>

<U, D, 40>
<COMMIT U>

62

Checkpointing

o Entire log can be too long
« (Cannot truncate log after a COMMIT because there are other
running transactions

Checkpointing
« Solution: checkpoint log periodically

<START T1>
<TI1, 4, 5>
<START T2>
<12, B, 10>

64

Checkpointing
« Solution: checkpoint log periodically

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>

Stop accepting new transactions

65

Checkpointing

Solution: checkpoint log periodically

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>
<T2,C, 15>
<Tl1, D, 20>
<COMMIT T1>
<COMMIT T2>

Stop accepting new transactions

Wait until all transactions commit or abort

66

Checkpointing

« Solution: checkpoint log periodically

<START T1>

<T1, A4, 5>

“SIART 12 Stop accepting new transactions

<T2, B, 10>

<12, C, 15> Wait until all transactions commit or abort
<T1, D, 20>

<COMMIT T1> Flush log

<COMMIT T2> Write <CKPT> and flush

<CKPT>

67

Checkpointing

« Solution: checkpoint log periodically

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>
<T2,C, 15>
<Tl1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>
<T3, E, 25>
<T3, F, 30>

Stop accepting new transactions

Wait until all transactions commit or abort

Flush log
Write <CKPT> and flush

Resume transactions

68

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system
<START T1>

<T1, 4, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<Tl1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>

<START CKPT (T1, T2)>

<12, C, 15>
<START T3>
<T1, D, 20>
<COMMIT TI>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

4

»

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

70

Nonqguiescent checkpointing

« Motivation: avoid shutting down system while checkpointing
« Checkpoint all active transactions, but allow new transactions to

enter system

<START T1>
<TI1, 4, 5>
<START T2>
<T2, B, 10>

A

If we first meet <START CKPT (T1, T2)>,

<START CKPT (T1, T2)> only need to recover until <START T1>

<12, C, 15>
<START T3>
<T1, D, 20>

<COMMIT TI>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

71

