
CS 4440 A
Emerging Database
Technologies

Lecture 11
02/14/24

Recap

Schedule
• Serial schedule and serializable schedule
• Conflicting actions
• Conflict-serializable schedule

Dependency (or Precedence) graphs
• their relation to conflict serializability (by acyclicity)

Ensuring serializability via locking
• Two phase locking
• Shared lock, exclusive lock, update lock, increment lock

2

Locking scheduler

● Part 1 takes stream of requests and inserts appropriate lock actions
● Part 2 executes the sequences from Part 1

3

lock
table

Scheduler, part 1

Scheduler, part 2

READ(A); WRITE(B); COMMIT(T); ...

l(A); READ(A); l(B); WRITE(B); ...

READ(A); WRITE(B); ...

DB

From transactions

Lock table

● Maps database elements to lock information

4

DB element A

Lock information of A

● Can implement with hash table
● If element is not in table, it is unlocked

Lock table

5

DB element A

Lock information of A

Hash Fn.

Locks With Multiple Granularity
● Relations → Least concurrency
● Pages or data blocks
● Tuples → Most concurrency, but also expensive

6

Locks With Multiple Granularity
● Relations → Least concurrency
● Pages or data blocks
● Tuples → Most concurrency, but also expensive

7

We can have it all ways using warning locks

Just ask any janitor
stall 1 stall 2 stall 3 stall 4

restroom

hall

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

8

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

9

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

10

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

11

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

T1-IS

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

12

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

T1-IS

T1-S

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

13

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

T1-IS

T1-S

T2 wants to write B2

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

14

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

T1-IS

T1-S

T2 wants to write B2

T2-IX

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

15

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

T1-IS

T1-IS

T1-S

T2 wants to write B2

T2-IX

T2-X

Compatibility matrix

● For shared, exclusive, and intention locks

16

IS

IX

S

X

IS IX S X

Yes Yes

Yes Yes

Yes

No

Yes No Yes

No

No

No

No No No No

Holder

Requestor

Inserts and Deletes
● Get exclusive lock on X before deleting it
● For inserts, need to be more careful

○ Cannot lock “future” elements
○ If no exclusive lock is held, then database can become inconsistent

due to “phantoms”

17

parent

key=1 key=2

T1-S

key=3 key=3

T2-S

Added by T1 Added by T2

Key constraint violation

Inserts and Deletes

● Solution for inserts: use exclusive lock on the parent of the new tuple

18

parent

key=1 key=2 key=3

Added by T1

T1-X
T2-X Denied

Exercise #1

● Given the hierarchy of objects, what is the sequence of lock requests
by T1 and T2 for the sequence of requests: r1(t5); w2(t5); r2(t3);

19

R1

B1 B2

t1 t2 t3 t4 t5

Concurrency control by validation

● This method is optimistic
○ Assume no unserializable behavior
○ Abort transactions when violation is apparent

● In comparison, locking methods are pessimistic
○ Assume things will go wrong
○ Prevent nonserializable behavior

20

Validation

● Each transaction T has a read set RS(T) and write set WS(T)

● Three phases of a transaction
○ Read from DB all elements in RS(T) and compute locally everything it is going to write
○ Validate T by comparing RS(T) and WS(T) with other transactions
○ Write elements in WS(T) to disk, if validation is OK

● Validation needs to be done atomically
○ Validation order = hypothetical serial order

21

To validate, scheduler maintains three sets

● START: set of transactions that started, but have not validated
● VAL: set of transactions that validated, but not yet finished

write phase
● FIN: set of transactions that have completed write phase

22

Validation rules (assume U validated)

Rule 1: RS(T) ∩ WS(U) = ∅ if FIN(U) > START(T)

23

U start T start U validate T validate

WS(U) = {A, B} RS(T) = {B, C}

Validation rules (assume U validated)

Rule 1: RS(T) ∩ WS(U) = ∅ if FIN(U) > START(T)

24

U start T start U validate T validate

WS(U) = {A, B} RS(T) = {B, C}

This violates rule 1 because T may be reading B before U writes B

Validation rules (assume U validated)

Rule 1: RS(T) ∩ WS(U) = ∅ if FIN(U) > START(T)

25

U start T startU validate T validate

WS(U) = {A, B} RS(T) = {B, C}

This satisfies rule 1

U finish

Validation rules (assume U validated)

Rule 2: WS(T) ∩ WS(U) = ∅ if FIN(U) > VAL(T)

26

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

Validation rules (assume U validated)

Rule 2: WS(T) ∩ WS(U) = ∅ if FIN(U) > VAL(T)

27

WS(U) = {A, B} WS(T) = {B, C}

This violates rule 2 because T may write B before U writes B

U validate T validate U finish

Validation rules (assume U validated)

Rule 2: WS(T) ∩ WS(U) = ∅ if FIN(U) > VAL(T)

28

U validate T validate

WS(U) = {A, B} WS(T) = {B, C}

U finish

This satisfies rule 2

Running example

29

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Running example

30

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

WSuccess

Running example

31

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success

Running example

32

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Running example

33

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success

Running example

34

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W Rollback

Validation is useful when

● Conflicts are rare
● System resources are plentiful
● Application has real-time constraints

35

Summary: Approaches to Concurrency Control

Lock-based CC
• 2PL
• Multiple granularity

Optimistic CC
• CC by validation
• Time-stamp-based CC

• Not covered, Chapter 18.8

36

Slide 17- 37

Recap: ACID properties

• Atomicity: A transaction is an atomic unit of processing; it is either performed
in its entirety or not performed at all.
• Consistency: A correct execution of the transaction must take the database

from one consistent state to another.
• Isolation: A transaction should not make its updates visible to other

transactions until it is committed.
• Durability: Once a transaction changes the database and the changes are

committed, these changes must never be lost because of subsequent failure.

Ensuring atomicity and durability with logging and recovery manager

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 17 - Copying with System Failures

Supplementary materials
Fundamental of Database Systems (7th Edition)
• Chapter 22 - Database Recovery Techniques

38

Failure modes and solutions

● Erroneous data entry
○ Typos

→ Write constraints and triggers
● Media failures

○ Local disk failure, head crashes
→ Parity checks, RAID, archiving and copying

● Catastrophic failures
○ Explosions, fires

→ Archiving and copying
● System failures

○ Transaction state lost due to power loss and software errors
→ Logging

39Today’s focus

Slide 17- 40

Atomicity
• by ”undo”ing actions of “aborted transactions”

Durability
• by making sure that all actions of committed transactions survive

crashes and system failure
• – i.e. by “redo”-ing actions of “committed transactions”

Recovery

The Correctness Principle
A fundamental assumption about transaction is:

If a transaction executes in the absence of any other transactions or
system errors, and it starts with the database in a consistent state, then
the database is also in a consistent state when the transactions ends.

41

DB in consistent state

Txn

DB in consistent stateRun in isolation

Transaction primitives

● Example transaction
○ Consistent state: A = B

42

A := A * 2

B := B * 2

Logical steps

Execution

READ(A, t)
t := t * 2

WRITE(A, t)
READ(B, t)
t := t * 2

WRITE(B, t)
OUTPUT(A)

OUTPUT(B)

8

16

16

8

16

16

16

16

8

8

16

16

16

16

16

16

8

8

16

16

16

8

8

8

8

8

8

16

16

8

8

8

8

8

8

8

16

Action t A B A B
Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

43

A := A * 2

B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2

WRITE(A, t)
READ(B, t)
t := t * 2

WRITE(B, t)
OUTPUT(A)

OUTPUT(B)

8

16

16

8

16

16

16

16

8

8

16

16

16

16

16

16

8

8

16

16

16

8

8

8

8

8

8

16

16

8

8

8

8

8

8

8

16

Action t A B A B
Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

44

A := A * 2

B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2

WRITE(A, t)
READ(B, t)
t := t * 2

WRITE(B, t)
OUTPUT(A)

OUTPUT(B)

8

16

16

8

16

16

16

16

8

8

16

16

16

16

16

16

8

8

16

16

16

8

8

8

8

8

8

16

16

8

8

8

8

8

8

8

16

Action t A B A B
Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

45

A := A * 2

B := B * 2

READ(A, t)
t := t * 2

WRITE(A, t)
READ(B, t)
t := t * 2

WRITE(B, t)
OUTPUT(A)

OUTPUT(B)

Logical steps

Execution

8

16

16

8

16

16

16

16

8

8

16

16

16

16

16

16

8

8

16

16

16

8

8

8

8

8

8

16

16

8

8

8

8

8

8

8

16

Action t A B A B
Memory Disk

Not consistent!

Either reset A = 8

or advance B = 16

#1 Undo logging

● Log: a file of log records telling what transaction has done

46

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

#1 Undo logging

● Log: a file of log records telling what transaction has done

47

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Memory Disk

T started

T completed
successfully

T changed A, and its
former value is 8

#1 Undo logging

● Log: a file of log records telling what transaction has done

48

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be
flushed to disk before
new A is written to
disk (same for B)

Log

#1 Undo logging

● Log: a file of log records telling what transaction has done

49

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be flushed
to disk before new A is
written to disk (same for
B)

Rule 2:
<COMMIT T> must be
flushed to disk after A
and B are written to disk

Log

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

50

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

51

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

52

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

53

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

54

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

55

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

<COMMIT T> may or may not
have been flushed to disk. If so,
same as previous scenario. If not, T
is considered incomplete

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

56

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set B to
previous value 8 on disk

A = 16
B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

57

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set A to
previous value 8 on disk

A = 8
B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

58

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

Write <ABORT T> to log
and flush to disk

A = 8
B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

59

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

60

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16
8

16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t A B A B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 8
B = 8

Same recovery as before, but only A
is set to previous value

What happens if the system crashes during
the recovery?

● Undo-log recovery is
idempotent, so repeating the
recovery is OK

61
Image source: https://insightrsblog.com/2010/09/17/do-you-want-to-recreate-your-entire-database/

Exercise #2

● Given the undo log, describe the action of the recovery manager

62

<START T>

<T, A, 10>

<START U>

<U, B, 20>

<T, C, 30>

<U, D, 40>

<COMMIT U>

Checkpointing

● Entire log can be too long
● Cannot truncate log after a COMMIT because there are other

running transactions

63

Checkpointing

● Solution: checkpoint log periodically

<START T1>

<T1, A, 5>

<START T2>

<T2, B, 10>

64

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

65

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>

66

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>

67

Write <CKPT> and flush
Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>
<T3, E, 25>
<T3, F, 30> 68

Resume transactions

Write <CKPT> and flush
Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

69

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

70

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

71

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <START CKPT (T1, T2)>,
only need to recover until <START T1>

