
CS 4440 A
Emerging Database
Technologies

Lecture 19
02/12/24

Announcements

• Assignment 1 grade will be released soon

• We will share Assignment 2 feedback next week

• Technology presentation starting from Feb 26
• Schedule available on the course website
• Assignments 4,5 due after the last presentation on March 11
• Attendance required

2

Using Transactions in SQL

3

SET [GLOBAL | SESSION] TRANSACTION
 transaction_characteristic [, transaction_characteristic] ...

transaction_characteristic: {
 ISOLATION LEVEL level
 | access_mode }

level: {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE}

access_mode: {
 READ WRITE
 | READ ONLY }

Isolation Levels
• With SERIALIZABLE: the interleaved

execution of transactions will adhere to
our notion of serializability.

• However, if any transaction executes at a
lower level, then serializability may be
violated.

Dirty reads

Reading data written by a transaction that has not yet committed

Consider this seat selection example:
1. Find available seat and reserve by setting seatStatus to ‘occupied’
2. Ask customer for approval of seat

a. If so, commit
b. If not, release seat by setting seatStatus to ‘available’ and repeat Step (1)

4

Dirty read

● If we allow dirty reads, this can happen

5

User 1 finds seat 22A empty and
reserves it (22A is occupied)

User 1 disapproves the 22A
reservation

time
User 2 is told that seat 22A is
already occupied (dirty read)

Dirty reads

● If this result is acceptable, the transaction processing can be done faster
○ DBMS does not have to prevent dirty reads
○ Allows more parallelism

● Tell SQL system:

6

SET TRANSACTION READ WRITE
ISOLATION LEVEL READ UNCOMMITTED;

Read committed

● Only allow reads from committed data, but same query may get different answers

7

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

read x
result = 10

update x = 20
commit

read x
result = 20

time

Transaction 1 Transaction 2

Repeatable read
● Any tuple that was retrieved will be retrieved again if the same query is repeated,

even though other transactions may modify the individual rows that were read.

8

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

read x
result = 10

update x = 20
commit

read x
result = 10

time

Transaction 1 Transaction 2

Repeatable read

● May allow “phantom” tuples, which are new tuples inserted between queries

9

size =
COUNT(Flights)

time

Transaction 1 Transaction 2

size =
COUNT(Flights)

size = N

size = N + 1

Insert
Flights

Comparison of SQL isolation levels

10

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantoms

Read
Uncommitted

Allowed Allowed Allowed

Read Committed Not allowed Allowed Allowed

Repeatable Read Not allowed Not allowed Allowed

Serializable Not allowed Not allowed Not allowed

Comparison of SQL isolation levels

11

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantoms

Read
Uncommitted

Allowed Allowed Allowed

Read Committed Not allowed Allowed Allowed

Repeatable Read Not allowed Not allowed Allowed

Serializable Not allowed Not allowed Not allowed

• Rarely used in practice, as the performance is not much better than other levels
• In fact, PostgreSQL doesn’t support this isolation level
• No lock on data

Comparison of SQL isolation levels

12

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantoms

Read
Uncommitted

Allowed Allowed Allowed

Read Committed Not allowed Allowed Allowed

Repeatable Read Not allowed Not allowed Allowed

Serializable Not allowed Not allowed Not allowed

• Fast and simple to use; adequate for many applications
• Shared lock (read lock) on rows when they are read, exclusive lock (write lock)

on rows when they are being modified

Comparison of SQL isolation levels

13

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantoms

Read
Uncommitted

Allowed Allowed Allowed

Read Committed Not allowed Allowed Allowed

Repeatable Read Not allowed Not allowed Allowed

Serializable Not allowed Not allowed Not allowed

• Good for reporting, data warehousing types of workload
• Shared locks on all rows read by a transaction

Comparison of SQL isolation levels

14

Isolation Level Dirty Reads Nonrepeatable
Reads

Phantoms

Read
Uncommitted

Allowed Allowed Allowed

Read Committed Not allowed Allowed Allowed

Repeatable Read Not allowed Not allowed Allowed

Serializable Not allowed Not allowed Not allowed

• Recommended only when updating transactions contain logic sufficiently
complex that they might give wrong answers in Read Committed mode

• Locking the entire range of rows that could potentially be accessed by a
transaction's queries

Slide 17- 15

Recap: ACID properties

• Atomicity: A transaction is an atomic unit of processing; it is either performed
in its entirety or not performed at all.
• Consistency: A correct execution of the transaction must take the database

from one consistent state to another.
• Isolation: A transaction should not make its updates visible to other

transactions until it is committed.
• Durability: Once a transaction changes the database and the changes are

committed, these changes must never be lost because of subsequent failure.

This class: ensuring isolation via concurrency control

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 18 – Concurrency Control

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 21 - Concurrency Control Techniques

16

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Schedule

An actual or potential sequence for executing actions as seen by
the DBMS

A list of actions from a set of transactions
• includes READ, WRITE, ABORT, COMMIT

Two actions from the same transaction T MUST appear in the
schedule in the same order that they appear in T
• cannot reorder actions from a given transaction

17

Assumptions

Transactions communicate only through READ and WRITE
• i.e., no exchange of message among them

A database is a “fixed” collection of independent objects
• i.e., objects are not added to or deleted from the database
• this assumption could be relaxed

18

Transaction primitives

INPUT(X) : copy block X from disk to memory

READ(X, t): copy X to transaction’s local variable t
(run INPUT(X) if X is not in memory)

WRITE(X, t): copy value of t to X (run INPUT(X) if X is not in memory)

OUTPUT(X): copy X from memory to disk

19

Schedule

● Actions taken by one or more transactions

20

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B, t)

READ(A, s)
s := s*2
WRITE(A, s)
READ(B, s)
s := s*2
WRITE(B, s)

T1 T2

Slide 17- 21

Characterizing Schedules based on Serializability (1)

Serial schedule:
• A schedule S is serial if, for every transaction T participating in the

schedule, all the operations of T are executed consecutively in the
schedule.
• Otherwise, the schedule is called nonserial schedule.

Serializable schedule:
• A schedule S is serializable if it is equivalent to some serial schedule of

the same n transactions.

Serial schedule

● One transaction is executed at a time

22

READ(A, t)
t := t+100

WRITE(A, t)
READ(B, t)
t := t+100

WRITE(B, t)
READ(A, s)

s := s*2

WRITE(A, s)
READ(B, s)
s := s*2

WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

Schedule: (T1, T2)

Q: Do serial schedules
allow for high throughput?

Serializable schedule

● There exists a serial schedule with the same effect

23

READ(A, t)
t := t+100

WRITE(A, t)

READ(B, s)
s := s*2

WRITE(B, s)

T1 T2 BA

25 25

125

125

250

250

Same effect as (T1, T2)

READ(B, t)
t := t+100

WRITE(B, t)

READ(A, s)

s := s*2

WRITE(A, s)

Serializable schedule

● This is not serializable

24

READ(A, t)
t := t+100

WRITE(A, t)

READ(B, s)
s := s*2

WRITE(B, s)

T1 T2 BA

25 25

125

50

250

150

READ(B, t)
t := t+100

WRITE(B, t)

READ(A, s)

s := s*2

WRITE(A, s)

Serializable schedule

● Serializable, but only due to the detailed transaction behavior

25

READ(A, t)
t := t+100

WRITE(A, t)

READ(B, s)
s := s+200

WRITE(B, s)

T1 T2 BA

25 25

125

225

325

325

READ(B, t)
t := t+100

WRITE(B, t)

READ(A, s)

s := s+200

WRITE(A, s)

Same effect as (T1, T2)

Slide 17- 26

Serial vs Serializable Schedule

Being serializable is not the same as being serial

Being serializable implies that the schedule is a correct schedule.
• It will leave the database in a consistent state.
• The interleaving is appropriate and will result in a state as if the

transactions were serially executed, yet will achieve efficiency due to
concurrent execution.

Serial

Serializable

Notation for transactions and schedule

Serializability is hard to check - cannot always know detailed behaviors

Abstract view of transactions:
● ri(X): Ti reads X
● wi(X): Ti writes X

27

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Serializable schedule: r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

Conflicts

● A pair of consecutive actions that cannot be interchanged without
changing behavior

28

These are conflicts These are not conflicts

ri(X); rj(X)

ri(X); wj(Y)

wi(X); rj(Y)

wi(X); wj(Y)

ri(X); wi(Y)

ri(X); wj(X)

wi(X); rj(X)

wi(X); wj(X)

Slide 17- 29

Characterizing Schedules based on Serializability (2)

Conflict equivalent
• Two conflict equivalent schedules have the same effect on a database
• All pairs of conflicting actions are in same order
• one schedule can be obtained from the other by swapping “non-

conflicting” actions
• either on two different objects
• or both are read on the same object

Conflict serializable
• A schedule S is said to be conflict serializable if it is conflict equivalent

to some serial schedule S’.

Conflict-serializable schedule

● Conflict-equivalent to serial schedule

30

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B);

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B);

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B);

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B);Serial

Conflict-serializable schedule
● A conflict-serializable schedule is always serializable
● But not vice versa (e.g., serializable schedule due to detailed

transaction behavior)

31

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X);

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

Serial

Serializable,
but not conflict
serializable

Serial

Conflict Serializable

Serializable

Exercise #1

● What are schedules that are conflict-equivalent to (T1, T2)?

32

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

Slide 17- 33

Testing for conflict serializability

Through a precedence graph *:
• Looks at only read_Item (X) and write_Item (X) operations
• Constructs a precedence graph - a graph with directed edges
• An edge is created from Ti to Tj if one of the operations in Ti appears

before a conflicting operation in Tj
• The schedule is serializable if and only if the precedence graph has no

cycles.

* Also called dependency graph, conflict graph, or serializability graph

Precedence graph

Can use to decide conflict serializability

34

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

One node per committed transaction
Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions
– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

35

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

One node per committed transaction
Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions
– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Precedence graph

Can use to decide conflict serializability

36

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B);

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B);

T1 T2 T3

T1 T2 T3

This is conflict serializable

This is not because of cycle

One node per committed transaction
Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions
– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Exercise #2

● What is the precedence graph for the schedule:

37

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B); w1(A); w2(B);

One node per committed transaction
Edge from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions
– Wi(A) --- Rj(A), or Ri(A) --- Wj(A), or Wi(A) --- Wj(A)

Schedule Summary

Schedule
• Serial schedule
• Serializable schedule (why do we need them?)
• Conflicting actions
• Conflict-equivalent schedules
• Conflict-serializable schedule

Dependency (or Precedence) graphs
• their relation to conflict serializability (by acyclicity)

38

Enforce serializability with locks

li(X): Ti requests lock on X
ui(X): Ti releases lock on X

Consistency of transactions
○ Can only read/write element if

granted a lock
○ A locked element must later be

unlocked
Legality of schedules

○ No two transactions may lock
element at the same time

39

Requests from transactions

SchedulerLock table

Serializable

schedule of

actions

Enforce serializability with locks

● Legal, but not serializable schedule

40

l1(A); r1(A);

A := A+100

w1(A); u1(A);

l2(B); r2(B)

B := B*2

w2(B); u2(B)

T1 T2 BA

25 25

125

50

250

150

l1(B); r1(B)

B := B+100

w1(B); u1(B);

l2(A); r2(A)

A := A*2

w2(A); u2(A)

Two-phase locking (2PL)

● In every transaction, all lock actions precede all unlock actions
● Guarantees a legal schedule of consistent transactions is conflict

serializable

41

timelocks
acquired

First unlock

Two-phase locking (2PL)

● This is now conflict serializable

42

l1(A); r1(A);

A := A+100

w1(A); l1(B); u1(A);

l2(B); u2(A); r2(B)

B := B*2

w2(B); u2(B)

T1 T2 BA

25 25

125

125

250

250

r1(B); B := B+100

w1(B); u1(B);

l2(A); r2(A)

A := A*2

w2(A);

l2(B) Denied

Locking with several modes

Using one type of lock is not efficient when reading and writing

Instead, use shared locks for reading and exclusive locks for writing

sli(X): Ti requests shared lock on X
xli(X): Ti requests exclusive lock on X

Requirements: analogous notions of consistent transactions, legal
schedules, and 2PL

43

Locking with several modes

● More efficient than previous schedule

44

sl1(A); r1(A);

T1 T2

sl2(A); r2(A);

sl2(B); r2(B);

xl1(B) Denied
u2(A); u2(B);

xl1(B); r1(B); w1(B);

u1(A); u1(B);

● T1 and T2 can read A at
the same time

● T1 and T2 use 2PL, so
the schedule is conflict
serializable

Locking with several modes

● Compatibility matrix

45

Lock held
in mode

S
X

Lock requested
S X

Yes No
No No

Update locks

● If T reads and writes the same X, enable lock to upgrade from shared
to exclusive
○ Obviously allows more parallelism

● However, a simple upgrading approach may lead to deadlocks

46

sl1(A)

...

T1 T2

xl1(A) Denied
sl2(A)

...

xl2(A) Denied

Upgrade
Upgrade

Update locks

uli(X): Ti requests an update lock on X

● Solution: introduce new type called update locks
● Only an update lock can be updated to an exclusive lock later

47

ul1(A)
...

T1 T2

xl1(A)
ul2(A) Denied

ul2(A)
…
xl2(A)

Upgrade

Upgrade

S
X
U

S X U

Yes No
No No

Yes
No

No No No

Compatibility matrix

Increment locks

● Many transactions only increment or decrement values
○ E.g., bank account transfer

● Introduce increment locks just for this purpose

48

A = 5

A = 7

A = 15

A = 17

INC(A, 2) INC(A, 10)

INC(A, 10) INC(A, 2)

S
X
I

S X I

Yes No
No No

No
No

No No Yes

Compatibility matrix

