
CS 4440 A
Emerging Database 
Technologies

Lecture 1
01/08/24



Agenda

Course logistics and overview 

A brief history of databases
• 1960s – 2020s 

2



The essentials
Instructor: Kexin Rong
• Office: Klaus 3322
• Email: krong@gatech.edu

TA: Hantian Zhang
• Email: hantian.zhang@gatech.edu

TA: Catherine Xie
• Email: catherinex@gatech.edu

3

mailto:hantian.zhang@gatech.edu
mailto:catherinex@gatech.edu


The essentials
Course website: https://kexinrong.github.io/sp24-cs4440/
 schedule, assignments, and course material 

Canvas: submitting assignments

Piazza: discussing course contents and finding teammates
• https://piazza.com/gatech/spring2024/cs4440a

 
Email: special requests; mention CS4440 in the email title 

OH: time TBD
4

https://kexinrong.github.io/sp24-cs4440/
https://piazza.com/gatech/spring2024/cs4440a


Course materials
● Textbooks: 

○ Database Systems: The Complete 
Book (2nd edition)

○ Fundamentals of Database Systems

○ Can use interchangeably

● Both books have international 
versions and have PDFs 
searchable online

5



Course Learning Objectives
Learn about advanced and emerging database technologies 
beyond what is covered in CS4400 and get hands on experience 
with building database applications. 

Four ways to learn: 
• Through lectures on database fundamentals 
• Through surveying technologies in the wild 
• Through reading research papers
• Through an implementation-oriented course project

6



Grading
Assignments – 40%

• Combination of individual and group assignments 
Course Project – 30%
Exams and Quizzes – 25%

• Take-home Midterm – 20%
• Quiz – 5%

Attendance and Participation -  5% 

7
Details: https://kexinrong.github.io/sp24-cs4440/grading/

https://kexinrong.github.io/sp24-cs4440/grading/


Assignments Overview 
Technology review and presentation 
• Assignment 1 (Technology Review) due Jan 24

Research paper review and presentation 
• After midterm 

Course Project 
• Assignment 2 (Proposal Draft) due Feb 7
• Final project demo 

8



Course Project
• Groups of 4 
• Implementation-oriented 
• Need to use some database systems 
• Examples of past projects can be found on Canvas 
• Files -> Sample Projects 

9



Course Policy - IMPORTANT
Follow the Georgia Tech Honor Code!

Late policy: One automatic late day without penalty. Otherwise 
10% deduction per 24 hours.

Generative AI policy: Clearly attribute AI-generated contents (e.g., 
direct quotes, different color text). No more than 10% AI-generated 
contents in submissions.  

10
Details: https://kexinrong.github.io/sp24-cs4440/policy/

https://kexinrong.github.io/sp24-cs4440/policy/


Course outline (tentative)
What we are not covering:
● Relational model
● SQL 
● Relational algebra

What we will discuss:
● ER model
● Design theory
● Secondary storage
● Indexing
● Query optimization
● Transactions (concurrency, recovery)
● MapReduce, NewSQL
● Selected emerging technologies

11

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Schema design



A brief history of 
databases

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU 12

What Goes Around Comes Around.
Readings in DB Systems. 2006. 

https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf


Main takeaway: history repeats itself
Old database issues are still relevant today. 
• Many of the ideas in today’s database systems are not new.

Someone invents a ”SQL replacement” every decade. It then fails 
and/or SQL absorbs the key ideas into standards.
• The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL 

debate from the 1970s. 
• Spoiler: The relational model almost always wins. 

13Acknowledgement: Prof. Andy Pavlo, CMU



1960s - IDS
• Integrated Data Store 
• Developed internally at GE in the early 

1960s. 
• GE sold their computing division to 

Honeywell in 1969. 
• One of the first DBMSs: 
• Network data model. 
• Tuple-at-a-time queries.

14Acknowledgement: Prof. Andy Pavlo, CMU



1960s - CODASYL
• COBOL people got together and proposed 

a standard for how programs will access a 
database. Lead by Charles Bachman.
• Network data model. 
• Tuple-at-a-time queries.

• Bachman also worked at Culliane 
Database Systems in the 1970s to help 
build IDMS.

15Acknowledgement: Prof. Andy Pavlo, CMU
Bachman

Turing Award 1973

https://en.wikipedia.org/wiki/Charles_Bachman


Network data model - schema

16
Acknowledgement: Prof. Andy Pavlo, CMU



Network data model - instance

17Acknowledgement: Prof. Andy Pavlo, CMU



1960s – IBM IMS
• Information Management System 
• Early database system developed to keep track of purchase 

orders for Apollo moon mission. 
• Hierarchical data model. 
• Programmer-defined physical storage format. 
• Tuple-at-a-time queries.

18Acknowledgement: Prof. Andy Pavlo, CMU



Hierarchical Data Model

19Acknowledgement: Prof. Andy Pavlo, CMU

Schema Instance



1970s - Relational data model
• Ted Codd was a mathematician working at IBM 

Research. He saw developers spending their 
time rewriting IMS and CODASYL programs 
every time the database's schema or layout 
changed.

• Database abstraction to avoid this maintenance:
• Store database in simple data structures.
• Access data through set-at-a-time high-level 

language.
• Physical storage left up to implementation.

20

Codd

Turing Award 1981

Acknowledgement: Prof. Andy Pavlo, CMU



1970s - Relational data model
• Ted Codd was a mathematician working at 

IBM Research. He saw developers spending 
their time rewriting IMS and CODASYL 
programs every time the database's schema 
or layout changed.

• Database abstraction to avoid this 
maintenance:
• Store database in simple data structures.
• Access data through high-level language.
• Physical storage left up to implementation.

21

Bachman

Turing Award 1981

Acknowledgement: Prof. Andy Pavlo, CMU



Relational Data Model - schema

22Acknowledgement: Prof. Andy Pavlo, CMU



Relational Data Model - instance

23Acknowledgement: Prof. Andy Pavlo, CMU



1970s – Relational Model
• Early implementations of relational DBMS:
• Peterlee Relational Test Vehicle – IBM Research (UK) 
• System R–IBM Research 
• INGRES–U.C. Berkeley 
• Oracle–Larry Ellison

24
Gray Stonebraker Ellison

Turing Award 1998 Turing Award 2015

Acknowledgement: Prof. Andy Pavlo, CMU



1980s - Relational model
• The relational model wins. 
• IBM first releases SQL/DS in 1981.
• IBM then turns out DB2 in 1983. 
• “SEQUEL” becomes the standard (SQL). 

• Many new “enterprise” DBMSs but 
Oracle wins marketplace.

•  Stonebraker creates Postgres as an 
“object-relational” DBMS

25Acknowledgement: Prof. Andy Pavlo, CMU



1980s - Object-oriented databases
• Avoid “relational-object impedance mismatch” by tightly coupling 

objects and database. 

• Few of these original DBMSs from the 1980s still exist today but 
many of the technologies exist in other forms (JSON, XML)

26Acknowledgement: Prof. Andy Pavlo, CMU



Object-oriented Model

27Acknowledgement: Prof. Andy Pavlo, CMU



Object-oriented Model

28Acknowledgement: Prof. Andy Pavlo, CMU



1990s - Boring days
• No major advancements in database systems or application 

workloads. 
• Microsoft forks Sybase and creates SQL Server. 
• MySQL is written as a replacement for mSQL. 
• Postgres gets SQL support. 
• SQLite started in early 2000.

• Some DBMSs introduced pre-computed data cubes for faster 
analytics.

29Acknowledgement: Prof. Andy Pavlo, CMU

https://en.wikipedia.org/wiki/Data_cube


2000s - Internet boom
• All the big players were heavyweight and expensive. Open-

source databases were missing important features. 

• Many companies wrote their own custom middleware to 
scale out database across single-node DBMS instances.

30Acknowledgement: Prof. Andy Pavlo, CMU



2000s - Data warehouses
• Rise of the special purpose OLAP DBMSs. 
• Distributed / Shared-Nothing 
• Relational / SQL 
• Usually closed-source. 

• Significant performance benefits from using columnar data 
storage model.

31Acknowledgement: Prof. Andy Pavlo, CMU



2000s – MapReduce Systems
• Distributed programming and execution model for analyzing large 

data sets. 
• First proposed by Google (MapReduce). 
• Yahoo! created an open-source version (Hadoop). 
• Data model decided by user-written functions. 

• People (eventually) realized this was a bad idea and grafted SQL 
on top of MR. That was a bad idea too.

32Acknowledgement: Prof. Andy Pavlo, CMU



2000s - NoSQL Systems
• Focus on high-availability & high-scalability: 
• Schemaless (i.e., “Schema Last”) 
• Non-relational data models (document, key/value, etc) 
• No ACID transactions 
• Custom APIs instead of SQL 
• Usually open-source

33Acknowledgement: Prof. Andy Pavlo, CMU



2010s - NewSQL
• Provide same performance for OLTP workloads as NoSQL 

DBMSs without giving up ACID: 
• Relational / SQL 
• Distributed 

• Almost all the first group of systems failed
• Second wave of “distributed SQL” systems are (potentially) 

doing better

34Acknowledgement: Prof. Andy Pavlo, CMU



2010s - Cloud systems
• First database-as-a-service (DBaaS) offerings were 

"containerized" versions of existing DBMSs. 

• There are new DBMSs that are designed from scratch 
explicitly for running in a cloud environment.

35Acknowledgement: Prof. Andy Pavlo, CMU



2010s - Shared-disk engines
• Instead of writing a custom storage manager, the DBMS 

leverages distributed storage. 
• Scale execution layer independently of storage. 
• Favors log-structured approaches. 

• This is what most people think of when they talk about a 
data lake.

36Acknowledgement: Prof. Andy Pavlo, CMU



2010s - Graph systems
• Systems for storing and querying graph data. 
• Their main advantage over other data models is to provide a 

graph centric query API 
• Recent research (2023) demonstrated that is unclear whether there is any 

benefit to using a graph-centric execution engine and storage manager.

37Acknowledgement: Prof. Andy Pavlo, CMU

https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf


2010s - Timeseries systems
• Specialized systems that are designed to store timeseries / 

event data. 
• The design of these systems make deep assumptions about 

the distribution of data and workload query patterns.

38Acknowledgement: Prof. Andy Pavlo, CMU



2020s – Specialized Systems
• Embedded DBMSs
• Multi-Model DBMSs 
• Hardware Acceleration 
• Array / Matrix / Vector DBMSs

39



40



Final Thoughts
• The demarcation lines of DBMS categories will continue to blur 

over time as specialized systems expand the scope of their 
domains. 
• Every NoSQL DBMS (except for Redis) now supports SQL 

• The relational model and declarative query languages promote 
better data engineering.

41Acknowledgement: Prof. Andy Pavlo, CMU


