Emerging Database
lechnologies

L ecture 1
01/08/24

Agenda

Course logistics and overview

A brief history of datalbases
* 1960s — 2020s

The essentials

Instructor: Kexin Rong
« Office: Klaus 3322
« Email: krong@gatech.edu

TA: Hantian Zhang

* Email: hantian.zhang@gatech.edu

TA: Catherine Xie

» Email: catherinex@gatech.edu

mailto:hantian.zhang@gatech.edu
mailto:catherinex@gatech.edu

The essentials

Course website: https://kexinrong.github.io/sp24-cs4440/
schedule, assignments, and course material

Canvas: submitting assignments

Pilazza: discussing course contents and finding teammates
 https://piazza.com/gatech/spring2024/cs4440a

Email: special requests; mention CS4440 in the email title

OH: time TBD

https://kexinrong.github.io/sp24-cs4440/
https://piazza.com/gatech/spring2024/cs4440a

Course materials

o lextbooks:

- Database Systems: The Complete

Book (2nd edition)
DATABASE

> Fundamentals of Database Systems =& SYSLEMS
b COMPLETE

- Can use interchangeably o EEES

o Both books have international

versions and have PDFs e

searchable online ‘s

FNA’\?ATHE';, G\

¢ 1

Course Learning Objectives

Learn about advanced and emerging database technologies
beyond what is covered in CS4400 and get hands on experience
with building database applications.

4

Four ways to learn:

* Through lectures on database fundamentals Q

* Through surveying technologies in the wild

* Through reading research papers

* Through an implementation-oriented course project

Grading

Assignments — 40%
« Combination of individual and group assignments
Course Project — 30%

Exams and Quizzes — 25%
* Take-home Midterm — 20%
e Quiz-5%

Attendance and Participation - 5%

Details: https://kexinrong.github.io/sp24-cs4440/grading/

https://kexinrong.github.io/sp24-cs4440/grading/

Assignments Overview

Technology review and presentation
« Assignment 1 (Technology Review) due Jan 24

Research paper review and presentation
o After midterm

Course Project

« Assignment 2 (Proposal Draft) due Feb 7
 Final project demo

Course Project

» Groups of 4
* Implementation-oriented
* Need to use some datalbase systems

» Examples of past projects can be found on Canvas
 Files -> Sample Projects

Course Policy - IMPORTANT

Follow the Georgia Tech Honor Code!

Late policy: One automatic late day without penalty. Otherwise
10% deduction per 24 hours.

Generative Al policy: Clearly attribute Al-generated contents (e.g.,
direct quotes, different color text). No more than 10% Al-generated
contents in submissions.

Details: https://kexinrong.github.io/sp24-cs4440/policy/

https://kexinrong.github.io/sp24-cs4440/policy/

Course outline (tentative)

What we are not covering:

What we will discuss:

R e | at I O ﬂ al m O d e | L
SQL | SQL query
Relational algebra |

[Parse Query }

ER m0d6| [Select logical query plan 1
DeSIgn theory — i;___:
Secorjdary storage . [Select physical plan }
Indexing | I

Query optlmlzatlon \ [Query execution }
Transactions (concurrency, recovery)_ §

MapReduce, NewSQL
Selected emerging technologies m

A brief history of
databases

What Goes Around Comes Around.

Readings in DB Systems. 2006.

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

12

https://people.cs.umass.edu/~yanlei/courses/CS691LL-f06/papers/SH05.pdf

Main takeaway: history repeats itself

Old database issues are still relevant today.
« Many of the ideas in today’s database systems are not new.

Someone invents a "SQL replacement” every decade. It then fails
and/or SQL absorbs the key ideas into standards.

* The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.
» Spoiler: The relational model almost always wins.

1960s - IDS

* Integrated Data Store

» Developed internally at GE in the early
1960s.

» GE sold their computing division to
Honeywell in 1969.

* One of the first DBMSs:

* Network data model.
 Tuple-at-a-time queries.

Honeywell

14

1960s - CODASYL -

’ o Turing Award 1973

« COBOL people got together and proposed
a standard for how programs will access a
database. Lead by Charles Bachman.

« Network data model.
 Tuple-at-a-time queries.

 Bachman also worked at Culliane
Database Systems in the 1970s to help
build IDMS.

Bachman

15

https://en.wikipedia.org/wiki/Charles_Bachman

Network data model - schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
L SUPPLIES J [SUPPLIED BY J
SUPPLY

(qty, price)

Acknowledgement: Prof. Andy Pavlo, CMU

16

SUPPLIER

Sno sname scity sstate
1001 |Dirty Rick New York |NY
1002 [Squirrels Boston MA
SUPPLIES

parent

child

| qty
10

Network data model - instance

SUPPLY

PART

pno

pname

psize

999

Batteries

Large

SURPLIED_BY

pargnt

child

price

$100

14

$99

T

17

1960s - IBM IMS

e Information Management System

» Early database system developed to keep track of purchase
orders for Apollo moon mission.
 Hierarchical data model.
* Programmer-defined physical storage format.
 Tuple-at-a-time queries.

Hierarchical Data Model

Schema Instance
4 N sno sSname scity sstate |[parts
SUPPLIER 1001 |[Dirty Rick New York [NY
(sno, sname, scity, sstate) Squirrels Boston MA
g J
pname
s N Batteries
PART
(pno, pname, psize, qty, price) pno [pname psize qty price

999 Batteries |[Large 14 $99

19

1970s - Relational data moaqel -
‘@ Turing Award 1981
» Ted Codd was a mathematician working at IBM 7.

Research. He saw developers spending their
time rewriting IMS and CODASYL programs
every time the database’'s schema or layout
changed.

* Database abstraction to avoid this maintenance: = i &
- Store database in simple data structures. 4 O P
. .) R
« Access data through set-at-a-time high-level N ;"‘
language. .
£

* Physical storage left up to implementation.

20

g LATIONS
AND CONSISTENCY OF RE
wighd ATA BANKS

DERIVABILITY, ;ﬁg;ED IN LARGE D

ata

£. F. Codd

Research Div"1510nia
San Jose, Californ

jan Wo
DPErS
ODAS

will
data banks of the TUErE M tin
ated Ze rees in stored Ore8undaﬂt-
A % relations to be I type may be
f store discussed. One ty st
d and_ in kinds of inform dancy
riah - type of redun
en either hould know

integr
: The]_argé, 1nA -
ABSTRACTmany relations of 1 .
contaln 1 for this se

ua fine
ok He MBS dimdancy arebiiity Gt ce

f 1 -
Two_types oF accessi Wh !
improve mand. bank s
employed ton t% be in great decontrol of the dﬁa ical" aSe
which happe ponSible for cting any -8 Consistency

es
ists, those T
Sbout it and have s

i istencies in ;
1ﬂcziiig might be helpﬁgiges
Coisibly fraudulent) ¢

p

, 1969
R) 599(# 12343) August 19

dete g
means of e
Stzgan unauthorized (and

bank contents.

ome £
otal set OT

the n tracking

in the data

this

ruct

i for

submitted et

o DEZ:earch Report foa'i;er%
et the intended publi

ICE - ThiS Tepor it

d has been issue

D DISTRIBUTION NOT

TE sy to £ ide
;ﬁﬁiication elsiwzizeczEtents- As iiio:§§Zrythe date of outsl
: ination 0 istributed un N
dissemination dely distribu Ea

should not be wi

| post Office Box 218,
publication.

ch Center,
Watson Research

F r e YO womas J-
S

Copies ma be reque ted f 1BM t]

Yorktown yHElg ts, New York 10593

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal repr ion). pting service which supplies
such information is not o satisfactory solution, Activities of users
at terminals and most application programs should remain
ion of data is ch ged

needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information,

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Secti 1, inadequacies of these model
are discussed. A model based on n-ary relations, a normal
form for data base relat; i

and pplied to the probl of redund.
in the user's model,

KEY WORDS AND PHRASES: date bonk, dota base, dota structure, data
ization, hi ies of data, networks of data, relations, deri bility,

" foin, retrieval language, pred

y and i y

d

tl i 4
cakeulus, security, date integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4,29

1. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs (1], the principal application of relations to data,
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of datq
7 —the independence of application programs

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-

inferential systems. It provides a means of describing data

purposes. Accordingly, it provides a basis for g high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “‘connection trap”),

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical

cited in various parts of this paper., Implementations of
systems to support the relational model are not discussed.

1.2. Dara DereNpENCIES 1N PRESENT SysTrms

The provision of data description tables in recently de-
velop i J
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristies of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristics which can be changed

users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another,

L21. Ordering Dependence. Elements of data in g
data bank may be stored in a variety of Ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determineq ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

Relational

N

SUPPLIER

(sno, sname, scity, sstate)

Data Model - schema

J N

PART

(pno, pname, psize)

N\

SUPPLY

(sno, pno, qty, price)

22

Relational

Data Model - instance

SUPPLIER PART
sno shame scity sstate pno pname psize
1001 |Dirty Rick New York |NY 999 Batteries |Large
1002 |Squirrels Boston MA

SUPPLY

sno |[pno qty price

1001 |999 10 $100

1002 |999 $99

23

1970s — Relational Model

» Early implementations of relational DBMS:

 Peterlee Relational Test Vehicle — IBM Research (UK)
» System R-IBM Research

* INGRES-U.C. Berkeley

 Oracle—-Larry Ellison

Turing Award 1998 :
Gray Stonebraker Ellison

1980s - Relational model

* The relational model wins.

* |IBM first releases SQL/DS in 1981.
* |IBM then turns out DB2 in 1983.

« “SEQUEL” becomes the standard (SQL). Informix

S SYBASE
INGR=S

* Many new “enterprise” DBMSs but
Oracle wins marketplace.

« Stonebraker creates Postgres as an
“object-relational” DBMS

ORACLE
/{jTANDEM

InterBase’

25

1980s - Object-oriented databases

* Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

» Few of these original DBMSs from the 1980s still exist today but
many of the technologies exist in other forms (JSON, XML)

\/ERSAN T 0 b] e CtStO €. ™ MarkLo g1c’

26

Object-oriented Model

Application Code

int id;

class Student {

String name;
String email;
String phonel[];

Relational Schema

STUDENT

(id, name, email)

|

id name email
1001 M.O.P. ante@up.com
sid phone

STUDENT_PHONE
(sid, phone)

1001 AAA=A44=4444

1001 555-555-5555

27

Object-oriented Model

Application Code
class Student { Student
int i(’; {
String name; id": 1001,
String email,; ’ "name”: "M.0.P.",
] email": "ante@up.com",
String phone[]; phone": [

¥ “444-444-44447

“555-555-5555"
]

}

28

1990s - Boring days

 No major advancements in database systems or application
workloads.
* Microsoft forks Sybase and creates SQL Server.
« MySQL is written as a replacement for mSQL.
« Postgres gets SQL support.
« SQLite started in early 2000.

« Some DBMSs introduced pre-computed data cubes for faster
analytics.

PostgreSQL

i Sorver MuSOL

SQLite

29

https://en.wikipedia.org/wiki/Data_cube

2000s - Internet boom

* All the big players were heavyweight and expensive. Open-
source databases were missing important features.

* Many companies wrote their own custom middleware to
scale out database across single-node DBMS instances.

2000s - Data warehouses

* Rise of the special purpose OLAP DBMSs.
« Distributed / Shared-Nothing
 Relational / SQL
« Usually closed-source.

« Significant performance benefits from using columnar data
storage model.

N)NETEZZA PARACCEI. moneta’b’

Greenplum DATAllegro \/": RTIO\I

31

2000s — MapReduce Systems

* Distributed programming and execution model for analyzing large
data sets.
* First proposed by Google (MapReduce).
» Yahoo! created an open-source version (Hadoop).
« Data model decided by user-written functions.

» People (eventually) realized this was a bad idea and grafted SQL
on top of MR. That was a bad idea too.

2000s - NoSQL Systems

* Focus on high-availability & high-scalability:
« Schemaless (i.e., “Schema Last”)
* Non-relational data models (document, key/value, etc)
* No ACID transactions
» Custom APlIs instead of SQL
« Usually open-source

HEFSE o jamaon .éxlongoDB -, O
: RethinkDB -~ | ‘ol

— Q Couchbase &QHGOA CouchDB
cassandra wrla k \} NDB

33

2010s - NewSQL

* Provide same performance for OLTP workloads as NoSQL
DBMSs without giving up ACID:
 Relational / SQL
« Distributed

* Almost all the first group of systems failed

« Second wave of “distributed SQL” systems are (potentially)
doing better

= GenieDB i1 S4 arot [7]-Store Clustrix QDB

¢ CockroachDB
@ £ ScaleArc JrRans[atrice VOUT DB ==-=FOUNDATIONDE £

sy
Eode}?utures w Comdb2

YugaByte

Google

Spanner A\ MEMSQL |
? NUO ScaleBase

34

2010s - Cloud systems

* First database-as-a-service (DBaaS) offerings were
"containerized" versions of existing DBMSs.

 There are new DBMSs that are designed from scratch
explicitly for running in a cloud environment.

xeround Google
Ragg?ﬁﬁ:? The Cloud Database S pa n n e r

o

Jdb
. X snowflake

Dice y F/\ U N /\ Day'ngnzggns ALIrora

Amazon + @

(<]
a" Microsoft

35

2010s - Shared-disk engines

* Instead of writing a custom storage manager, the DBMS
leverages distributed storage.
« Scale execution layer independently of storage.
» Favors log-structured approaches.

* This Is what most people think of when they talk about a
data lake.

cloudera iy
apacke =) druid e oo\ floke | IMPALA ‘?pani

DRILL AR L aaracke

presto = [amazen % SParK

B Microsoft

36

2010s - Graph systems

« Systems for storing and querying graph data.

 Their main advantage over other data models is to provide a

graph centric query AP

» Recent research (2023) demonstrated that is unclear whether there is any
benefit to using a graph-centric execution engine and storage manager.

. X e AN 1

@ - “b Tige(Graph ;\: NebulaGraph ::0"'4 RIS
@yneoy) | A MEM et
@ (:7“ JanusGraph S IR

©) o Dgraph _ R S

grisphbaseal yerminusDB @ IndraDB GIRAPH

37

https://www.cidrdb.org/cidr2023/papers/p66-wolde.pdf

2010s - Timeseries systems

« Specialized systems that are designed to store timeseries /
event data.

* The design of these systems make deep assumptions about
the distribution of data and workload query patterns.

@ M3 & TIMESCALE @ inﬂuxdb

(© GreptimeDB SMEI%ITC?RIA _ ClickHouse @ g

:CMU-DB

«

38

2020s — Specialized Systems

 Embedded DBMSs
 Multi-Model DBMSs

 Hardware Acceleration
* Array / Matrix / Vector DBMSs

SORERAM Microsoft*

R F e i
."Vf,‘.ﬂ‘» - _ ;;\ s LB [P\ A r@ !
. _' Y ' \8/ N 1

=

p—

Poiet/Base
Blockcham DBMSs

214bh.3 BE C : RAPH

CORNER ~ Jferie \
R,% cfware Accelerat|on AFERENT)

IS)
R Tt M ¢ > F/rsfSQl %t

cuor

FTTSSDB. %5'
‘ﬁf'ﬁ”:' "Tﬁiiiiiihdl:i ' A{A é&‘?.
2t InstantDB)C: ’;d h = j '

S ; i‘ =_Cabinet s

'
——' P X . |

dion =Sy A\ MEMSQ

evafor?

ORACT &8dr

4

Final Thoughts

* The demarcation lines of DBMS categories will continue to blur
over time as specialized systems expand the scope of their
domains.

« Every NoSQL DBMS (except for Redis) now supports SQL

* The relational model and declarative query languages promote
better data engineering.

