
Rehashing Kernel Evaluation in High Dimensions

Paris Siminelakis * 1 Kexin Rong * 1 Peter Bailis 1 Moses Charikar 1 Philip Levis 1

Abstract
Kernel methods are effective but do not scale well
to large scale data, especially in high dimensions
where the geometric data structures used to accel-
erate kernel evaluation suffer from the curse of
dimensionality. Recent theoretical advances have
proposed fast kernel evaluation algorithms lever-
aging hashing techniques with worst-case asymp-
totic improvements. However, these advances are
largely confined to the theoretical realm due to
concerns such as super-linear preprocessing time
and diminishing gains in non-worst case datasets.
In this paper, we close the gap between theory and
practice by addressing these challenges via prov-
able and practical procedures for adaptive sample
size selection, preprocessing time reduction, and
refined variance bounds that quantify the data-
dependent performance of random sampling and
hashing-based kernel evaluation methods. Our
experiments show that these new tools offer up to
10× improvement in evaluation time on a range
of synthetic and real-world datasets.

1. Introduction
Kernel methods are a class of non-parametric methods used
for a variety of tasks including density estimation, regres-
sion, clustering and distribution testing (Muandet et al.,
2017). They have a long and influential history in statisti-
cal learning (Schölkopf et al., 2002) and scientific comput-
ing (Buhmann, 2003). However, the scalability challenges
during both training and inference limit their applicability to
large scale high-dimensional datasets: a larger training set
improves accuracy but incurs a quadratic increase in overall
evaluation time.

In this paper, we focus on the problem of fast approxi-
mate evaluation of the Kernel Density Estimate. Given

*Equal contribution 1Stanford University, Stanford,
California, US. Correspondence to: Paris Siminelakis
<psimin@stanford.edu>, Kexin Rong <krong@stanford.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(a) kernel (b) difficult case (c) simple case

Figure 1. (a) For radially decreasing kernels (e.g. Gaussian), points
close to the query have higher kernel values than those that are far.
(b) Random sampling does not perform well when a small number
of close points contribute significantly to the query density. (c)
Random sampling performs well when most points have similar
kernel values (distance from query).

a dataset P = {x1, . . . , xn} ⊂ Rd, a kernel function
k : Rd×Rd → [0, 1], and a vector of (non-negative) weights
u ∈ Rn, the weighted Kernel Density Estimate (KDE)
at q ∈ Rd is given by KDEuP (q) :=

∑n
i=1 uik(q, xi).

Our goal is to, after some preprocessing, efficiently esti-
mate the KDE at a query point with (1± ε) multiplicative
accuracy under a small failure probability δ. This prob-
lem is well-studied (Greengard & Rokhlin, 1987; Gray &
Moore, 2003; March et al., 2015), but in high dimensions
only recently novel importance sampling algorithms, called
Hashing-Based-Estimators (HBE), demonstrate provable
improvements over random sampling (RS) under worst-case
assumptions (Charikar & Siminelakis, 2017).

HBE at its core uses a hash function h (randomized space
partition) to construct for any q an unbiased estimator of
µ := KDEuP (q)1. (Charikar & Siminelakis, 2017) showed
that given a hash function with evaluation time T and colli-
sion probability P[h(x) = h(y)] = Θ(

√
k(x, y)), one can

get a (1± ε) approximation to µ ≥ τ in time Õ(T/ε2
√
µ)

and space Õ(n/ε2
√
τ), improving over random sampling

that requires time O(1/ε2µ) in the worst case.

HBE improves upon RS by being able to better sample
points with larger weights (kernel values). In particular,
RS does not perform well (Figure 1(b)) when a significant
portion of the density comes from a few points with large
weights (close to the query). HBE samples uniformly from
a set of biased samples (hash buckets where the query is
mapped to) that has a higher probability of containing high-

1The value µ ∈ (0, 1] can be seen as a margin for the decision
surface

∑n
i=1 uik(q, xi) ≥ 0.

Rehashing Kernel Evaluation in High Dimensions

weight points. For radially decreasing kernels (Figure 1(a)),
the biased sample can be produced via Locality Sensitive
Hashing (LSH) (Indyk & Motwani, 1998). To obtain m
such biased samples for estimating the query density, the
scheme requires building m independent hash tables on the
entire dataset. The runtime mentioned above is achieved
by setting m = O(1/ε2

√
µ). In practice, one cares about

values of µ ≥ 1/
√
n, which is a lower bound on the order

of statistical fluctuations when P consists of n i.i.d samples
from some smooth distribution (Sriperumbudur et al., 2016).

Limitations. Despite progress on the worst case query
time, the idea of using hashing for kernel evaluation, in-
troduced independently in (Spring & Shrivastava, 2017)
and (Charikar & Siminelakis, 2017), has largely been con-
fined to the theoretical realm due to a few practical concerns.
First, straightforward implementations of the proposed ap-
proach require a large amount (e.g. Õ(n

5
4) for τ = 1/

√
n)

of preprocessing time and memory to create the requisite
number of hash tables. Second, RS can outperform HBE
on certain datasets (Figure 1(c)), a fact that is not captured
by the worst-case theoretical bounds. Third, to implement
this approach (Charikar & Siminelakis, 2017) use an adap-
tive procedure to estimate the sufficient sample size m. For
this procedure to work, the estimators need to satisfy some
uniform polynomial decay of the variance as a function of
µ, that for the popular Gaussian kernel, only the hashing
scheme of (Andoni & Indyk, 2006) (with an significant
exp(O(log

2
3 n)) runtime and memory overhead per hash ta-

ble) was shown to satisfy. These issues call the applicability
of HBE into question and to the best of our knowledge, the
method has not been shown before to empirically improve
upon competing methods.

1.1. Contributions

In this paper, we close the gap between theory and practice
by making the following contributions:

1. Overhead reduction via sketching. HBE requires
super-linear preprocessing time and memory, a result of
having to hash the entire dataset once for each sample.
To reduce this overhead, we develop new theoretical
results on sketching the KDE by a weighted subset of
points using hashing and non-uniform sampling (Sec-
tion 6). Our Hashing-Based-Sketch (HBS) is able to
better sample sparse regions of space, while still hav-
ing variance close to that of a random sketch, leading
to better performance on low-density points. Applying
HBE on top of the sketch results in considerable gains
while maintaining accuracy.

2. Data-dependent diagnostics. Despite worst-case the-
oretical guarantees, RS outperforms HBE on certain
datasets in practice. To quantify this phenomenon, we
introduce an inequality that bounds the variance of un-

biased estimators that include HBE and RS (Section
4). We propose a diagnostic procedure utilizing the
variance bounds that, for a given dataset, chooses at
runtime with minimal overhead the better of the two
approaches, and does so without invoking HBE; our
evaluation shows that the procedure is both accurate
and efficient. The new variance bound also allows us
to simplify and recover theoretical results of (Charikar
& Siminelakis, 2017).

3. A practical algorithm for the Gaussian kernel. We
design a simplified version of the adaptive procedure
of (Charikar & Siminelakis, 2017), that estimates the
sufficient sample size m in parallel with estimating
the density µ, and provide an improved analysis that
results in an order of magnitude speedup in the query
time (Section 5). More importantly, our new analysis
shows that slightly weaker conditions (non-uniform
but bounded polynomial decay) on the variance of
the estimators are sufficient for the procedure to work.
By proving that HBE based on the hashing scheme
of (Datar et al., 2004) satisfy the condition, we give
the first practical algorithm that provably improves
upon RS for the Gaussian kernel in high dimensions.
Previously, it was not known how to use this hashing
scheme within an adaptive procedure for this purpose.

We perform extensive experimental evaluations of our meth-
ods on a variety of synthetic benchmarks as well as real-
world datasets. Together, our evaluation against other state-
of-the-art competing methods on kernel evaluation shows:

• HBE outperforms all competing methods for synthetic
“worst-case” instances with multi-scale structure and di-
mensions d ≥ 10, as well as for “structured” instances
with a moderate number of clusters (Section 7.1).

• For real-world datasets, HBE is always competitive
with alternative methods and is faster for many datasets
by up to ×10 over the next best method (Section 7.2).

In summary, our theoretical and experimental results con-
stitute an important step toward making Hashing-Based-
Estimators practical and in turn improving the scalability of
kernel evaluation in large high-dimensional data sets.

2. Related Work
Fast Multipole Methods and Dual Tree Algorithms. His-
torically, the problem of KDE evaluation was first stud-
ied in low dimensions (d ≤ 3) in the scientific computing
literature, resulting in the Fast Multipole Method (FMM)
(Greengard & Rokhlin, 1987). This influential line of work
is based on a hierarchical spatial decomposition and runs in
Õ(2d) time per evaluation point. Motivated by applications
in statistical learning (Gray & Moore, 2001), the problem
was revisited in 2000’s and analogs of the Fast Multipole

Rehashing Kernel Evaluation in High Dimensions

Method (Gray & Moore, 2003), known as Dual Tree Al-
gorithms (Lee et al., 2006), were proposed that aimed to
capture latent underlying low-dimensional structure (Ram
et al., 2009). Unfortunately, when such low-dimensional
structure is absent, these methods, in general, have near-
linear O(n1−o(1)) runtime. Thus, under general assump-
tions, the only method that was known (Lee & Gray, 2009)
to provably accelerate kernel evaluation in high dimensions
was simple uniform random sampling (RS).

Hashing-Based-Estimators. The framework of HBE has
recently been extended to apply to more general ker-
nels (Charikar & Siminelakis, 2018) and hashing-based
ideas have been used to design faster algorithms for
“smooth” kernels (Backurs et al., 2018). Besides kernel eval-
uation, researchers have also applied hashing techniques
to get practical improvements in outlier detection (Luo &
Shrivastava, 2018a), gradient estimation (Chen et al., 2018),
non-parametric clustering (Luo & Shrivastava, 2018b) and
range-counting (Wu et al., 2018).

Approximate Skeletonization. ASKIT (March et al.,
2015) represents a different line of work aimed at addressing
the deficiencies of FMM and Dual-Tree methods. ASKIT
also produces a hierarchical partition of points, but then uses
linear algebraic techniques to approximate the contribution
of points to each part via a combination of uniform samples
and nearest neighbors. This makes the method robust to the
dimension and mostly dependent on the number of points.

Core-sets. The problem of sketching the KDE for all
points has been studied under the name of Core-sets or
ε-samples (Phillips, 2013). The methods are very effective
in low dimensions (Zheng et al., 2013) d ≤ 3, but become
impractical to implement in higher dimensions for large
data-sets due to their computational requirements Ω(n2)
(e.g. (Chen et al., 2010)). The recent paper (Phillips & Tai,
2018) presents an up-to-date summary.

3. Preliminaries
In this section, we present basic definitions and give a self
contained presentation of Hashing-Based-Estimators that
summarizes the parts of (Charikar & Siminelakis, 2017)
upon which we build. All material beyond Section 3 is new.

Notation. For a set S ⊂ [n] and numbers u1, . . . , un, let
uS :=

∑
i∈S ui. Let ∆n := {u ∈ Rn+ : ‖u‖1 = 1}

denote the n-dimensional simplex. Throughout the paper we
assume that we want to approximate KDEuP with u ∈ ∆n.
We can handle the general case u ∈ Rd by treating the
positive and negative part of u separately.

Kernels. All our theoretical results, unless explicitly stated,
apply to general non-negative kernels. For concreteness and
in our experiments, we focus on the Gaussian exp(−‖x−

y‖2/σ2) and Laplace kernels exp(−‖x − y‖/σ) (Belkin
et al., 2018), and typically suppress the dependence on the
bandwidth σ > 0 (equivalently, we can rescale our points).

3.1. Multiplicative Approximation & Relative Variance

Definition 1. A random variable Ẑ is called an (ε, δ)-
approximation to µ if P[|Ẑ − µ| ≥ εµ] ≤ δ.

Given access to an unbiased estimator E[Z] = µ, our goal
is to output an (ε, δ)-approximation to µ. Towards that end
the main quantity to control is the relative variance.

Definition 2. For a non-negative random variable Z we de-
fine the relative variance as RelVar[Z] := Var[Z]

E[Z]2 ≤
E[Z2]
E[Z]2 .

The relative variance captures the fluctuations of the random
variable at the scale of the expectation. This is made precise
in the following lemma that combines Chebyshev’s and
Paley-Zygmund inequality.

Lemma 1. For a non-negative random variable Z and
parameters t > 0, θ ∈ [0, 1], we have:

P[Z ≥ (t+ 1) · E[Z]] ≤ 1

t2
· RelVar[Z], (1)

P[Z > (1− θ)E[Z]] ≥ 1

1 + 1
θ2 · RelVar[Z]

. (2)

As RelVar[Z] decreases, the upper bound in (1) decreases
while the lower bound in (2) increases, increasing our
overall confidence of Z being an accurate estimate of the
mean. Thus, if one can construct a random variable Z with
E[Z] = µ and small relative variance RelVar[Z] = O(ε2),
Lemma 1 shows that Z is an (ε, O(1))-approximation to µ.
In fact, by Chernoff bounds, one can use the median-trick to
boost the probability of success (Supplementary material).

3.2. Hashing-Based-Estimators

HBE uses hashing to create a data-structure that, after some
preprocessing, can produce unbiased estimators for the KDE
at query time (Figure 2) with low variance. LetH be a set
of functions and ν a distribution over H. We denote by
h ∼ Hν a random function h ∈ H sampled from ν and
refer toHν as a hashing scheme.

Definition 3. Given a hashing scheme Hν , we define the
collision probability between two elements x, y ∈ Rd as
p(x, y) := Ph∼Hν [h(x) = h(y)].

Pre-processing: given dataset P and hashing schemeHν :

• Sample m hash functions ht
i.i.d.∼ Hν for t ∈ [m].

• Create hash tables Ht := ht(P) for t ∈ [m] by evalu-
ating the hash functions on P .

Rehashing Kernel Evaluation in High Dimensions

Figure 2. Given a dataset, the HBE approach samples a number of
hash functions and populates a separate hash table for each hash
function. At query time, for each hash table, we sample a point at
random from the hash bucket that the query maps to.

The m hash tables allow us to produce at most m indepen-
dent samples to estimate the KDE for each query.

Query process: query q ∈ Rd, hash table index t ∈ [m]

• let Ht(q) := {i ∈ [n] : ht(xi) = ht(q)} denote the
hash bucket (potentially empty) that q maps to.

• If Ht(q) is not empty return Zht := k(Xt,q)
p(Xt,q)

uHt(q)
where Xt is sampled with probability proportional to
ui from Ht(q), otherwise return 0.

By averaging many samples produced by the hash tables
we get accurate estimates. The salient properties of the
estimators Zht are captured in the following lemma.

Lemma 2. Assuming that ∀i ∈ [n], p(xi, q) > 0 then

E[Zh] =

n∑
i=1

uik(x, xi), (3)

E[Z2
h] =

n∑
i,j=1

k2(q, xi)
uiP[i, j ∈ H(q)]uj

p2(q, xi)
. (4)

As we see in (4), the second moment depends on the hash-
ing scheme through the ratio P[i,j∈H(q)]

p2(q,xi)
. Thus, we hope

to reduce the variance by selecting the hashing scheme ap-
propriately. The difficulty lies in that the variance depends
on the positions of points in the whole dataset. (Charikar
& Siminelakis, 2017) introduced a property of HBE that
allowed them to obtain provable bounds on the variance.

Definition 4. Given a kernel k, a hashing scheme is
called (β,M)-scale-free for β ∈ [0, 1] and M ≥ 1 if:
1
M · k(x, y)β ≤ p(x, y) ≤M · k(x, y)β .

Thus, one needs to design hashing scheme that “adapts”
to the kernel function. Next, we present a specific family
of hashing schemes that can be used for kernel evaluation
under the Exponential and Gaussian kernel.

3.3. HBE via Euclidean LSH

In the context of solving Approximate Nearest Neighbor
search in Euclidean space, Datar et al. (Datar et al., 2004) in-
troduced the following hashing scheme, Euclidean LSH
(eLSH), that uses two parameters w > 0 (width) and
κ ≥ 1 (power). First, hash functions in the form of
hi(x) := d g

>
i x
w + bie map a d dimensional vector x into

a set of integers (“buckets”) by applying a random projec-
tion (gi

i.i.d.∼ N (0, Id)), a random shift (bi
i.i.d.∼ U [0, 1]))

and quantizing the result (width w > 0). A concatenation
(power) of κ such functions gives the final hash function.

They showed that the collision probability for two points
x, y ∈ Rd at distance ‖x− y‖ = c · w equals pκ1 (c) where

p1(c) := 1−2Φ(c−1)−
√

2

π
c

(
1− exp

{
−c
−2

2

})
. (5)

In order to evaluate the hashing scheme on a dataset P , one
needs space and pre-processing time O(dκ · n). By picking
w large enough, i.e. for small c, one can show the following
bounds on the collision probability.
Lemma 3 ((Charikar & Siminelakis, 2017)). For δ ≤ 1

2

and c ≤ min{δ, 1√
log(1

δ)
}: e−

√
2
π δ ≤ p1(c)

e
−
√

2
π
c
≤ e
√

2
π δ

3

.

Taking appropriate powers κ, one can then use Euclidean
LSH to create collision probabilities appropriate for the
Exponential and Gaussian kernel.
Theorem 1 ((Charikar & Siminelakis, 2017)). LetH1(w, κ)
denote the eLSH hashing scheme with width w and power
κ ≥ 1. Let R = max

x,y∈P∪{q}
{‖x− y‖}. Then for the

• Laplace kernel, setting κe = d
√

2π log(1
τ)Re and

we =
√

2
π

1
βκe results in (β,

√
e)-scale free hashing

scheme for k(x, y) = e−‖x−y‖2 .

• Gaussian kernel, setting rt := 1
2

√
t log(1 + γ),

κt := 3drtRe2, wt =
√

2
π
κt
rt

results in an estimator

for k(x, y) = e−‖x−y‖
2

with relative variance

RelVar[Zt] ≤ Vt(µ) := 4e
3
2

1

µ
e
r2t−rt

√
log(1

µ)
. (6)

4. Refined Variance bounds and Diagnostics
To understand how many samples are needed to estimate the
density through RS or HBE, we need bounds for expressions
of the type (4). In particular, for a sequence of numbers
w1, . . . , wn ∈ [0, 1], e.g. wi = k(q, xi), and u ∈ ∆n such
that µ =

∑
i∈[n] uiwi, we want to bound:

sup
u∈∆n,u>w=µ

∑
i,j∈[n]

w2
i (uiVijuj) (7)

Rehashing Kernel Evaluation in High Dimensions

where V ∈ Rn×n+ is a non-negative matrix. Our bound
will be decomposed into the contribution µ` from subset of
indices S` ⊆ [n] where the weights (kernel values) have
bounded range. Specifically, let µ ≤ λ ≤ L ≤ 1 and define:
S1 = {i ∈ [n] : L ≤ wi ≤ 1}, S2 = {i ∈ [n] \ S1 : λ ≤
wi ≤ L}, S3 = {i ∈ [n] \ (S2 ∪ S1) : µ ≤ wi ≤ λ}, S4 =
{i ∈ [n] : wi < µ} as well as µ` =

∑
i∈S` uiwi ≤ µ for

` ∈ [4]. The intuition behind the definition of the sets is that
for radial decreasing kernels, they correspond to spherical
annuli around the query.
Lemma 4. For non-negative weights w1, . . . , wn, vector
u ∈ ∆n and sets S1, . . . , S4 ⊆ [n] as above it holds∑
i,j∈[n]

w2
i {uiVijuj} ≤

∑
`∈[3],`′∈[3]

sup
i∈S`,
j∈S`′

{
Vijwi
wj

}
µ`µ`′

+ uS4

∑
`∈[3]

sup
i∈S`,
j∈S4

{
Vij

wi
µ

}
µ`µ

+ sup
i∈S4,j∈[n]

{Vijwi} · µ4 (8)

where uS :=
∑
j∈S uj ≤ 1.

This simple lemma allows us to get strong bounds for scale-
free hashing schemes simplifying results of (Charikar &
Siminelakis, 2017) and extended them to β < 1/2.
Theorem 2. LetHν be (β,M)-scale free hashing scheme
and Zh the corresponding HBE. Then RelVar[Zh] ≤
Vβ,M (µ) := 3M3/µmax{β,1−β}.

Proof. Letting wi = k(q, xi), we start from (4) and use
the fact that P[i, j ∈ H(q)] ≤ min{p(xi, q), p(xj , q)}
and that the hashing scheme is (β,M)-scale free, to
arrive at E[Z2

h] ≤
∑
i,j∈[n] w

2
i {uiVijuj} with Vij =

M3 min{wβi ,w
β
j }

w2β
i

. Let S1, . . . , S4 be sets defined for ` =

L = µ. Then S2 = S3 = ∅. By Lemma 4 we get

E[Z2
h] ≤M3(sup

i,j∈S1

{w
1−2β
i

w1−β
j

}µ2
1 + sup

i∈S4

{w1−β
i }µ4

+ uS4 sup
i∈S1,j∈S4

{w1−2β
i wβj }µ1)

≤M3(
1

µ1−β µ
2
1 + uS4

sup
i∈S1

{w
1−2β
i

µ1−β }µµ1 + µ1−βµ4)

≤M3(
1

µ1−β +
1

µmax{β,1−β} +
1

µβ
)µ2.

Noting that E[Zh] = µ and µ ≤ 1 concludes the proof.

Remark 1. It is easy to see that random sampling is a
(trivial) (0, 1)-scale free hashing scheme, hence the relative
variance is bounded by 3

µ .

Remark 2. For any (1
2 ,M)-scale free hashing scheme the

relative variance is bounded by 3M3
√
µ .

4.1. Diagnostics for unbiased estimators

The inequality provides means to quantify the dataset de-
pendent performance of RS and HBE: by setting the coeffi-
cients Vij appropriately, Lemma 4 bounds the variance of
RS (Vij = 1) and HBE (Vij =

min{p(q,xi),p(q,xj)}
p(q,xi)2

). How-
ever, evaluating the bound over the whole dataset is no
cheaper than evaluating the methods directly.

Instead, we evaluate the upper bound on a “representative
sample” S̃0 in place of [n] by using the sets S̃` = S̃0 ∩ S`
for ` ∈ [4]. Given a set S̃0 define the estimator µ̃` =∑
j∈S̃` ujwj . For ε ∈ (0, 1), let:

λε := arg max
µ̃0≤λ≤1

{
µ̃3 ≤

1

2
(εµ̃0 − µ̃4)

}
, (9)

Lε := arg min
µ̃0≤L≤1

{
µ̃1 ≤

1

2
(εµ̃0 − µ̃4)

}
. (10)

Since Lemma 4 holds for all µ ≤ λ ≤ L ≤ 1, Lε, λε
complete the definition of four sets on S̃0, which we use to
evaluate the upper bound. Finally, we produce a representa-
tive sample S̃0 by running our adaptive procedure (Section
5) with Random Sampling. The procedure returns a (ran-
dom) set S̃0 such that µ̃0 is an (ε, O(1))-approximation to
µ for any given query.

Algorithm 1 Data-dependent Diagnostic

1: Input: set P , threshold τ ∈ (0, 1), accuracy ε, T ≥ 1,
collision probability p(x, y) of the hashing schemeHν .

2: for t = 1, . . . , T do
3: q ← Random(P) . For each random query
4: (S̃0, µ̃0)← AMR(ZRS(q), ε, τ) . Algorithm 2
5: Set λε, Lε using (9) and (10)
6: VRS ← r.h.s of (8) for S̃0 and Vij = 1.
7: VH ← r.h.s of (8) for S̃0, Vij =

min{p(q,xi),p(q,xj)}
p(q,xi)2

.
8: rVRS(t)← VRS/max{µ̃0, τ}2
9: rVHBE(t)← VH/max{µ̃0, τ}2.

10: Output: (meanT (rVRS),meanT (rVHBE))

5. Adaptive estimation of the mean
Towards our goal of producing an (ε, O(1))-approximation
to µ for a given query q, the arguments in Section 3.1 reduce
this task to constructing an unbiased estimator Z of low-
relative variance RelVar[Z] ≤ ε2

6 . Given a basic estimator
Z0 and bound V (µ) on its relative variance, one can always
create such an estimator by taking the mean of O(V (µ)/ε2)
independent samples. The question that remains in order to
implement this approach is how to deal with the fact that µ
and thus V (µ) is unknown?

We handle this by providing an improvement to the adaptive
estimation procedure of (Charikar & Siminelakis, 2017).

Rehashing Kernel Evaluation in High Dimensions

The procedure makes a guess of the density and uses the
guess to set the number of samples. Subsequently, the proce-
dure performs a consistency check to evaluate whether the
guess was correct up to a small constant and if not, revises
the guess and increases the sample size. The procedure ap-
plies generically to the following class of estimators (whose
variance varies polynomially with µ) that we introduce.

5.1. (α, β, γ)-regular estimators

Definition 5. For α, β ∈ (0, 2] and γ ≥ 1, an estimator
Z is (α, β, γ)-regular if for some constant C ≥ 1 and all
t ∈ [T], there exist a random variable Zt and a function
Vt : (0, 1]→ R++ such that

(A) E[Zt] = µ and RelVar[Zt] ≤ Vt(µ), ∀µ ∈ (0, 1],

(B) 1 ≤ Vt(y)
Vt(x) ≤

(
x
y

)2−α
for all x ≥ y > 0,

(C) Vt(µt+1) ≤ Cµ−βt with µt := (1 + γ)−t.

We write Zt ∼ Z(t, γ) to denote a sample from such an
estimator at level t ∈ [T].

At a high level, regular estimators generalize properties of
scale-free estimators relevant to adaptively estimating the
mean. Property (B) affects the success probability whereas
(C) affects the running time and space requirements. This
level of generality will be necessary to analyze the hashing
scheme designed for the Gaussian kernel.

Regular Estimators via HBE. For any t ∈ [T], given a
collection of hash tables {H(i)

t }i∈[mt] created by evaluating
mt i.i.d hash functions with collision probability pt(x, y)
on a set P and a fixed kernel k(x, y), we will denote by

Z(t, γ)← HBEk,pt({H
(i)
t }i∈[mt]) (11)

a data structure at level t, that for any query q is able to
produce up to mt i.i.d unbiased random variables Z(i)

t (q)
for the density µ according to Section 3.2. The union of
such data structures for t ∈ [T] will be denoted by Z .

Before proceeding with the description of the estimation
procedure we show that (β,M)-scale free HBE (that include
random sampling) satisfy the above definition.

Theorem 3. Given a (β,M)-scale free hashing scheme
with β ≥ 1

2 , the corresponding estimator is (2 − β, β, γ)-
regular with constant C = 3M3(1 + γ)β .

The proof follows easily by Theorem 2 by using the same
estimator for all t ∈ [T] and Vt(µ) = V (µ) = 3M3

µβ
.

5.2. Adaptive Mean Relaxation

For regular estimators we propose the following procedure
(Algorithm 2). In the supplementary material we analyze

Algorithm 2 Adaptive Mean Relaxation (AMR)

1: Input: (a, β, γ)-regular estimator Z , accuracy ε ∈
(0, 1), threshold τ ∈ (0, 1).

2: T ← dlog1+γ(1
ετ)e+ 1

3: for t = 1, . . . , T do . For each level
4: µt ← (1 + γ)−t . Current guess of mean
5: mt ← d 6

ε2Vt(µt+1)e . sufficient samples in level t
6: Z

(i)
t ∼ Z(t, γ) i.i.d samples for i ∈ [mt].

7: Z̄t ← mean{Z(1)
t , . . . , Z

(mt)
t }

8: if Z̄t ≥ µt then . consistency check
9: return Z̄t

10: return 0 . In this case µ ≤ ετ

the probability that this procedure successfully estimates the
mean as well as the number of samples it uses and obtain
the following result.

Theorem 4. Given an (a, β, γ)-regular estimator Z , the
AMR procedure outputs a number Ẑ such that

P[|Ẑ − µ| ≤ ε ·max{µ, τ}] ≥ 2

3
−Oγ,α(ε2)

and with the same probability uses Oγ(1
ε2

1
µβ

) samples.

Using the bounds on the relative variance in Section 4, we
get that any (β ≥ 1/2,M)-scale free estimator can be used
to estimate the density µ using O(1/ε2µβ) samples.

5.3. Regular estimator for Gaussian Kernel

We show next show a construction of a HBE for Gaussian
kernel (Algorithm 3) that results in a regular estimator.

Algorithm 3 Gaussian HBE (Gauss-HBE)

1: Input: γ ≥ 1, τ ∈ (0, 1), ε ∈ (0, 1), dataset P .
2: T ← dlog1+γ(1

ετ)e+ 1, R←
√

log(1/ετ)
3: for t = 1, . . . , T do
4: mt ← d 6

ε2Vt((1 + γ)−(t+1))e . see (6)
5: for i = 1, . . . ,mt do
6: H

(i)
t ← eLSH(wt, κt, P) . see Theorem 3

7: pt(x, y) := pκt1 (‖x− y‖/wt) . see (5)
8: k(x, y) := e−‖x−y‖

2

9: ZGauss(t, γ)← HBEk,pt({H
(i)
t }i∈[mt])

10: Output: ZGauss

Theorem 5. ZGauss is (1, 3
4 , γ)-regular and takes prepro-

cessing time/space bounded by Od,κT ,γ(ε−3+ 1
4 τ−

3
4 · n).

The proof (given in the supplementary material) is based on
using (6) to show that Definition 5 is satisfied with appro-
priate selection of constants. We also note that (6) can be
derived using Lemma 4.

Rehashing Kernel Evaluation in High Dimensions

6. Sketching the Kernel Density Estimate
In this section, we introduce an approach based on hashing
to create a “sketch” of KDE that we can evaluate using HBE
or other methods.
Definition 6. Let (u, P) be a set of weights and points. We
call (w, S) an (ε, δ, τ)-sketch iff for any q ∈ Rd:

E[|KDEwS (q)−KDEuP (q)|2] ≤ ε2τδ ·KDEuP (q). (12)

Let µ = KDEuP (q), using Chebyshev’s inequality it is im-
mediate that any (ε, δ, τ)-sketch satisfies for any q ∈ Rd:
P[|KDEwS (q)− µ| ≥ εmax{τ, µ}] ≤ δ.
Remark 3. It is easy to see that one can construct such a
sketch by random sampling m ≥ 1

ε2δ
1
τ points.

Hashing-Based-Sketch (HBS). The scheme we propose
samples a random point by first sampling a hash bucket Hi

with probability ∝ uγHi and then sampling a point j from
the bucket with probability ∝ uj . The weights are chosen
such that the sample is an unbiased estimate of the density.
This scheme interpolates between uniform over buckets
and uniform over the whole data set as we vary γ ∈ [0, 1].
We pick γ∗ so that the variance is controlled and with the
additional property that any non-trivial bucket uHi ≥ τ will
have a representative in the sketch with some probability.
This last property is useful in estimating low-density points
(e.g. for outlier detection (Gan & Bailis, 2017)). For any
hash tableH and a vector u ∈ ∆n (simplex), letB = B(H)
denote the number of buckets and umax = umax(H) :=
max{uHi : i ∈ [B]} the maximum weight of any hash
bucket of H . The precise definition of our Hashing-Based-
Sketch is given in Algorithm 4.
Theorem 6. Let H be the hash function sampled by the
HBS procedure. For ε > 0 and δ ∈ [e−

6
ε2

umax
nτ , e−

6
ε2), let:

γ∗ =

{
1−

log(ε
2

6 log(1/δ))

log(umax

τ)

}I[B≤(1
2)

1
6 1
τ]

, (13)

m =
6

ε2
1

τ
(Bumax)

1−γ∗
<

log(1
δ)

τ
. (14)

Then (Sm, w) is an (ε, 1
6 , τ)-sketch and if B ≤

(
1
2

) 1
6 1
τ

any hash bucket with weight at least τ will have non empty
intersection with Sm with probability at least 1− δ.

7. Experiments
In this section, we evaluate the performance of hashing-
based methods on kernel evaluation on real and synthetic
datasets, as well as test the diagnostic procedure’s ability to
predict dataset-dependent estimator performance 2.

2Source code available at: http://github.com/
kexinrong/rehashing

Algorithm 4 Hashing-Based-Sketch (HBS)

1: Input: set P , sketch size m, hashing scheme Hν ,
threshold τ ∈ (0, 1), u ∈ ∆n

2: Sample h ∼ Hν and create hash table H = h(P).
3: Set γ according to (13)
4: Sm ← ∅, w ← 0 · 1m, B ← B(H)
5: for j = 1, . . . ,m do
6: Sample hash bucket Hi with probability ∝ uγHi
7: Sample a point Xj from Hi with probability ∝ uj
8: Sm ← Sm ∪ {Xj}

9: wj(γ,m)← uHi
m

∑B
i′=1

uγH
i′

uγHi

10: Output: (Sm, w)

7.1. Experimental Setup

Baselines and Evaluation Metrics. As baselines for
density estimation (using u = 1

n1), we compare
against ASKIT (March et al., 2016), a tree-based method
FigTree (Morariu et al., 2009), and random sampling (RS).
We used the open sourced libraries for FigTree and ASKIT;
for comparison, all implementations are in C++ and we re-
port results on a single core. We tune each set of parameters
via binary search to guarantee an average relative error of at
most 0.1. By default, the reported query time and relative
error are averaged over 10K random queries that we evalu-
ate exactly as ground truth. The majority of query densities
in evaluation are larger than τ = 10−4 (roughly 1

10
√
n

).

Synthetic Benchmarks. To evaluate algorithms under
generic scenarios, we need benchmarks with diverse struc-
ture. The variance bound suggests that having a large num-
ber of points far from the query is hard for HBE, whereas
having a few points close to the query is hard for RS. In
addition, the performance of space-partitioning methods
depends mostly on how clustered vs spread-out the datasets
are, with the latter being harder. A fair benchmark should
therefore include all above regimes.

We propose a procedure that generates a d-dimensional
dataset where for D random directions, clusters of points
are placed on s different distance scales, such that i) each
distance scale contributes equally to the kernel density at
the origin, ii) the outermost scale has n points per direction,
iii) the kernel density around the origin is approximately µ.
By picking D � n the instances become more random like,
while for D � n they become more clustered. Using this
procedure, we create two families of instances:

• “worst-case”: we take the union of two datasets gen-
erated for D = 10, n = 50K and D = 5K, n = 100
while keeping s = 4, µ = 10−3 fixed and varying d.

• D-structured: we set N = 500K, s = 4, µ = 10−3,
d = 100 and vary D while keeping nD = N .

http://github.com/kexinrong/rehashing
http://github.com/kexinrong/rehashing

Rehashing Kernel Evaluation in High Dimensions

Table 1. Comparison of preprocess time and average query time on real world datasets. Bold numbers correspond to the best result.
The sources of the datasets are: MSD (Bertin-Mahieux et al., 2011), GloVe (Pennington et al., 2014), SVHN (Netzer et al., 2011),
TMY3 (Hendron & Engebrecht, 2010), covtype (Blackard & Dean, 1999), TIMIT (Garofolo, 1993).

Preprocess Time (sec) Average Query Time (ms)

Dataset Description n d HBE FigTree ASKIT RS HBE FigTree ASKIT RS

TMY3 energy 1.8M 8 15 28 838 0 0.8 3.0 28.4 55.0
census census 2.5M 68 66 4841 1456 0 2.8 1039.9 103.7 27.5
covertype forest 581K 54 22 31 132 0 1.9 23.0 47.0 149.4
TIMIT speech 1M 440 298 1579 439 0 24.3 1531.8 169.8 32.8
ALOI image 108K 128 24 70 14 0 6.3 53.5 5.4 21.2
SVHN image 630K 3072 2184 > 105 877 0 67.9 > 104 43.0 370.1
MSD song 463K 90 55 2609 107 0 5.2 326.9 8.1 2.1
GloVe embedding 400K 100 98 5603 76 0 19.0 656.5 86.1 5.0

acoustic mnist susy hep higgs MSD GloVe TIMIT SVHN TMY3 ALOI census covertype home shuttle skin corel ijcnn sensorless poker cadata codrna

101

102

Va
ria

nc
e

Bo
un

d

RS better HBE betterRS
HBE

Figure 3. Predicted relative variance upper bound on real datasets. RS exhibits lower variance for datasets on the left. Overall, the
diagnostic procedure correctly predicts the performance all but one dataset (SVHN).

In the supplementary material we include a precise descrip-
tion of the procedure as well as example scatter plots.

7.2. Results

Synthetic datasets. We evaluate the four algorithms for
kernel density estimation on worst-case instances with
d ∈ [10, 500] and on D-structured instances with D ∈
[1, 100K]. For “worst-case” instances, while all methods
experience increased query time with increased dimension,
HBE consistently outperforms other methods for dimen-
sions ranging from 10 to 500 (Figure 4 left). For the D-
structured instances (Figure 4 right), FigTree and RS domi-
nate the two extremes where the dataset is highly “clustered”
D � n or “scattered” on a single scale D � n, while
HBE achieves the best performance for datasets in between.
ASKIT’s runtime is relatively unaffected by the number of
clusters but is outperformed by other methods.

10 50 100 200 500
dimensions

10−5

10−4

10−3

10−2

10−1

100

Av
g

Qu
er

y
Ti

m
e

(s
)

100 101 102 103 104 105

clusters

FigTree HBE RS

FigTree ASKIT RS HBE

Figure 4. Synthetic Experiment.

Real-world datasets. We repeat the above experiments on
eight large real-world datasets from various domains. We

z-normalize each dataset dimension, and tune bandwidth
based on Scott’s rule (Scott, 2015). We exclude a small per-
cent of queries whose density is below τ . Table 1 reports the
preprocessing time as well as average query time for each
method. Overall, HBE achieves the best average query time
on four datasets; we focus on query time since it dominates
the runtime given enough queries. With sketching, HBE
also exhibits comparable preprocessing overhead to FigTree
and ASKIT. While the performances of FigTree and ASKIT
degrades with the increased dimension and dataset size re-
spectively, HBE remains competitive across the board.

Diagnosis. To assess the accuracy of the diagnostic proce-
dure, we compare the predicted variance of RS and HBE
on an extended set of datasets. RS exhibits lower variances
(smaller error with the same number of samples) for datasets
on the left. Overall, our proposed diagnosis correctly iden-
tified the better estimator for all but one dataset. Notice
that although RS has better sampling efficiency on TIMIT,
HBE ends up having better query time since the frequent
cache misses induced by the large dataset dimension offset
the additional computation cost of HBE. For all datasets
in Table 1, the diagnosis costs between 8% to 59% of the
setup time of HBE, indicating that running the diagnosis is
cheaper than running even a single query with the HBE.

Supplementary material. We include an experimental
comparison between HBS and competing methods (Chen
et al., 2010; Cortes & Scott, 2017), where it is consistently
the best method for low density queries while having similar
performance for random queries. We also show how to use
the diagnostic procedure to produce dataset visualizations.

Rehashing Kernel Evaluation in High Dimensions

Acknowledgments
We thank Leslie Greengard for valuable conversations and
encouragement in earlier stages of this work. We also thank
Edward Gan, Daniel Kang, Sahaana Suri, and Kai-Sheng
Tai for feedback on an early draft of this paper. The first
author has been partially supported by an Onassis Foun-
dation Scholarship. This research was supported in part
by affiliate members and other supporters of the Stanford
DAWN project—Ant Financial, Facebook, Google, Intel,
Microsoft, NEC, SAP, Teradata, and VMware – as well as
Toyota Research Institute, Keysight Technologies, Northrop
Grumman, and Hitachi. We also acknowledge the support
of the Intel/NSF CPS Security under grant No. 1505728, the
Stanford Secure Internet of Things Project and its supporters
(VMware, Ford, NXP, Google), and the Stanford System X
Alliance.

References
Andoni, A. and Indyk, P. Near-optimal hashing algorithms

for approximate nearest neighbor in high dimensions. In
Foundations of Computer Science, 2006. FOCS’06. 47th
Annual IEEE Symposium on, pp. 459–468. IEEE, 2006.

Backurs, A., Charikar, M., Indyk, P., and Siminelakis, P.
Efficient Density Evaluation for Smooth Kernels. In
2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 615–626. IEEE, 2018.

Belkin, M., Ma, S., and Mandal, S. To understand deep
learning we need to understand kernel learning. arXiv
preprint arXiv:1802.01396, 2018.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere,
P. The million song dataset. In Proceedings of the 12th
International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

Blackard, J. A. and Dean, D. J. Comparative accuracies
of artificial neural networks and discriminant analysis in
predicting forest cover types from cartographic variables.
Computers and Electronics in Agriculture, vol.24:131–
151, 1999.

Buhmann, M. D. Radial basis functions: theory and im-
plementations, volume 12. Cambridge university press,
2003.

Charikar, M. and Siminelakis, P. Hashing-Based-Estimators
for kernel density in high dimensions. In Foundations
of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, pp. 1032–1043. IEEE, 2017.

Charikar, M. and Siminelakis, P. Multi-Resolution Hash-
ing for Fast Pairwise Summations. arXiv preprint
arXiv:1807.07635, 2018.

Chen, B., Xu, Y., and Shrivastava, A. Lsh-sampling breaks
the computational chicken-and-egg loop in adaptive
stochastic gradient estimation. In 6th International Con-
ference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings, 2018. URL https://openreview.
net/forum?id=Hk8zZjRLf.

Chen, Y., Welling, M., and Smola, A. Super-samples from
Kernel Herding. In Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, UAI’10,
pp. 109–116, Arlington, Virginia, United States, 2010.
AUAI Press. ISBN 978-0-9749039-6-5.

Cortes, E. C. and Scott, C. Sparse Approximation of a
Kernel Mean. Trans. Sig. Proc., 65(5):1310–1323, March
2017. ISSN 1053-587X.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sym-
posium on Computational geometry, pp. 253–262. ACM,
2004.

Gan, E. and Bailis, P. Scalable kernel density classification
via threshold-based pruning. In Proceedings of the 2017
ACM International Conference on Management of Data,
pp. 945–959. ACM, 2017.

Garofolo, J. S. TIMIT acoustic phonetic continuous speech
corpus. Linguistic Data Consortium, 1993, 1993.

Gray, A. G. and Moore, A. W. N-body’problems in statisti-
cal learning. In Advances in neural information process-
ing systems, pp. 521–527, 2001.

Gray, A. G. and Moore, A. W. Nonparametric density
estimation: Toward computational tractability. In Pro-
ceedings of the 2003 SIAM International Conference on
Data Mining, pp. 203–211. SIAM, 2003.

Greengard, L. and Rokhlin, V. A fast algorithm for particle
simulations. Journal of computational physics, 73(2):
325–348, 1987.

Hendron, R. and Engebrecht, C. Building america research
benchmark definition: Updated december 2009, 2010.

Indyk, P. and Motwani, R. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613. ACM, 1998.

Lee, D. and Gray, A. G. Fast high-dimensional kernel
summations using the monte carlo multipole method. In
Advances in Neural Information Processing Systems, pp.
929–936, 2009.

https://openreview.net/forum?id=Hk8zZjRLf
https://openreview.net/forum?id=Hk8zZjRLf

Rehashing Kernel Evaluation in High Dimensions

Lee, D., Moore, A. W., and Gray, A. G. Dual-tree fast
gauss transforms. In Advances in Neural Information
Processing Systems, pp. 747–754, 2006.

Luo, C. and Shrivastava, A. Arrays of (locality-sensitive)
Count Estimators (ACE): Anomaly Detection on the Edge.
In Proceedings of the 2018 World Wide Web Conference
on World Wide Web, pp. 1439–1448. International World
Wide Web Conferences Steering Committee, 2018a.

Luo, C. and Shrivastava, A. Scaling-up Split-Merge MCMC
with Locality Sensitive Sampling (LSS). arXiv preprint
arXiv:1802.07444, 2018b.

March, W., Xiao, B., and Biros, G. ASKIT: Approximate
Skeletonization Kernel-Independent Treecode in High
Dimensions. SIAM Journal on Scientific Computing, 37
(2):A1089–A1110, 2015.

March, W., Xiao, B., Yu, C., and Biros, G. ASKIT: An
Efficient, Parallel Library for High-Dimensional Kernel
Summations. SIAM Journal on Scientific Computing, 38
(5):S720–S749, 2016.

Morariu, V. I., Srinivasan, B. V., Raykar, V. C., Duraiswami,
R., and Davis, L. S. Automatic online tuning for fast
Gaussian summation. In Koller, D., Schuurmans, D.,
Bengio, Y., and Bottou, L. (eds.), Advances in Neural In-
formation Processing Systems 21, pp. 1113–1120. Curran
Associates, Inc., 2009.

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf,
B., et al. Kernel mean embedding of distributions: A re-
view and beyond. Foundations and Trends R© in Machine
Learning, 10(1-2):1–141, 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In NeurIPS workshop on
deep learning and unsupervised feature learning, 2011.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pp.
1532–1543, 2014.

Phillips, J. M. ε-samples for kernels. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1622–1632. SIAM, 2013.

Phillips, J. M. and Tai, W. M. Near-optimal coresets of
kernel density estimates. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 99. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

Ram, P., Lee, D., March, W., and Gray, A. G. Linear-time al-
gorithms for pairwise statistical problems. In Advances in
Neural Information Processing Systems, pp. 1527–1535,
2009.

Schölkopf, B., Smola, A. J., Bach, F., et al. Learning with
kernels: support vector machines, regularization, opti-
mization, and beyond. MIT press, 2002.

Scott, D. W. Multivariate density estimation: theory, prac-
tice, and visualization. John Wiley & Sons, 2015.

Spring, R. and Shrivastava, A. A New Unbiased and Effi-
cient Class of LSH-Based Samplers and Estimators for
Partition Function Computation in Log-Linear Models.
arXiv preprint arXiv:1703.05160, 2017.

Sriperumbudur, B. et al. On the optimal estimation of proba-
bility measures in weak and strong topologies. Bernoulli,
22(3):1839–1893, 2016.

Wu, X., Charikar, M., and Natchu, V. Local density estima-
tion in high dimensions. In Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 5296–
5305. PMLR, 10–15 Jul 2018.

Zheng, Y., Jestes, J., Phillips, J. M., and Li, F. Quality and
efficiency for kernel density estimates in large data. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pp. 433–444. ACM,
2013.

Supplementary material for:
Rehashing Kernel Evaluation in High Dimensions

Paris Siminelakis * 1 Kexin Rong * 1 Peter Bailis 1 Moses Charikar 1 Philip Levis 1

Outline In the first two sections, we give proofs for all
our formal results while restating them for convenience. In
Section 2, we give the precise description of our Hashing-
Based-Sketch and its theoretical analysis. In Section 3, we
present our diagnostic and visualization procedures in more
detail. In Section 4, we explain our design decisions and
the procedure for generating a fair synthetic benchmark. In
Section 5, we provide additional setup details and results
for the experimental evaluation.

1. Proofs
1.1. Basic inequalities

We first state without proof some well known inequalities
that we will use in the proofs.

Lemma 1 (Chebyshev’s and Paley-Zygmund inequalities).
For a non-negative random variable Z and parameters t >
0, θ ∈ [0, 1], we have

P[Z ≥ (t+ 1) · E[Z]] ≤ 1

t2
· RelVar[Z], (1)

P[Z > (1− θ)E[Z]] ≥ 1

1 + 1
θ2 · RelVar[Z]

. (2)

Theorem 1 (Chernoff bounds). Let X =
∑n
i=1Xi, where

Xi = 1 with probability pi and Xi = 0 with probability
1 − pi, and all Xi are independent. Let v = E[X] =∑n

i=1 pi. Then for δ > 0

P[X ≥ (1 + δ)v] ≤ e−
δ2

2+δ v, (3)

P[X ≤ (1− δ)v] ≤ e− 1
2 δ

2v. (4)

1.2. Median-trick to boost success probability

The median-trick is based on concentration of sums of in-
dependent binary random variables. If we define binary

*Equal contribution 1Stanford University, Stanford,
California, US. Correspondence to: Paris Siminelakis
<psimin@stanford.edu>, Kexin Rong <krong@stanford.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

random variables appropriately we can obtain bounds for
the concentration of the median of i.i.d. random variables
around their expectation.

Lemma 2. Let Z1, . . . , ZL be L ≥ 1 i.i.d. copies of a
non-negative random variable with RelVar[Z] ≤ ε2

6 then:

P [median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ e−L6 ,

P [median{Z1, . . . , ZL} ≤ (1− ε)E[Z]] ≤ e−L4 .

Proof of Lemma 2. Let

Xi = I[Zi ≥ (1 + ε)E[Z]],

Yi = I[Zi ≤ (1− ε)E[Z]].

By Lemma 1, we have that

ai = E[Xi] ≤
1

ε2
ε2

6
≤ 1

6
, bi = E[Yi] ≤

1

7
.

We get the following upper bounds

P[median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ P[

L∑
i=1

Xi ≥
L

2
].

P[median{Z1, . . . , ZL} ≥ (1 + ε)E[Z]] ≤ P[

L∑
i=1

Yi ≥
L

2
],

that along with Chernoff bounds will give us our result. We
only show the first inequality as the second one follows
similarly. Let A =

∑L
i=1 ai ≤ L/6, the first event is

bounded by exp(− (
L/2
A −1)

2

2+(
L/2
A −1)

A) ≤ exp(−L/6).

1.3. Moments of Hashing-Based-Estimators

Lemma 3. Assuming that ∀i ∈ [n], p(xi, q) > 0 then

E[Zh] =

n∑
i=1

uik(x, xi), (5)

E[Z2
h] =

n∑
i,j=1

k2(q, xi)
uiP[i, j ∈ H(q)]uj

p2(q, xi)
. (6)

Rehashing Kernel Evaluation in High Dimensions

Proof of Lemma 3. We start with the expectation:

Eh,X [
k(q,X)

p(q,X)
uH(q)] = Eh[EX [

k(q,X)

p(q,X)
]uH(q)]

= Eh[
∑

i∈H(q)

ui
uH(q)

k(q, xi)

p(q, xi)
uH(q)]

=

n∑
i=1

uiE[I[h(xi) = h(q)]]
k(xi, q)

p(xi, q)

=

n∑
i=1

uik(xi, q)

We proceed with the second moment:

Eh,X [
k2(q,X)

p2(q,X)
u2H(q)] = Eh[EX [

k2(q,X)

p2(q,X)
]u2H(q)]

= Eh[
∑

i∈H(q)

ui
uH(q)

k2(q, xi)

p2(q, xi)
u2H(q)]

= Eh[
∑

i∈H(q)

ui
k2(q, xi)

p2(q, xi)
uH(q)]

= Eh[
∑

i,j∈H(q)

uiuj
k2(q, xi)

p2(q, xi)
]

=

n∑
i,j=1

k2(xi, q)
uiP[i, j ∈ H(q)]uj

p2(xi, q)

1.4. Refined Variance bound

Here, we derive our new inequality bounding the variance
of HBE and RS. Let µ ≤ λ ≤ L ≤ 1 and define:

S1 = {i ∈ [n] : L ≤ wi ≤ 1} (7)
S2 = {i ∈ [n] \ S1 : λ ≤ wi ≤ L} (8)
S3 = {i ∈ [n] \ (S2 ∪ S1) : µ ≤ wi ≤ λ} (9)
S4 = {i ∈ [n] : wi < µ} (10)

as well as µ` =
∑
i∈S` uiwi ≤ µ. The intuition behind the

definition of the sets is that for radial decreasing kernels they
correspond to spherical annuli around the query (Figure 1).
Lemma 4. For non-negative weights w1, . . . , wn, vector
u ∈ ∆n and sets S1, . . . , S4 ⊆ [n] as above it holds∑
i,j∈[n]

w2
i {uiVijuj} ≤

∑
`∈[3],`′∈[3]

sup
i∈S`,
j∈S`′

{
Vijwi
wj

}
µ`µ`′

+ uS4

∑
`∈[3]

sup
i∈S`,
j∈S4

{
Vij

wi
µ

}
µ`µ

+ sup
i∈S4,j∈[n]

{Vijwi} · µ4 (11)

where uS :=
∑
j∈S uj ≤ 1.

Figure 1. Depiction of the sets that appear in Lemma 4

Proof of Lemma 4. First we observe that S1]S2]S3]S4 =
[n] forms a partition:∑

i,j∈[n]

uiujVijw
2
i =

∑
`,`′∈[3]

∑
i∈S`,j∈S`′

uiujVijw
2
i

+
∑
`∈[3]

∑
i∈S`,j∈S4

uiujVijw
2
i

+
∑

i∈S4,j∈[n]

uiujVij .w
2
i (12)

For the first three sets we have some bounds on the ration
wi
wj

whereas for the last set we have a bound on the wi. We
utilize these by:∑
i∈S`,
j∈S`′

Vijwi
wj

uiwiujwj ≤ sup
i∈S`,
j∈S`′

{Vijwi
wj
}
∑
i∈S`

wiui
∑
j∈S`′

wjuj ,

∑
i∈S`,
j∈S4

Vijwi
µ

wiuiujµ ≤ uS4
sup
i∈S`,
j∈S4

{
Vijwi
µ

}
µ
∑
i∈S`

wiui,

∑
i∈S4,
j∈[n]

{Vijwi}uiujwi ≤ sup
i∈S4,j∈[n]

{Vijwi}‖u‖1
∑
j∈S4

wiui.

Identifying µi in the above expressions and substituting the
bounds in (12) completes the proof.

1.5. Adaptive procedure

Theorem 2. Given an (a, β, γ)-regular estimator Z , the
AMR procedure outputs a number Ẑ such that

P[|Ẑ − µ| ≤ ε ·max{µ, τ}] ≥ 2

3
−Oγ,α(ε2)

and with the same probability uses Oγ(1
ε2

1
µβ

) samples.

Proof of Theorem 2. Recall that µt = (1 + γ)−t and let
t0 := t0(µ) ∈ Z such that:

µt0+1 ≤ µ ≤ µt0 (13)

We consider two cases t0 < T or t0 ≥ T .

Rehashing Kernel Evaluation in High Dimensions

Case I (t0 < T). In this case, we want to show that our al-
gorithm with constant probability does not terminate before
t0 and not after t0 + 1.

Let Z̄t be the mean of mt i.i.d. samples Z(i)
t ∼ Z(t, γ)

with mean E[Z
(i)
t] = µ and RelVar[Z

(i)
t] ≤ Vt(µ). Then,

RelVar[Z̄t] ≤
ε2

6

Vt(µ)

Vt(µt+1)
. (14)

Let A0 be the event that the algorithm terminates before t0.

P[A0] = P[∃t < t0, Z̄t ≥ µt] (15)

≤
∑
t<t0

P[Z̄t ≥
(
µt
µ

)
µ] (16)

≤ ε2

6

t0−1∑
t=1

µ2

(µt − µ)2
Vt(µ)

Vt(µt+1)
(17)

≤ ε2

6

t0−1∑
t=1

µ2

(µt − µ)2
(
µt+1

µ
)2−α. (18)

where in (16) we use union bound, in (17) we use the first
part of Lemma 1 and in (18) property (B) of a regular esti-
mator. In the next three inequalities we use (13), t ≤ t0 − 1
and

∑s
t=0 x

s ≤ (1− x)−1 for x < 1.

P[A0] ≤ ε2

6

t0−1∑
t=1

1

(1− µt0
µt

)2
µ2
t+1

µ2
t

(
µt0
µt+1

)α (19)

≤ ε2

6

1

γ2
µαt0

t0−1∑
t=1

(1 + γ)−α(t0−t−1) (20)

≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α
. (21)

Furthermore, let A1 be the event that the algorithm termi-
nates after t > t0 + 1.

P[A1] = P[∀t ≤ t0 + 1, Z̄t < µt] (22)
≤ P[Z̄t0+1 < µt0+1] (23)
= 1− P[Z̄t0+1 ≥ µt0+1]. (24)

Using the second part of Lemma 1 (Paley-Zygmund)

P[Z̄t0+1 ≥ µt0+1] ≥ 1

1 + (γ+1)2

γ2
ε2

6

Vt0+1(µ)

Vt0+1(µt0+1)

(25)

≥
(

1 +
(γ + 1)2

γ2
ε2

6

)−1
. (26)

Therefore, P[A1] ≤ 1 −
(

1 + (γ+1)2

γ2
ε2

6

)−1
≤ (γ+1)2

γ2
ε2

6 .
Finally, let t∗ be the (random) level where the algorithm
terminates and A2 be the event that |Z̄t∗ − µ| > εµ. If any

of the three events happen we say that the procedure fails.
We can bound the failure probability by:

P[F] = P[A0 ∨A1 ∨A2]

= P[A0 ∨A1 ∨A2 ∧ A0] + P[(A0 ∨A1 ∨A2) ∧ Ac0]

≤ P[A0] + P[A1 ∧Ac0] + P[A2 ∧Ac0]. (27)

To bound the last term we use:

P[A2 ∧Ac0] = P[A2 ∧Ac0 ∧A1] + P[A2 ∧Ac0 ∧Ac1]

≤ P[A1] + P[A2 ∧Ac0 ∧Ac1].

and

P[A2 ∧Ac0 ∧Ac1] =
∑

t∈{t0,t0+1}

P[|Z̄t − µ| > εµ ∧ t∗ = t]

≤
∑

t∈{t0,t0+1}

P[|Z̄t − µ| > εµ]

≤ 1

ε2

∑
t∈{t0,t0+1}

RelVar[Z̄t]

≤ 1

ε2

∑
t∈{t0,t0+1}

ε2

6

Vt(µ)

Vt(µt+1)
.

By definition µ ≥ µt+1 for all t ≥ t0, thus by (B) and (28):

P[A2 ∧Ac0 ∧Ac1] ≤ 2

6
=

1

3
. (28)

Hence, the overall probability failure is bounded by:

P[F] ≤ P[A0] + 2P[A1] + P[A2 ∧Ac0 ∧Ac1]

≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α
+ 2

(γ + 1)2

γ2
ε2

6
+

1

3
.

When the algorithm succeeds the total number of samples
is bounded by

t0+1∑
t=1

d 6

ε2
Vt(µt+1)e ≤ (t0 + 1) +

6C

ε2

t0+1∑
t=1

(1 + γ)β(t+1)

≤ (t0 + 1) +
6C

ε2
(1 + γ)2β

(1 + γ)βt0

γ

≤ (t0 + 1) +
6C

ε2
(1 + γ)β

γ

1

µβ
.

Case II (t0 ≥ T). In this case µ ≤ µT ≤ 1
1+γ ετ . By the

same arguments as in the case t0 < T we get that the proba-
bility terminates before t < t0 is at most ε2

6γ2µ
α
t0

1
1−(1+γ)−α .

If the condition Z̄T ≥ µT is satisfied then:

P[|Z̄T − µ| > εµ] ≤ 1

ε2
RelVar[Z̄T] ≤ 1

6
(29)

If Z̄T < µT then:

|0− µ| ≤ µ ≤ µT ≤
1

1 + γ
ετ ≤ εmax{µ, τ} (30)

Rehashing Kernel Evaluation in High Dimensions

Conclusion. Thus, overall if Ẑ is the output of AMR:

P[|Ẑ − µ| > εmax{µ, τ}] ≤ ε2

6

1

γ2
µαt0

1

1− (1 + γ)−α

+ 2
(γ + 1)2

γ2
ε2

6
+

1

3

As we see in the above expression the failure probability is
dominated by the 1

3 term. For example for γ = 1, ε = 0.2,
α = 1 we have that the extra term is less than 0.0667.

1.6. Regular estimator for Gaussian Kernel

Theorem 3. ZGauss is (1, 34 , γ)-regular and takes prepro-
cessing time/space bounded by Od,κT ,γ(ε−3+

1
4 τ−

3
4 · n).

Proof of Theorem 3. By Lemma 3 and Theorem 1 (Sec-
tion 2.3 in main paper), (A) holds with Vt(µ) :=

4e
3
2

µ e
r2t−rt

√
log(1

µ). Moreover, since ∀x ≥ y > 0

Vt(y)

Vt(x)
=
x

y
e
−rt(

√
log(1

y)−
√

log(1
x)) ≤

(
x

y

)2−1

(31)

and V
′

t (x) = − 4e
3
2

x e
r2t−rt

√
log(1

µ)(1
x + rt

2
√

log(1
x)

) < 0,

property (B) holds with α = 1. Finally,

Vt(µt+1) = 4e
3
2 e{

1
4−

1
2

√
t+1
t +(1+ 1

t)}t log(1+γ) (32)

= 4e
3
2

(
1

µt

) 1
4−

1
2

√
t+1
t +(1+ 1

t)

(33)

≤ 4e
3
2 (1 + γ)

1− 1√
2 ·
(

1

µt

) 3
4

, (34)

and consequently (C) holds with β = 3
4 . Finally, the estima-

tor uses at most O(1
ε2VT (µT+1)) hash tables each taking

preprocessing time/space Od,qT ,γ(n) space.

2. Sketching
For any hash table H and a vector u ∈ ∆n (simplex), let
B = B(H) denote the number of buckets and umax =
umax(H) := max{uHi : i ∈ [B]} the maximum weight
of any hash bucket of H . The precise definition of our
Hashing-Based-Sketch is given below in Algorithm 1.

For a fixed H , we can obtain the following bounds on the
first two moments of our sketch (Sm, w).

Lemma 5 (Moments). For the sketch (Sm, w) produced by
the HBS procedure it holds that

E[KDEwSm |H] = KDEuP (q),

Var[(KDEwSm)2|H] ≤ 1

m
(Bumax)1−γ

∗
n∑
i=1

k2(xi, q)ui.

Algorithm 1 Hashing-Based-Sketch (HBS)

1: Input: set P , size m, hashing scheme Hν , threshold
τ ∈ (0, 1), u ∈ ∆n

2: Sample h ∼ Hν and create hash tabel H = h(P).
3: Set γ according to (35)
4: Sm ← ∅, w ← 0 · 1m, B ← B(H)
5: for j = 1, . . . ,m do
6: Sample hash bucket Hi with probability ∝ uγHi
7: Sample a point Xj from Hi with probability ∝ uj
8: Sm ← Sm ∪ {Xj}

9: wj(γ,m)← uHi
m

∑B
i′=1

uγH
i′

uγHi

10: Output: (Sm, w)

The above analysis shows that the sketch is always unbiased
and that the variance depends on the hash function H only
through (Bumax)1−γ

∗ ≥ 1. We postpone the proof of this
lemma after showing how it implies the following theorem.

Theorem 4. Let H be the hash function sampled by the
HBS procedure. For ε > 0 and δ ∈ [e−

6
ε2

umax
nτ , e−

6
ε2), let:

γ∗ =

{
1−

log(ε
2

6 log(1/δ))

log(umax

τ)

}I[B≤(1
2)

1
6 1
τ]

, (35)

m =
6

ε2
1

τ
(Bumax)

1−γ∗
<

log(1
δ)

τ
. (36)

Then (Sm, w) is an (ε, 16 , τ)-sketch and if B ≤
(
1
2

) 1
6 1
τ

any hash bucket with weight at least τ will have non empty
intersection with Sm with probability at least 1− δ.

Proof of Theorem 4. Given a hash bucket with weight at
least τ , the probability that we sample a point from that
bucket is at least:

ρ ≥ τγ

B1−γ = τ
1

(Bτ)1−γ
(37)

The probability that we see no point after m indepen-
dent samples is less than (1 − ρ)m ≤ e−m

τγ

B1−γ For
m ≥ log(1/δ)

τ (Bτ)1−γ this probability is at most δ. On
the other hand by Lemma 5 if m ≥ 6

ε2
1
τ (Bumax)

1−γ we
have that Var[KDEwSm] ≤ ε2

6 µτ . The case B > 2−
1
6
1
τ is

trivial as γ∗ = 1. For B ≤ 2−
1
6
1
τ ⇒ umax ≥ 1

B ≥ τ2
1
6 .

We set γ to make the two lower bounds on m equal,

6

ε2
1

τ
(Bumax)

1−γ
=

log(1/δ)

τ
(Bτ)1−γ (38)

⇔
(umax

τ

)1−γ
=
ε2 log(1/δ)

6
(39)

⇔ γ = 1−
log(ε

2

6 log(1/δ))

log(umax

τ)
. (40)

Rehashing Kernel Evaluation in High Dimensions

This is strictly less than one for log(1/δ) ε
2

6 > 1 ⇒ δ <

e−
6
ε2 , and more than zero for δ ≥ e−

6
ε2

umax
τ . Since umax ≥

τ21/6 the two inequalities are consistent. Furthermore,

m =
6

τε2
· (Bumax)1−γ

∗
(41)

=
6

τε2
· (Bumax)

log(
ε2 log(1/δ)

6) 1
log(

umax
τ

) (42)

=
6

τε2
· e

log(log(1/δ) ε
2

6)
log(Bumax)

log(
umax
τ

) (43)

≤ 6

τε2
·
(

log(1/δ)
ε2

6

)(1− 1
6

log 2

log(
umax
τ

)
)

(44)

<
log(1/δ)

τ
. (45)

Remark 1. Observe that log 1
δ

τ is the number of samples
that random sampling would require in order to have
the same property for any bucket with uHi ≥ τ . When
γ∗ < 1, our scheme always uses less samples by a factor of(

log(1/δ) ε
2

6

) log(Bτ)

log(
umax
τ

)
< 1.

Thus, our sketch will have similar variance with random
sampling in dense regions of the space but will have better
performance for relatively “sparse” regions.

2.1. Proof of Lemma 5

Proof of Lemma 5. Let I be the random hash bucket and
XI the corresponding random point, then for a single point:

E[KDEw1

{XI}] = EI [EXI [
uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(XI , q)]]

= EI [
∑
j∈HI

uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(xj , q)

uj
uHI

]

=
1

m
EI [
∑B
i′=1 u

γ
Hi′

uγHI

∑
j∈HI

k(xj , q)uj]

=
1

m

∑
i∈[B]

∑
j∈Hi

k(xj , q)uj

=
1

m
KDFuP (q).

The first part follows by linearity of expectation. Similarly,

E[(KDFwSm)2] ≤
m∑
j=1

E[(KDF
wj
{xj})

2] + (KDFuP (q))2.

By linearity we only have to bound the first term

E[(KDEw1

{XI})
2] = EI [EXI [(

uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(XI , q))

2]]

= EI [
∑
j∈HI

(
uHI
m

∑B
i′=1 u

γ
Hi′

uγHI
k(xj , q))

2 uj
uHI

]

= EI [(
∑B
i′=1 u

γ
Hi′

muγHI
)2uHI

∑
j∈HI

k2(xj , q)uj]

=

∑B
i′=1 u

γ
Hi′

m2

∑
i∈[B]

u1−γHI

∑
j∈HI

k2(xj , q)uj

≤
∑B
i′=1 u

γ
Hi′

m2
u1−γmax

∑
i∈[B]

∑
j∈HI

k2(xj , q)uj

≤ (Bumax)1−γ

m2

n∑
j=1

k2(xj , q)uj .

The last inequality follows by applying Hölder’s inequality
with p = 1

γ and q = 1
1−γ , and due to u ∈ ∆n.

3. Diagnostic and Visualization procedures
In this section, we show how our refined variance bounds
along with the adaptive procedure lead to a diagnostic pro-
cedure estimating the variance of RS and HBE, as well as
to a visualization procedure that gives intuition about the
“local structure” of the queries in a given dataset.

3.1. Diagnostic procedure

In order to go beyond worst-case bounds (typically ex-
pressed as a function of the query density µ) and provide
dataset specific bounds on the variance of different methods
(RS and HBE) we use Lemma 4. By setting the coeffi-
cients Vij appropriately, we can bound the variance of RS
(Vij = 1) and HBE (Vij =

min{p(q,xi),p(q,xj)}
p(q,xi)2

). Unfortu-
nately, evaluating the bound (11) directly over the whole
dataset for a single query is no cheaper than evaluating the
methods directly.

At a high level, our diagnostic procedure goes around this
by evaluating the upper bound for each query q on ‘repre-
sentative sample” S̃0(q) instead of P . By doing this for
a number T of random queries picked uniformly from the
dataset P , we get an estimate of the average relative variance
for different methods.

Specifically, given τ ∈ (0, 1) and ε ∈ (0, 1), for a sin-
gle query let S̃0 be the random set produced by the AMR
procedure (Algorithm 1, Section 4.2) called with random
sampling and define the sets S̃` = S̃0 ∩ S` for ` ∈ [4] and

Rehashing Kernel Evaluation in High Dimensions

their corresponding “densities” µ̃` =
∑
i∈S̃` uiwi. Let

λε := arg max
µ̃0≤λ≤1

{
µ̃3 ≤

1

2
(εµ̃0 − µ̃4)

}
(46)

Lε := arg min
µ̃0≤L≤1

{
µ̃1 ≤

1

2
(εµ̃0 − µ̃4)

}
(47)

be such that µ̃2 ≥ (1 − ε)µ̃0, i.e. most of the mass is
captured by the set S̃2 (that is an spherical annulus for
kernels that are decreasing with distance). Since Lemma 4
holds for all µ ≤ λ ≤ L ≤ 1, Lε, λε complete the definition
of four sets S̃1, . . . , S̃4 which we use to evaluate (11), and
denote by Vmethod(q) the corresponding bound used with
Vij corresponding to a certain estimator, e.g. method ∈
{RS,HBE}. Below we give the procedure in pseudo-code.

Algorithm 2 Diagnostic

1: Input: set P , threshold τ ∈ (1
n , 1), accuracy ε, T ≥ 1,

collision probability p(x, y) of the hashing schemeHν .
2: for t = 1, . . . , T do
3: q ← Random(P) . For each random query
4: (S̃0, µ̃0)← AMR(ZRS(q), ε, τ)
5: Set λε, Lε using (46) and (47)
6: Let VRS be the r.h.s of (11) for S̃0 and Vij = 1.
7: Let VHBE be the r.h.s of (11) for S̃0 and

Vij =
min{p(q, xi), p(q, xj)}

p(q, xi)2
(48)

8: rVRS(t)← VRS/max{µ̂, τ}2
9: rVHBE(t)← VHBE/max{µ̂, τ}2.

10: Output: (meanT (rVRS),meanT (rVHBE))

Remark 2. We only show the procedure for choosing be-
tween RS and HBE with a specific hashing scheme. The
same procedure can be used to evaluate a multitude of hash-
ing schemes to select the best one for a given dataset.

3.2. Visualization procedure

We can use the information from our diagnostics to visualize
what is the data set like by aggregating local information for
random queries. For a set S, let rS = mini∈S log(1

k(xi,q)
)

and RS = maxj∈S log(1
k(xj ,q)

). The basis of our visualiza-
tion is the following fact:

Lemma 6. Let X be a random sample from S, then
E[k2(X, q)] ≤ exp(RS − rS) · µ2

S .

Proof of Lemma 6. We have that e−RS ≤ k(xi, q) ≤ e−rS ,

therefore

E[k2(X, q)] =
∑
i∈S

k2(xi, q)ui (49)

≤ e−rS
∑
i∈S

k(xi, q)ui
µS
µS

(50)

≤ eRS−rSµ2
S (51)

where in the last part we used µS ≥ e−RS .

Thus if we plot an annulus of width wS = RS−rs then ewS
is an estimate of the relative variance for RS! The visualiza-
tion procedure when given a sequence of T pairs of numbers
(λt, Lt) for t ∈ [T] (produced by the diagnostic procedure)
plots overlapping annuli around the origin representing the
queries. Since often the ratio maxi,j∈S

k(xi,q)
k(xj ,q)

is refered to
as the condition number of the set S, we call our procedure
the Log-Condition plot.

Algorithm 3 Log-Condition Plot

1: Input: {(λt, Lt)}t∈[T].
2: for t = 1, . . . , T do . For each query
3: rt ← log(1/Lt),
4: Rt ← log(1/λt)
5: draw 2D-annulus(rt, Rt)
6: Output: figure with overlapping annuli.

Remark 3. In the specific case of the Laplace (exponen-
tial) kernel, the radii we are plotting correspond to actual
distances.

4. Synthetic benchmarks
In this section, we introduce a general procedure to cre-
ate tunable synthetic datasets that exhibit different local
structure around the query. We then show how to use this
procedure as a building block to create two different family
of instances with specific characteristics aimed to test kernel
density evaluation methods.

4.1. (µ,D, n, s, d, σ)-Instance

Since the problem of kernel density is query dependent
and the kernel typically depends only on the distance, we
shall always assume that the query point is at the origin
q = 0 ∈ Rd.

We further assume that the kernel is an invertible function
of the distance K(r) ∈ [0, 1] and let K−1(µ) ∈ [0,∞) be
the inverse function. For example, the exponential kernel is
given by K(r) = e−r and the inverse function is given by
K−1(µ) = log(1

µ).

The dataset is created with points lying in D different direc-
tions and s distance scales (equally spaced between 0 and

Rehashing Kernel Evaluation in High Dimensions

Figure 2. (µ = 0.01, D = 3, s = 4, d = 2, σ = 0.05)-Instance.
Each of the D = 3 directions is coded with a different color.

R = K−1(µ)) such that the contribution from each direc-
tion and scale to the kernel density at the origin is equal.
To achieve this the number of points nj placed a at the j-th
distance scale rj is given by

n` := bn µ

K(rj)
c. (52)

The reasoning behind this design choice is to make sure that
we have diversity in the distance scales that matter in the
problem, so not to favor a particular class of methods (e.g.
random sampling , nearest-neighbor based). Also, placing
the points on the same direction makes the instance more dif-
ficult for HBE as the variance in (6) increases with the ratio
P[h(i)=h(j)=h(q)]

P[h(i)=h(q)]2 , that expresses how correlated the values
{h(i), h(j), h(q)} are. We give an example visualization
of such data sets in 2 dimensions in Figure 2. The detailed
procedure is described below (Algorithm 4).

Algorithm 4 (µ,D, n, s, d, σ)-Instance

1: Input: µ ∈ [1n , 1], D ≥ 1, n ≥ 1, s ≥ 2 , d ≥ 1,
σ ≥ 0, kernel K, inverse K−1.

2: R← K−1(µ), r0 ← K−1(1), P ← ∅.
3: for j = 0, . . . , s− 1 do
4: rj+1 ← R−r0

s−1 j + r0 . distances for each D
5: nj+1 ← bn µ

K(rj+1)
c . points at each distance

6: for i = 1, . . . , D do
7: vi ← gi

‖gi‖ with gi ∼ N (0, Id). . random direction
8: for j=1,. . . , s do . For each distance scale
9: for ` = 1, . . . , nj do . generate a “cluster”

10: gij` ∼ N (0, Id)
11: xij` ← sjvi + σ√

d
sjgij`

12: P ← P ∪ {xij`}
13: Output: Set of points P

Remark 4. IfD � n this class of instances becomes highly
structured with a small number of tightly knit “clusters”

(a) “worst-case” instance (b) D-structured instance

Figure 3. The two family of instances for d = 2.

(Figure 2). One would expect in this case, space-partioning
methods to perform well. At the same time by Lemma 4, this
type of instances are the ones that maximize the variance of
both HBE (s ≥ 1) and RS (s > 1) .

Remark 5. On the other hand if D � n the instances
become spread out (especially in high dimensions). This
type of instances are ideal for sampling based methods when
s = 1, and difficult for space-partitioning methods.

Based on the above remarks we propose the following sub-
class of instances.

4.2. “Worst-case” instance

In order to create an instance that is hard for all methods we
take a union of the two extremes D � n and D � n. We
call such instances “worst-case” as there does not seem to
be a single type of structure that one can exploit, and these
type of instances realize the worst-case variance bounds for
both HBE and RS. In particular, if we want to generate an
instance with N points, we first set D a small constant and
n = Θ(N) and take the union of such a dataset with another
using D = Ω(N1−o(1)) and n = O(No(1)). An example
of such a dataset is given in 3(a).

4.3. D-structured instance

“Worst-case” instances are aimed to be difficult for any ker-
nel evaluation method. In order to create instances that have
more varied structure, we use our basic method to create a
single parameter family of instance by fixing N,µ, σ, s, d
and setting n = N

D . We call this family of instances as
D-structured. As one increases D, two things happen:

• The number of directions (clusters) increases.

• n = N
D decreases and hence certain distance scales

disappear. By (52), if nµ < K(rj) ⇒ Dj >
Nµ
K(rj)

then distance scale j will have no points assigned to it.

Hence, for this family when D � N
D ↔ D �

√
N

the instances are highly structured and we expect space-

Rehashing Kernel Evaluation in High Dimensions

Table 1. Preprocessing time (init) and total query time (query)
on 10K random queries for additional datasets. All runtime mea-
surements are reported in seconds.

Dataset Time RS HBE ASKIT FigTree

higgs init 0 141 25505 > 1day
query 6 18 1966 > 1day

hep init 0 138 23421 > 20 hours
query 6 11 1581 > 1day

susy init 0 67 5326 3245
query 18 12 > 9756 5392

home init 0 11 237 7
query 2369 17 376 33

mnist init 0 211 14 437
query 168 389 ? 1823

Table 2. Preprocessing time (in seconds) for clustering test.

n D HBE FigTree ASKIT

500K 1 192 2 113
50K 10 20 3 105
5K 100 16 16 105
500 1000 19 174 104
50 10000 39 1516 102
5 100000 334 0.3 101

partitioning methods to perform well. On the other extreme
as D increases and different distance scales start to die out
(Figure 3(b)) the performance of random sampling keeps
improving until there is only one (the outer) distance scale,
where random sampling will be extremely efficient. On the
other hand HBE’s will have roughly similar performance on
the two extremes as both correspond to worst-case datasets
for scale-free estimators with β = 1/2, and will show slight
improvement in between 1 � D � n. This picture is
confirmed by our experiments.

5. Experiments
5.1. Datasets

We provide detailed descriptions of the datasets as well
as the bandwidth used for the kernel density evaluation
in Table 3. We also include specifications for the ad-
ditional datasets acquired from LIBSVM (Chang & Lin,
2011) and the UCI Machine Learning Repository (Dheeru
& Karra Taniskidou, 2017) that were used to evaluate the
accuracy of the diagnostic procedure.

We selected the top eight datasets in Table 3 for density
evaluation in the main paper as they are the largest, most

10 50 100 200 500
dimensions

10 5

10 4

10 3

10 2

10 1

100

Av
g

Qu
er

y
Ti

m
e

(s
)

100 101 102 103 104 105

clusters

FigTree HBE RS

FigTree ASKIT RS HBE

Figure 4. Results from the synthetic experiment (repeat of results
in the main paper for easy reference).

complex datasets in our collection. We provide additional
density evaluation results in Table 1 for datasets with com-
parable sizes or dimensions to the ones reported in the main
paper. For higgs and hep, FigTree failed to finish the evalu-
ation within a day. Given the performance of RS on these
datasets, we don’t expect FigTree to achieve better perfor-
mance even if the query returns successfully. For mnist, we
were not able to get ASKIT to achieve relative error below 1
even after trying parameters that span a few orders of mag-
nitude; this is potentially caused by the high-dimensionality
and sparsity of this dataset.

5.2. Synthetic Experiment

For the clustering test, we set µ = 0.001, s = 4, d =
100, σ = 0.01, N = 500K. The varying parameters are
the number of clusters (D) and the number of points per
cluster n. We report preprocessing time (in seconds) for all
methods in Table 2. The ordering of methods according to
preprocessing time largely follows the that of query time.

As discussed in Section 4.3, for the D-structured instances
as the number of points per cluster n decreases, smaller
distance scales start to disappear due to (52). Let Di be the
threshold such that for D > Di, there are no-points in scale
i. The corresponding numbers for our experiment is roughly
D1 = 500 (at distance 0) , D2 = 1077, D3 = 10K,
D4 = N = 500K. In particular, only a single distance
scale remains when D = 100K > D3, a set up in which
RS is orders of magnitude more efficient than alternative
methods (Figure 4 right).

5.3. Sketching Experiment

In this section, we evaluate the quality of the proposed
hashing-based sketch. As baselines, we compare against
sparse kernel approximation (SKA) (Cortes & Scott, 2017),
kernel herding algorithm (Herding) (Chen et al., 2010) and
uniform sampling. To control for the difference in the
complexity (Table 4), we compare the approximation er-
ror achieved by sketches of the same size (s) under the same
compute budget (2n, where n is dataset size). We describe
the detailed setup below, including necessary modifications
to meet the computational constraints.

Rehashing Kernel Evaluation in High Dimensions

Table 3. Specifications of real-world datasets.

Dataset N d σ Description

census 2.5M 68 3.46 Samples from 1900 US census.
TMY3 1.8M 8 0.43 Hourly energy load profiles for US references buildings.
TIMIT 1M 440 10.97 Speech data for acoustic-phonetic studies. First 1M data points used.
SVHN 630K 3072 28.16 Google Street View house numbers. Raw pixel values of 32x32 images.
covertype 581K 54 2.25 Cartographic variables for predicting forest cover type.
MSD 463K 90 4.92 Audio features of popular songs.
GloVe 400K 100 4.99 Pre-trained word vectors from

Wikipedia 2014 + Giga 5 word. 5. 6B tokens, 400K vocab.
ALOI 108K 128 3.89 Color image collection of 1000 small objects.

Each image is represented by a 128 dimensional SIFT feature vector.

higgs 11M 28 3.41 Signatures of Higgs bosons from Monte Carlo simulations.
hep 10.5M 27 3.36 Signatures of high energy physics particles (Monte Carlo simulations).
susy 5M 18 2.24 Signatures of supersymmetric particles (Monte Carlo simulations).
home 969K 10 0.53 Home gas sensor measurements.
skin 245K 3 0.24 Skin Segmentation dataset.
ijcnn 142K 22 0.90 IJCNN 2001 Neural Network Competition.
acoustic 79K 50 1.15 Vehicle classification in distributed sensor networks.
mnist 70K 784 11.15 28x28 images of handwritten digits.
corel 68K 32 1.04 Image dataset, with color histograms as features.
sensorless 59K 48 2.29 Dataset for sensorless drive diagnosis.
codrna 59K 8 1.13 Detection of non-coding RNAs.
shuttle 44K 9 0.62 Space shuttle flight sensors.
poker 25K 10 1.37 Poker hand dataset.
cadata 21K 8 0.62 California housing prices.

Table 4. Overview of algorithm complexity and parameter choice
for the sketching experiment (n: dataset size, s: sketch size, T :
number of hash tables, m: sample size for herding).

Algorithm Complexity Parameters

HBS O(n′T + s) n′ = 2n
5 , T = 5

SKA O(ncsc + s3c) sc = n
1
3 , nc = n

2
3

Herding O(nhm+ nhs) m = s, nh = n
s

HBS. For HBS, we used 5 hash tables, each hashing a
subset of 2

5n points in the dataset. In practice, we found that
varying this small constant on the number of hash tables
does not have a noticeable impact on the performance.

SKA. SKA (Algorithm 5) produces the sketch by greedily
finding s points in the dataset that minimizes the maxi-
mum distance. The associated weights are given by solving
an equation that involves the kernel matrix of the selected
points. SKA’s complexity O(ns+ s3) is dominated by the
matrix inversion procedure used to solve the kernel matrix
equation. To ensure that SKA is able to match the sketch
size of alternative methods under the compute budget of 2n,
we augment SKA with random samples when necessary:

• If the target sketch size is smaller than n
1
3 (s < n

1
3),

we use SKA to produce a sketch of size s from a sub-
sample of n/s data points.

• For s > n
1
3 , we use SKA to produce a sketch of size

sc = n
1
3 from a subsample of nc = n

2
3 data points.

We match the difference in sketch size by taking an
additional s− sc random samples from the remaining
n − nc data points that were not used for the SKA
sketch. The final estimate is a weighted average be-
tween the SKA sketch and the uniform sketch: 1

sc
for

SKA and (1− 1
sc

) for uniform, where the weights are
determined by the size of the two sketches.

The modification uses SKA as a form of regularization on
random samples. Since SKA iteratively selects points that
are farthest away from the current set, the resulting sketch
is helpful in predicting the “sparser” regions of the space.
These sparser regions, in turn, are the ones that survive in
the n2/3 random sample of the dataset (sub-sampling with
probability n−1/3), therefore SKA naturally includes points
from “sparse” clusters of size Ω(n1/3) in the original set.

Herding. The kernel Herding algorithm (Algorithm 6)
first estimates the density of the dataset via random sam-

Rehashing Kernel Evaluation in High Dimensions

pling; the sketch is then produced by iteratively selecting
points with maximum residual density. The algorithm has a
complexity of O(nm+ ns), where m stands for the sample
size used to produce the initial density estimates.

To keep Herding under the same 2n compute budget, we
downsample the dataset to size nh = n

s , and use m = s
samples to estimate the initial density. This means that, the
larger the sketch size is, the less accurate the initial density
estimate is. As a result, we observe degrading performance
at larger sketch sizes s = Ω(

√
n).

Algorithm 5 Sparse Kernel Approximation (SKA)

1: Input: set P , kernel K, size s.
2: S = {x1, . . . , xs} ← Greedy-kcenter(P, s)
3: K ∈ Rs×s with Kij ← k(xi, xj) for xi, xj ∈ S.
4: y ∈ Rs with yi ← KDEwP (xi) for xi ∈ S.
5: Let ŵ be a solution to Kŵ = y.
6: Output: (S, ŵ)

Algorithm 6 Approximate Kernel Herding (AKH)

1: Input: set P , kernel K, size s, samples m.
2: for i = 1, . . . , |P | do
3: Pi ← Random(P,m). . random set of m points
4: di ← KDEPi(xi) . estimate of the density
5: S0 ← ∅ . initialization
6: for t = 1, . . . , s do
7: j∗ ← arg maxi∈[n]{di −KDESt−1

(xi)} . greedy
8: St ← St−1 ∪ {x∗j} . add point to the set

9: Output: (Ss,
1
s1s)) . return the sketch

Results. Figure 5 reports the relative error on random
queries (left), i.e. uniformly random points from the dataset,
and low-density queries (right), uniformly random points of
the dataset with density around a threshold τ . Uniform, SKA
and HBS achieve similar mean error on random queries,
while the latter two have improved performance on low-
density queries, with HBS performing slightly better than
SKA. By design, HBS has similar performance with ran-
dom sampling on average, but performs better on relatively
“sparse” regions due to the theoretical guarantee that buckets
with weight at least τ are sampled with high probability.
Combining SKA with random samples initially results in
performance degradation but eventually acts as a form of
regularization improving upon random. Kernel Herding is
competitive only for a small number of points in the sketch.

Overhead reduction. In Table 5, we report on the esti-
mated preprocessing runtime reduction enabled by HBS
for the density estimation results reported in Table 1 of the
main paper. The estimates are calculated by the dividing
the number of data points hashed according to the original

0 500 1000 1500 2000
sketch size

0

1

2lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) TMY3

0 500 1000 1500 2000
sketch size

0.5

0.0

0.5

TMY3 (low)
Uniform Herding SKA HBS

0 500 1000 1500 2000
sketch size

0.0

0.5

1.0

lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) covertype

0 500 1000 1500 2000
sketch size

0.6

0.4

0.2

0.0

0.2

0.4

0.6 covertype (low)

Uniform Herding SKA HBS

0 500 1000 1500 2000
sketch size

0.0

0.5

1.0

lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) ALOI

0 500 1000 1500 2000
sketch size

0.8

0.6

0.4

0.2

0.0

0.2 ALOI (low)

0 500 1000 1500 2000
sketch size

0.0

0.5

1.0

lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) home

0 500 1000 1500 2000
sketch size

0.2

0.0

0.2

0.4

0.6 home (low)

0 500 1000 1500 2000
sketch size

0.0

0.5

1.0

lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) census

0 500 1000 1500 2000
sketch size

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2 census (low)

0 500 1000 1500 2000
sketch size

0.0

0.5

1.0

lo
g(

M
ea

n
Re

la
tiv

e
Er

ro
r) MSD

0 500 1000 1500 2000
sketch size

3.0

2.5

2.0

1.5

1.0
MSD (low)

Figure 5. Sketching results on random and low-density queries.

Rehashing Kernel Evaluation in High Dimensions

Table 5. Estimated overhead reduction enabled by HBS.

census TMY3 TIMIT SVHN covertype MSD GloVe ALOI

Reduction (est.) 958× 755× 821× 659× 554× 607× 595× 303×

HBE procedure by the number of data points hashed after
enabling HBS.

5.4. Visualizations of real-world data sets

Our Log-Condition plots use circles with radius r to repre-
sent points with weights roughly e−r (roughly at distance√
r for the Gaussian kernel). The visualizations are gener-

ated by plotting overlapping annuli around the origin that
represent a random queries from the dataset, such that the
width of the annulus roughly corresponds to the log of the
relative variance of random sampling.

We observe two distinctive types of visualizations. Datasets
like census exhibit dense inner circles, meaning that a small
number of points close to the query contribute significantly
towards the density. To estimate the density accurately, one
must sample from these small clusters, which HBE does
better than RS. In contrast, datasets like MSD exhibit more
weight on the outer circles, meaning that a large number of
“far” points is the main source of density. Random sampling
has a good chance of seeing these “far” points, and therefore,
tends to perform better on such datasets. The top two plots
in Figure 6 amplify these observations on synthetic datasets
with highly clustered/scattered structures. RS performs
better for all datasets in the right column except for SVHN.

References
Chang, C.-C. and Lin, C.-J. LIBSVM: A library for

support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27, 2011.
Software available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

Chen, Y., Welling, M., and Smola, A. Super-samples from
Kernel Herding. In Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, UAI’10,
pp. 109–116, Arlington, Virginia, United States, 2010.
AUAI Press. ISBN 978-0-9749039-6-5.

Cortes, E. C. and Scott, C. Sparse Approximation of a
Kernel Mean. Trans. Sig. Proc., 65(5):1310–1323, March
2017. ISSN 1053-587X.

Dheeru, D. and Karra Taniskidou, E. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

11 0 11
11

0

11 # cluster=1

11 0 11
11

0

11 # cluster=100k

11 0 11
11

0

11 census

11 0 11
11

0

11 MSD

11 0 11
11

0

11 ALOI

11 0 11
11

0

11 GloVe

11 0 11
11

0

11 TMY3

11 0 11
11

0

11 TIMIT

11 0 11
11

0

11 covertype

11 0 11
11

0

11 SVHN

Figure 6. Visualizations of datasets. The top row shows two ex-
treme cases of highly clustered (# cluster=1) versus highly scat-
tered (#cluster=100k) datasets. RS performs better for all datasets
in the right column expect for SVHN.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

