
Lotus: Characterization of Machine Learning
Preprocessing Pipelines via Framework and

Hardware Profiling
Rajveer Bachkaniwala

Georgia Tech

rr@gatech.edu

Harshith Lanka
Georgia Tech

hlanka3@gatech.edu

Kexin Rong
Georgia Tech

krong@gatech.edu

Ada Gavrilovska
Georgia Tech

ada@cc.gatech.edu

Abstract—Preprocessing input data is a crucial step in

machine learning pipelines, involving tasks such as loading,

decoding, and applying transformations. Prior works have

identified preprocessing as a performance bottleneck for ML

training jobs and introduced optimizations like CPU and I/O

parallelism, accelerator offloading, and on-node/distributed

computing as well as caching to mitigate this bottleneck.

However, there is a lack of support for characterizing

preprocessing pipelines at a finer granularity, especially at the

microarchitecture level, which can provide insights to validate

and inform the design of existing and future optimization

techniques.

To enable these insights, we introduce Lotus, a profiling tool

for the preprocessing stage of ML pipelines. Firstly, it captures

fine-grained preprocessing events (e.g., <10 ms) with minimal

time and storage overheads. Secondly, it bridges the gap

between high-level Python functions and low-level hardware

performance counters by reconstructing a mapping between

Python functions and the underlying C++ functions they

invoke. This unique combination enables users to better reason

about their pipeline’s performance at both the framework and

CPU architecture levels. We demonstrate the insights made

possible by applying Lotus to representative ML workloads

and compare its capabilities, overheads, and ease of use with

alternative profilers.

Index Terms—ML preprocessing, Python profiling, hardware

instrumentation

I. Introduction
Preprocessing is a crucial step in machine learning (ML)

pipelines that ingest and transform raw input data into
a format suitable for ML models. It often consists of a
chain of complex operations, such as loading, decoding,
and applying transformations, which can require significant
compute time. For example, preprocessing can consume up to
65% of the epoch time in applications like image classification,
object detection, and audio classification [1]. Preprocessing
performance is crucial for ML training jobs, which demand
low latency (100 µs - 1 ms) and high throughput (10
GB/s) for per-batch generation [2]. Inefficiencies in CPU-
based preprocessing can lead to low compute utilization on
expensive accelerators, especially in systems with a CPU-to-
accelerator ratio imbalance [1], [3]–[7].

This project was partially supported by the Intel Center on Transformative
Server Architecture via the TRIM project, and the SRC/DARPA JUMP 2.0
Center for Processing with Intelligent Storage and Memories (PRISM).

Prior works have introduced numerous optimizations to
improve preprocessing performance, including parallelizing
I/O and compute in and across batches [8]–[10], accelerator
offloading (DALI [11], TrainBox [12]), data duplication [13],
caching optimization [1], [7], [10], [14]–[16], dataset storage
optimization [14], [17], disaggregated preprocessing across
nodes [2], [7], [15], [18]–[20] and co-locating ML jobs for
effective caching and scheduling in a cluster [18], [21], [22].
Effective optimizations rely on understanding the perfor-

mance bottlenecks in preprocessing pipelines, and better un-
derstanding can in turn lead to new optimization opportunities.
However, there is a lack of adequate profiling tools that
can effectively characterize the performance implications of
preprocessing pipelines at the CPU architectural level. Current
profiling capabilities face two main limitations.
First, there is a disconnect between the performance of

high-level Python functions and low-level hardware metrics
(such as L1 cache misses) that are collected via performance
counters. Existing hardware profilers, such as Intel VTune
and AMD uProf, collect CPU cache and microarchitecture
performance data for C/C++ functions but cannot capture
stack frames of machine learning pipeline code written in
Python. Additionally, Python profilers that capture the call
stack often fail to label preprocessing functions correctly,
forcing users to investigate the source code manually to
recreate the stack trace.
Second, capturing fine-grained batch-level preprocessing

timing data with low overhead is challenging. Sampling-
based Python profilers like Scalene [23], py-spy [24], and
austin [25] are constrained by their sampling rates, making
it challenging to capture the duration of individual trans-
formation operations that may only take hundreds of mi-
croseconds to a few milliseconds without incurring significant
overhead. Moreover, the asynchronous data flow used in many
preprocessing frameworks, where worker processes execute
the actual preprocessing operations while the main process
coordinates, complicates the measurement of elapsed times.
Recent work on optimizing preprocessing pipelines [8]–[10]
rely on instrumentation to capture aggregated elapsed time
across many batches, but does not capture fine-grained per-
batch statistics or data flow dependencies.

30

2024 IEEE International Symposium on Workload Characterization (IISWC)

2835-2238/24/$31.00 ©2024 IEEE
DOI 10.1109/IISWC63097.2024.00013

To address these limitations, we make two key observations.
First, ML preprocessing pipelines are often declaratively
defined, providing hooks for fine-grained instrumentation
while ensuring generalizability across different pipelines and
frameworks [6], [8], [26]. Second, once such fine-grained
instrumentation data is available, it can be leveraged to better
attribute low-level hardware performance counters measured
by the hardware profilers to the corresponding high-level
preprocessing functions.
We leverage these insights to build Lotus – a new

profiling tool for ML preprocessing pipelines declared using
PyTorch’s DataLoader [26]. Lotus comprises two compo-
nents, LotusTrace, and LotusMap, that enable capturing
preprocessing events and hardware analysis for preprocessing
operations, respectively. The effectiveness of LotusTrace
is due to the understanding of the PyTorch DataLoader’s
asynchronous data flow, which allows us to add logging in-
strumentation at the points that matter the most in capturing
this flow (§ III-B). As a result, LotusTrace neither performs
additional computation nor maintains unnecessary tracer state
in memory, thus avoiding CPU and memory overheads. On
the other hand, LotusMap introduces a novel technique that
approximates the mapping of Python functions to their C/C++
counterparts. To obtain a high-quality mapping, our technique
carefully buckets the C/C++ functions, filters incorrect C/C++
functions, and captures short-lived C/C++ functions (§ IV-B).

Together, LotusTrace and LotusMap allow a practitioner
to identify the most time-consuming preprocessing operations,
map them to the responsible C/C++ functions, and use their
hardware performance counters to get a CPU architectural
level performance view of the preprocessing operations. Lotus
thus empowers users to reason about the performance of
preprocessing pipelines at the hardware level, bridging a
significant gap in our understanding.

In summary, we make the following contributions:

• We introduce Lotus, the first tool for fine-grained instru-
mentation and profiling of ML preprocessing pipelines at
the level of the preprocessing framework and the CPU
architecture.

• Using Lotus, we characterize three representative ma-
chine learning pipelines from MLPerf’s training bench-
mark [27] and share insights into their performance
characteristics and potential optimization opportunities.

• We compare Lotus with alternative profilers on profiling
overhead and functionality.

Lotus is an open-source tool [28]. Our current implementa-
tion targets PyTorch’s DataLoader preprocessing library [26],
and the Intel VTune [29] and AMD uProf [30] hardware
profilers. However, the methodology also applies to other
preprocessing frameworks that allow declaratively specified
preprocessing pipeline [8], [11]. In addition, preprocessing
pipelines defined in PyTorch DataLoader can be seamlessly
integrated with major ML training backends, such as Tensor-
Flow, which consume data through iterators.

import torchvision.transforms as transforms 1
import torchvision.datasets as datasets 2
custom_log_file = <To use our instrumentation> 3
train_dataset = datasets.ImageFolder(4

traindir, 5
transforms.Compose([6

transforms.RandomResizedCrop(224), 7
transforms.RandomHorizontalFlip(), 8
transforms.ToTensor(), 9
transforms.Normalize(mean=[0.485, 0.456, 0.406], 10

std=[0.229, 0.224, 0.225]) 11
], log_transform_elapsed_time=custom_log_file), 12
log_file=custom_log_file 13

) 14
train_loader = torch.utils.data.DataLoader(15

train_dataset, 16
batch_size=args.batch_size, 17
shuffle=(train_sampler is None) and args.shuffle, 18
num_workers=args.workers, 19
pin_memory=True, 20
sampler=train_sampler, 21

) 22

Listing 1: Example image preprocessing pipeline in PyTorch.

II. Background
We provide a brief background on how preprocessing is

specified and implemented in PyTorch.

A. Defining Preprocessing Pipelines

Several popular machine learning libraries, including Py-
Torch’s torchvision, Tensorflow’s tf.data, and NVIDIA’s
DALI, provide support for specifying preprocessing pipelines
in a declarative manner. For example, torchvision offers
a general API called torchvision.transforms.Compose for
defining preprocessing pipelines. The preprocessing pipeline
is declaratively defined by chaining together a sequence
of preprocessing operations to be applied on each input
image, such as shown in lines 6-13 of Listing 1. This
pipeline contains four operations: RandomResizedCrop(),
RandomHorizontalFlip(), ToTensor() and Normalize(). PyTorch
also provides torch.utils.data.DataLoader, a utility class
to help simplify the process of loading data (Line 15-22 of
Listing 1). Users can specify parameters such as the number of
workers needed, batch size, and prefetching options. Functions
related to image reading and decoding are performed by
the torchvision.datasets API internally. The API uses the
appropriate image reader and decoder based on the image
type, detected from the metadata of the image. The user can
also define their own image reader and decoder.

B. Data Flow in PyTorch

The data flow in a single node, multi-GPU setting is
described for the PyTorch torch.nn.DataParallel API.
Between the main process and the Dataloader workers.

The main process forks DataLoader workers equal to the
num_workers parameter. The main process is responsible
for coordinating preprocessing work with the DataLoader
workers. Each DataLoader is tasked with preprocessing a
batch of data. Communication between the main process
and DataLoader workers on a node occurs via Python’s
multiprocessing.Queue, which is internally implemented
using shared memory.

31

Fig. 1. PyTorch’s program flow, where arrows denote data flow between the
main process and GPUs and between the DataLoader workers and the main
process. The PyTorch profiler captures information enclosed in the blue box
while ignoring events happening on the DataLoader workers.

There are two types of communication channels between
the main process and the workers: (a) data queue and (b)
index queues. The index queues, one per worker, send indices
of data to be processed from the main process to the worker
processes (i.e., the main process is the producer and the
worker is the consumer). The data queue, shared among
all workers and the main process, sends preprocessed data
from the workers to the main process (i.e., the worker is the
producer and the main process is the consumer).

Users can activate prefetching by setting prefetch_factor
to a value greater than 0 when declaring the DataLoader
object, default is 2. Initially, the main process places batches
of indices equal to the prefetch factor into the index queues
for each worker. Prefetching is performed only at the start
of the training process. Subsequently, before consuming the
desired batch, the main process places a single batch of indices
to the DataLoader worker which produced the desired batch.
This batch’s id is greater than the batch id of the previous
DataLoader worker.
Between the main process and the GPUs. After fetching
the desired batch from the data queue, the main process
transfers the preprocessed data to the GPUs asynchronously.
In the DataParallel setup, the data is split across available
GPUs by the GPU that received the data from the main
process. Subsequently, the main process schedules forward
and backward pass GPU kernels asynchronously. The main
process then waits for the next batch of preprocessed data
from the DataLoader workers.

III. LotusTrace: Enabling Timing Analysis
Measuring the elapsed time of preprocessing operations

within a machine learning pipeline is essential for under-
standing preprocessing performance. However, we found that
existing Python profilers struggle to provide the following cru-
cial elapsed time measurements with low overhead (§ VI-B):
[T1] Total preprocessing time for a specific batch
[T2] Time the main process spent waiting for a specific batch

to finish being preprocessed by a DataLoader worker
[T3] Time taken by each preprocessing operation in a batch

log_file = <To use our instrumentation> 1
transforms = transforms.Compose([op1(), op2(), op3(), op4()], 2
log_transform_elapsed_time=log_file) 3

class CustomDataset: 4
def __init__(self, log_file = None, transforms): 5
... 6
self.log_file = log_file # If None, then no logging 7
self.transforms = transforms # A Compose object 8
... 9

def __getitem__(self, index): 10
... 11
Calls Compose's __call__() 12
data,label = self.transforms(index) 13
... 14
return data, label 15

dataset = CustomDataset(log_file = log_file,\ 16
transforms = transforms) 17

Listing 2: LotusTrace supports custom datasets. Users just
need to provide a log_file and a Compose object and
initialize them in the __init__ method of the custom dataset
class. The __getitem__ method should call the Compose
object’s __call__ method to apply the transformations.

We introduce LotusTrace, Lotus’s profiling methodology
that addresses these challenges by instrumenting the PyTorch
DataLoader and torchvision libraries (§ III-B). In addition,
the collected data can be used to visualize the interaction
between the main process and DataLoader workers to aid in
understanding the data flow in the pipeline (§ III-C) which
allows insights into performance problems (§ V-B).

A. Challenges in Measuring Elapsed Time

The asynchronous nature of the data flow (§ II-B) poses
a challenge for both trace-based profilers like PyTorch
profiler [31] and sampling-based profilers like py-spy [24] in
capturing crucial asynchronous interactions. For instance, the
PyTorch profiler only captures events in the main process and
GPU operations (information within the blue box shown in
Figure 1), reporting preprocessing time as the main process’s
wait time for DataLoader workers (red "idle" boxes). This
differs from the actual CPU time spent on preprocessing (green
boxes). Another challenge is the efficiency of sampling-based
Python profilers in capturing short-duration preprocessing
operations, with an average elapsed time in hundreds of
microseconds (Table II). Increasing the sampling rate of the
sampling-based profilers lead to a non-trivial time, storage,
or memory overhead (§ VI-B).

B. LotusTrace Instrumentation Methodology

LotusTrace is a lightweight tracing tool that instruments
PyTorch DataLoader and torchvision library to track program
flow and events such as batch and preprocessing operations.
It minimizes performance impact by limiting tracing to two
timing measurements per event/operation achieving a per-log
overhead of ~200µs on our setup.
Using LotusTrace is simple, requiring only a custom

PyTorch build without significant API changes. Users enable
profiling by specifying a log file in the Compose and Image-
Folder APIs, as shown in Listing 1. LotusTrace also supports
custom datasets (subclasses of torch.utils.data.Dataset),
such as shown in Listing 2. In the evaluation, we demonstrate

32

1 log = ""
2 for t in self.transforms:
3 start = time.time_ns()
4 img = t(img)
5 duration = time.time_ns() - start
6 log += (f"S{t.__class__.__name__}, {start},{duration}\n")

Listing 3: Measuring elapsed time for each transform inside
the torchvision.transforms.Compose API’s __call__().

LotusTrace’s utility to trace different ML pipelines from
the MLPerf training benchmark [27] with minimal code
modifications (§ VI-C).
1) Timing Instrumentation: To capture the total prepro-

cessing time per batch [T1], we measure the time taken
by the fetch method that is called inside the DataLoader
worker loop. The main process forks DataLoader workers
and runs them inside a worker_loop. Inside this loop, a
dataset fetcher object is created, which is responsible for
returning a batch of preprocessed data when its fetch method
is called. An alternative approach could involve subclassing
or overriding the dataset fetcher, this requires knowing the
specific fetcher class in use (e.g., _MapDatasetFetcher or
_IterableDatasetFetcher). Instead, our solution targets the
common fetch method across all fetcher classes, avoiding
the need for class-specific modifications.

For the main process’s wait time [T2], we add timing instru-
mentations around where _next_data is requested. The main
process waits on a blocking operation self._get_data()
until some batch arrives, which denotes the end_wait. One
issue with measuring wait time is that the batches can arrive
out-of-order in the shared data queue. Since the main process
consumes batches in order, it has to pin (to the CPU memory)
and cache out-of-order batches. To distinguish these out-of-
order batches, they are marked with a timestamp and duration
of 1 µs to denote no waiting. In contrast, the subclass/override
approach would interfere with other DataLoader functions
beyond timing, such as process tracking and batch assignment,
requiring users to rewrite the complex and non-modular
DataLoader core logic.
To measure elapsed time for each preprocessing op-

eration [T3], we instrument the __call__ method of
torchvision.transforms.Compose (Listing 3). The __-
call__ method calls each transform in the specified order by
looping over the transform set. t.__class__.__name__ gives
the name of the transform class (e.g., RandomResizedCrop). By
wrapping instrumentation around t(), we can measure the
elapsed time for arbitrary preprocessing operations declared
using the Compose API, provided that the corresponding
operations class has a defined __call__ method inside which
the operation is performed.
2) Logging Instrumentation: We log metadata such as

batch and process IDs alongside timings to associate logs
with the specific DataLoader process responsible for pre-
processing each batch. For [T1], we capture the batch
ID using self.index_queue and the process ID using the
psutil library. For [T2], we get the cached process ID of
the main process when a DataLoader instance is created.

For [T3], we log the elapsed time for each transform in
the __call__ method of torchvision.transforms.Compose.
Note that psutil.Process().pid has to be called to obtain
the pid of the DataLoader process running, because the
dataset object is shared between the main process and the
other DataLoader worker processes.

C. Visualization of Collected Traces

LotusTrace augments the collected traces to visualize
preprocessing times and the data flow between the main
process and DataLoader workers to produce traces as shown
in Figure 2. It supports visualization at batch level (coarse)
and batch + per op level (finer) granularities. LotusTrace
captures the reference start timestamp, duration, batch ID,
and process ID for each operation, which can be used to
visualize spans (rectangular boxes) and track batch progress.
The trace has three spans namely: 1) SBatchPreprocessed_-
idx - Preprocessing span for batch idx, 2) SBatchWait_idx -
The main process’ wait time span for batch idx to be ready,
and 3) SBatchConsumed_idx - The consumption of batch
idx by the main process. To visualize the flow of events,
we augment the logs to generate an arrow from the span
of SBatchPreprocessed_idx in the DataLoader process to
its corresponding SBatchConsumed_idx marker in the main
process. § V-B provides examples of the visualizations and
generated insights in more detail.
LotusTrace can generate a standalone trace file or aug-

ment PyTorch profiler’s trace data, both compatible with
Chrome Trace Viewer (format used by PyTorch profiler).
To combine LotusTrace and PyTorch profiler data in a
single visualization, LotusTrace generates tracing logs in a
JSON format following that of the PyTorch profiler. To avoid
collisions among the LotusTrace and existing PyTorch pro-
filer’s trace data, LotusTrace uses negative synthetic_ids
to distinguish its logged events from the PyTorch profiler’s
logged events with positive integer ids.

IV. LotusMap: Enabling Hardware Analysis
Beyond fine-grained elapsed time measurements, it is

important to understand how CPU resources, such as CPU
microarchitecture, and caches, influence the efficiency of
preprocessing operations. To achieve this, Lotus introduces
LotusMap, a profiling methodology that connects low-level
hardware statistics to high-level Python functions. We demon-
strate our methodology for Intel VTune [29] targeting Intel
CPUs and AMD uProf [30] targeting AMD CPUs.

A. Challenges in Attributing Hardware Events

Hardware profilers such as Linux perf [32], Intel VTune [29],
and AMD uProf [30] collect hardware-level statistics like
cache misses and branch mispredictions. These profilers
can collect hardware events at the granularity of C/C++
functions called during an application’s end-to-end run.
However, for Python-based machine learning pipelines, the
stack-level information is lost, preventing hardware profilers
from associating hardware-level statistics with high-level

33

1 import torchvision.transforms as t, time, from PIL import Image
2 # Pick module according to CPU chip
3 import <itt or amdprofilecontrol as amd>
4 # increase PIL image open size
5 Image.MAX_IMAGE_PIXELS = 1000000000
6 image_file = "<path to image>"
7 for i in range(5):
8 # Open the image
9 image = Image.open(image_file)
10 # convert to RGB like torch's pil_loader
11 image = image.convert('RGB') # For Loader operation
12 # Define the desired crop size
13 crop_size = 224 # Define this as needed
14 time.sleep(1) # ensure correct bucketing
15 if i == 4: # Delay collection to prevent cold start
16 itt.resume() # for Intel, amd.resume(1) for AMD
17 image = t.RandomResizedCrop(crop_size)(image)
18 if i == 4:
19 itt.detach() # for Intel, amd.pause(1) for AMD

Listing 4: Example of ITT/AMDProfileControl API use to
isolate Python function.

Python functions. Hence, there is no support to isolate the
C/C++ functions related to preprocessing operations from the
rest of the ML pipeline.

PyTorch libraries are written in C++ and exposed to Python
using pybind11 [33]. Until Python 3.11, Python lacked the
necessary support for Linux perf to obtain Python frames.
Even in Python 3.12, which supports Linux perf, the Python
threads and frames that call C/C++ function bindings are lost.
Python profilers like py-spy [24] and austin [25] can collect
C/C++ functions called by Python frames but lack support
for capturing preprocessing operations, as stack frames get
labeled as __call__ instead of actual transformations like
RandomResizedCrop. This forces users to manually map
C/C++ functions to high-level Python functions by examining
the source code.
Existing work in Linux perf-map agents, such as the Java

perf-map agent [34], takes a different approach by generating
dynamic symbol mappings to produce full stack traces. The
Java perf-map agent creates a perf map file for Just-In-Time
(JIT) symbol translation by using a Java agent written in
C, along with a Java bootstrap application that attaches to
a running Java process. However, this method is specific to
Java. Implementing a similar JIT approach for Python requires
modifications to the Python runtime environment [35], leading
to increased I/O costs [36]. Furthermore, while both Java
perf-map agents and Python runtime modifications aim to
capture full stack traces, our approach focuses on isolating
and profiling only the leaf C/C++ functions that are critical
to preprocessing pipelines in machine learning workloads.

B. Mapping from C++ to Python functions

LotusMap provides a profiling methodology to map
C/C++ functions to high-level Python functions and attribute
hardware events accordingly, addressing the aforementioned
challenges across CPU architectures. This mapping process
is a preparatory step that needs to be done once for each
Python operation. Once the mapping is obtained, the user can
run the hardware profiler on the program as it is. After the
job finishes, the C/C++ functions can be mapped to Python

TABLE I
Sample mapping of Python functions to C/C++ functions obtained
from Intel (top) and AMD (bottom) chips. Listed only a few for each

for brevity. #–_imaging.cpython-310-x86_64-linux-gnu.

Transformation Function Library

Image.convert decompress_onepass libjpeg.so.9
(Loader) jpeg_idct_islow libjpeg.so.9

jpeg_idct_16x16 libjpeg.so.9
ycc_rgb_convert libjpeg.so.9
decode_mcu libjpeg.so.9
ImagingUnpackRGB Pillow lib#
__memset_avx2_unaligned_erms libc.so.6
__memcpy_avx_unaligned_erms libc.so.6
jpeg_fill_bit_buffer libjpeg.so.9

*Intel-specific __libc_calloc libc.so.6
*AMD-specific __memset_avx2_unaligned libc-2.31.so
*AMD-specific _copy Pillow lib#
*AMD-specific process_data_simple_main libjpeg.so.9
*AMD-specific sep_upsample libjpeg.so.9

RandomResizedCrop ImagingResampleHorizontal_8bpc Pillow lib#
ImagingResampleVertical_8bpc Pillow lib#

*Intel-specific __memmove_avx_unaligned_erms libc.so.6
*Intel-specific _int_free libc.so.6
*AMD-specific __memcpy_avx_unaligned_erms libc.so.6
*AMD-specific precompute_coeffs Pillow lib#

functions for further investigation of the job performance as
demonstrated in § V-D. Note that the mapping step has to
be performed on the same machine as the job run, because
the mapping may capture certain C/C++ functions specific
to a shared library installed which may differ on different
machines based on OS and ISA.
First, we isolate the C/C++ functions related to prepro-

cessing from the hundreds of unrelated functions in the rest
of the machine learning pipeline. Intel VTune provides the
Instrumentation and Tracing Technology (ITT) API, while
AMD uProf offers the AMDProfileControl API, both of which
can isolate the C/C++ code of interest. Since the preprocessing
pipeline is written in Python, we use Python bindings for
these APIs. We use an open-source Python binding for the
ITT API [37] and create a new Python binding for the
AMDProfileControl API using pybind11 [33]. This allows
us to isolate individual Python functions and profile them
separately using Intel VTune and AMD uProf. Listing 4 shows
an example of how the ITT/AMDProfileControl APIs can be
used to isolate and profile a Python function. Using this, we
obtain mappings such as shown in Table I.
However, the ITT/AMDProfileControl API bindings alone

cannot guarantee an accurate mapping due to complications
introduced by the Intel/AMD’s sampling driver. We highlight
a few problems and solutions below.

Inconsistent C/C++ functions. Since the sampling driver is
limited to sample every 10 ms (or 1 ms for AMD uProf) in user
mode sampling, some short-lived C/C++ functions may not
be captured consistently. This inconsistency is also evident
for operations like RandomBrightnessAugmentation, which
may take a different branch based on a random value. To
ensure that all corresponding C/C++ functions are captured,

34

the operation needs to be run multiple times. We use the
following formula to determine the number of runs required
for consistent capture of C/C++ functions: C ≥ 1 – (1 – f /s)n,
where s is the sampling interval, f is the function span (0 <
f ≤ s), n is the number of runs, and C is the probability of
capturing the function at least once. For example, if a C++
function takes f=660 µs, to capture it under s=10ms sampling
interval with C=75% probability at least once, we need to run
the experiment 20 times according to the formula.

Splitting Hardware Metrics. Hardware profilers like VTune
and uProf collect data at the granularity of C/C++ functions,
but a single C/C++ function can map to multiple Python
preprocessing operations. To attribute hardware metrics to the
correct Python operations, we use execution time information
from LotusTrace to compute weights for each operation and
split the metrics accordingly.

For example, consider the Front-end bound metric in VTune
for the C/C++ function __memmove_avx_unaligned_erms.
The function maps to Python operations Loader, RandomRe-
sizedCrop, and ToTensor with overall preprocessing times
of L, RRP, and TT , respectively. We compute the weight for
Loader as L/(L + RRP + TT) and multiply it by the Front-
end bound metric to get the proportion attributed to Loader.
We then multiply the metric for each C/C++ function by
its corresponding clock ticks to account for normalization
in VTune [38]. AMD uProf has similar issues which can be
mitigated by this approach.
The information provided by Lotus allows sophisticated

approximation techniques, such as considering the mix of
different C/C++ functions in a Python function when deter-
mining the weight used to split the hardware performance
counters; we leave such optimizations for future work.

Miscellaneous Instrumentation Tricks. The sampling
driver might mistakenly associate C/C++ functions from a
previous Python function with the current Python function of
interest, potentially due to out-of-order (OOO) execution [39].
It is important to correctly bucket operations to ensure that
metrics are not allocated to the wrong operations. To address
this problem, we explicitly insert sleep() before the code of
interest (Listing 4, line 14). This creates a time gap between
the end of the previous Python function and the beginning of
the function of interest. The sleep() call is used only during
the mapping phase and does not affect the actual machine
learning job. Once the mapping is complete, the pipeline
is run without the sleep() call. We also warm up before
collecting data to prevent cold starts from being accounted
for in each run (Listing 4, lines 15 and 18). If the Python
operation is short-lived, then the operation can be run with a
larger input in isolation instead of the pipeline with a small
input size after cropping.

V. Workload Characterization with Lotus

We illustrate the observations made possible by using
Lotus to profile ML preprocessing pipelines.

A. Workloads and Experiment Setup

We use Lotus to profile the three representative vision
training tasks from the MLPerf training benchmark [27]. We
do not focus on text benchmarks as they are not traditionally
bottlenecked by preprocessing [1].
Image Classification (IC). This pipeline classifies an image
to an object. We use MLPerf’s reference PyTorch imple-
mentation [27], [40], the ImageNet dataset [41], and the
ResNet18 [42] model. The pipeline contains the following
preprocessing steps: 1) Loader : Loading the image from disk
to memory and decoding it from compressed formats such as
JPEG. 2) RandomResizedCrop (RRC): Adjusting the image to
the desired size and then crop. 3) RandomHorizontalFlip (RHF):
Obtaining mirror image. 4) ToTensor (TT): Converting images
to tensors. 5) Normalization: Normalizing to zero mean and
unit variance. 6) Collation(C(k)): Collating tensors into a batch
size of k data elements.
Image Segmentation (IS). This pipeline segments an image
and classifies each segment. We use MLPerf’s [27] reference
PyTorch implementation. We use the kits19 [43] dataset
and a variant of U-Net3D [44] as the model. The pipeline
contains the following preprocessing steps: 1) Load: Loading
the data in numpy from disk to memory. 2) RandBalancedCrop
(RBC): Foreground-aware cropping based on a sampling
parameter. 3) RandomFlip (RF): Reversing elements along a
tensor’s axis. 4) Cast: Casting the tensor from float32 to
uint8. 5) RandomBrightnessAugmentation (RBA): Adjusting
brightness. 6) GaussianNoise (GN): Adding gaussian noise.
7) Collation(C(k)): Coalescing tensors to a batch of size k.
Object Detection (OD). This pipeline creates bounding boxes
around objects in an image. We use MLPerf’s [27] reference
PyTorch implementation with preprocessing steps similar to
IC, except using resizing instead of resizing and cropping. We
use the MS COCO dataset [45], and GeneralizedRCNN [27]
(Mask R-CNN [46] with a ResNet-50 [42] backbone) as the
machine learning model.
In our setup, preprocessing operations (including reading

and decoding images) are CPU-based, whereas forward and
backward passes on the deep learning model are GPU-based.
All experiments in the above pipelines are performed for one
epoch. Validation is not performed in any of the above training
pipelines. For IS and OD, we use the default configurations
in the reference implementation, which has a batch size of
2, one GPU, and 8 and 4 data loaders respectively. For IC,
Table II has batch size 128, one GPU, and one dataloader, and
Figure 2 (a) has batch size 1024, 4 GPUs, and 4 dataloaders.
Environment. The experiments are conducted on a CloudLab
c4130 node [47], a dual-socket 3.2GHz E5-2667 Intel Xeon
CPU, with 128 GiB of RAM, four NVIDIA V100 GPUs, each
with 16 GiB memory and NVLink support, and a remote
dataset mounted to a single node [48] as a ZFS zvol exported
via iSCSI [49]. The software environment includes Python
3.10, PyTorch 2.0.1 with Torchvision 0.15, image processing
using libjpeg-9e, GPU acceleration through CUDA 11.8 and

35

TABLE II
Top half: elapsed time (in ms) per preprocessing operation for an image.
Bottom half: percentage of preprocessing operations with elapsed

time less than 10 ms and 100 µs.

IC Loader RRC RHF TT Normalize C(128)

Avg 4.76 1.11 0.06 0.34 0.21 49.76
P90 6.02 1.39 0.08 0.39 0.23 52.49

<10ms 97.79 99.82 100 100 100 ~0
<100µs 0 0 98.3 0 0 0

IS Loader RBC RF Cast RBA GN C(2)

Avg 72.03 91.10 4.39 2.16 0.78 6.46 14.24
P90 130.94 298.62 8.84 4.32 4.66 54.54 15.81

<10ms 0 63.69 95.23 98.21 98.8 88.69 0
<100µs 0 61.30 28.57 0 88.69 88.69 0

OD Loader Resize RHF TT Normalize C(2)

Avg 9.59 9.43 0.52 6.75 7.8 7.39
P90 15.57 11.56 1.13 12.86 12.6 10.44

<10ms 58.46 76.54 100 87.68 79.96 87.13
<100µs 0 0 49.96 0 0 0

Fig. 2. [Coarse traces] – For (a), the preprocessing is the bottleneck leading
to a comparatively smaller delay time, whereas for (b) and (c), the GPU
processing is the bottleneck leading to a larger delay time

cuDNN 8.7. The system ran on Ubuntu 20.04 with kernel
version 5.4.0-139-generic.

B. Observations from LotusTrace Tracing

Table II reports per image average and 90th percentile
elapsed time for each preprocessing operation as well as the
percentage of preprocessing operations in the workload with
elapsed time less than 10 ms and even 100 µs across the three
MLPerf pipelines.
Takeaway 1: All pipelines have operations with short elapsed

times under 10 ms (even 100µs), which would have been chal-

lenging to capture with sampling-based profilers. By enabling

Fig. 3. Out-of-order arrival can cause the main process to wait despite the
desired batch being ready.

timing measurements for each operation per image, rather than

just aggregates, LotusTrace reveals high time variability in

certain operations (e.g., RBC in IS and Loader in OD). No single

operation dominates the elapsed time, requiring comprehensive

profiling of all operations.

Figure 2 visualizes the LotusTrace data, showing the
timeline of operations in the main process (first row) and
data loader processes. Each colored span represents an
event’s duration. We discuss bottlenecks using two key
metrics (illustrated in Figure 3): wait time, the time the main
process is idle while waiting for a preprocessed batch, and
delay time, the time a batch waits after being preprocessed
and before being consumed. In Figure 2(a), SBatchWait_699
shows the main process wait time before consuming batch
699, while the arrow from SBatchPreprocessed_699 to
SBatchConsumed_699 shows the delay time for that batch.
The three pipelines exhibit different bottlenecks. In IC,

preprocessing is the bottleneck, causing short delay times. IS
and OD have long delay times of 10.9 s and 1.64 s for nearly
all batches, much longer than their GPU processing times of
750 ms and 250 ms respectively, indicating a GPU processing
bottleneck with batches waiting for GPU availability.
These differences stem from MLPerf’s use of offline and

online preprocessing. In IS and OD, some preprocessing steps
are applied to the raw dataset before training, which helps
avoid bottlenecks during training. In these pipelines, none
of the batches wait longer than the GPU processing time,
confirming the GPU bottleneck. The parallel preprocessed
batches appear sequential as a result, as seen by the non-
overlapped colored SBatchPreprocessed boxes in Figure 2(b)
and (c). IC does not decode and convert image data to numpy
format a priori and exhibits a preprocessing bottleneck during
training. Figure 2(a) shows parallel preprocessing on the data
loader processes.
Takeaway 2: Training benchmarks that are optimized for

time-to-accuracy apply some preprocessing operations on the

raw dataset before training to avoid getting bottlenecked by

preprocessing during training. When GPU processing is the

bottleneck, parallel preprocessing appears sequential in the trace.

LotusTrace’s data flow visualization between the main process

and data loader workers for each batch helps to explain these

preprocessing bottlenecks.

36

Fig. 5. (a) The main process has to wait for at least 1/3rd of the batches for >500 ms. (b) The batch delay time ranges from 32.1% to 61.6% for >500 ms
except for batch size 512, GPU 1.

Fig. 4. Preprocessing time per batch has high variance.

C. Observations from Timing Analysis

We delve further into the IC pipeline, which exhibits
a preprocessing bottleneck. Our analysis reveals two key
findings enabled by LotusTrace: high variance in per-batch
preprocessing time and significant main process wait time
and batch delay time due to out-of-order arrivals.
1) High variance in preprocessing time: We run the

IC pipeline under varying batch sizes from b ∈
{128, 256, 512, 1024}, number of GPUs g ∈ {1, 2, 3, 4}, with
the number of data loaders set equal to the number of GPUs.
Figure 4 reports the per-batch preprocessing time across
these configurations. Overall, we observe a high variance
in preprocessing time, with the standard deviation per config
ranging from 5.48% to 10.73% of the per-config average.
This variability becomes more pronounced with larger batch
sizes: the Inter Quartile Range (IQR) increases by up to 6.9×
when comparing smaller batch sizes (128) to larger ones
(1024). IS and OD have similar variability with a standard
deviation of 15.47% and 66.8% respectively over the average.
This variability is primarily attributed to two factors: the
diverse sizes of images in the ImageNet dataset (mean file
size of 111 KB and a standard deviation of 133 KB), and the
randomness of preprocessing operations. Per-batch elapsed
time measurement is unique to LotusTrace due to challenges
related to PyTorch’s data flow (§ III-B).

High variability in preprocessing time presents significant
challenges in resource provisioning. Extrapolating the pre-
processing times of a few batches for resource allocation
could result in consistent underutilization or overutilization of
computational resources. An alternative strategy of batching
images of similar sizes to reduce variability is also not ideal, as
it could compromise the randomness essential in ML training
pipelines. One recent work, SpeedyLoader [50], attempts to
tackle this issue by load-balancing input data, albeit limited to
the characteristics of a single workload (IS). This provisioning
challenge underscores the need for fine-grained performance
characterization for any given preprocessing workload, which
LotusTrace provides.
Takeaway 3: Variations in input data sizes contribute to

the high variability of the observed per-batch preprocessing

time. LotusTrace’s fine-grained measurements capture this

variability on a per-batch granularity and can aid in resource

provisioning challenges.

2) Significant wait and delay time: To further investi-
gate the preprocessing bottleneck, we analyze the wait and
delay time for a specific batch size of 512. Figure 5 (a) shows
that the main process waits over 500 ms for 30.84% to 100% of
the batches, which exceeds the maximum processing time of a
batch on the GPU for this configuration. This indicates that the
GPU stalls due to preprocessing. In addition, the preprocessed
batches experience significant delay time. Figure 5 (b) shows
that when using more than one dataloader, 32.1% to 61.6% of
batches experience a delay time of over 500 ms.
LotusTrace revealed that out-of-order batch arrivals,

caused by the shared data queue among multiple data loaders,
significantly contribute to the large wait and delay time.
The main process, operating on a single thread, processes
one batch at a time. If the desired batch is not at the front
of the queue, the main process pins the first batch in the
queue to CPU memory and continues to poll the data queue
until the desired batch arrives at the front. For example,
in Figure 3, DataLoader 1 finishes preprocessing and puts
the batch in the shared queue, but the main process is
occupied with pinning a batch from DataLoader 2, and the
batch from DataLoader 1 must wait for the main process to

37

Fig. 6. Combining LotusTrace and LotusMap enables analysis of performance of preprocessing operations on hardware.

become available. LotusTrace’s ability to track each batch’s
ID through the preprocessing phase allows us to identify such
out-of-order events.

These out-of-order events can result in prolonged GPU idle
periods. Future work could leverage the information provided
by LotusTrace for better DataLoader scheduling or GPU
multiplexing techniques.
Takeaway 4: Out-of-order batch arrivals due to the shared data

queue among multiple data loaders can lead to significant wait

times for the main process and preprocessed batches, resulting in

GPU stalls. LotusTrace’s tracing capabilities enable identifying

and analyzing such out-of-order events.

D. Observations from Hardware Performance

We present a case study to demonstrate the Lotus’s
capability to link high-level Python functions with low-level
hardware performance counters by combining information
collected via LotusTrace and LotusMap. This case study
investigates the impact of the number of data loader workers
on the performance of the image classification pipeline.
To conduct this study, we use a fixed batch size of 1024

and 4 GPUs and vary the number of data loader workers
from 8 to 28 in increments of 4. Exceeding 28 workers leads
to OOM issues on our 32-core machine. The experiments
run for 1 epoch, processing the same amount of training
data across all configurations. As a result, the variability in
preprocessing time is attributed to the number of dataloader
workers. The data collection involves using LotusTrace for
preprocessing operation information and Intel VTune for
hardware performance counter data.

In Figure 6(a), we observe a ~50% drop in E2E job elapsed
time as the number of dataloaders increase from 8 to 28.
Beyond 20 dataloaders, there is a diminishing return in
performance gain. LotusTrace reveals that total CPU seconds
increased from 9402.62 to 14423.64 seconds (53% increase) from
8 to 28 data loaders, with a steady rise in each preprocessing
operation’s CPU time (Figure 6(b)).

On the other hand, VTune’s profile collects hardware
performance counters for 300+ C/C++ functions called during
the run, which can not be directly used to explain the rise of
CPU time for each preprocessing operation on the hardware
level. We use LotusMap to obtain a mapping (Table I) of
C/C++ functions to Python preprocessing operations. The
mapping allows us to filter out C/C++ functions irrelevant
to preprocessing from the 300+ candidates (Figure 6(c,d)).
By combining the mapping and the elapsed time measured
by LotusTrace, we can attribute hardware performance
counters from C/C++ functions to the corresponding Python
preprocessing operations, enabling reporting of hardware
metrics per preprocessing operation (Figure 6(e - h)), a
capability not previously available.

Figure 6(e) shows that CPU time increases steadily for all
preprocessing operations, in line with our observation from
LotusTrace. Figure 6(f) and Figure 6(g) further explain this
increase by revealing a steep undersupply of uOperations to
the backend as data loaders increase, causing low contention
for cores in the backend of the microarchitecture. With the
workload being front-end bound, the pressure on stalls caused
by loads serviced by Local DRAM decreases (Figure 6(h)).

38

TABLE III
Comparison of profiler overheads. Time overheads are compared with

the baseline which runs the same experiment with no profiler.

Profiler Dataset Wall time Log storage

Lotus ImageNet ~0% 299.2MB
Scalene ImageNet 96.1% 2.5 MB
py-spy ImageNet 8% 97.8 MB

Lotus ImageNet-small ~2% 6.1 MB
austin ImageNet-small 3.2% 6.8 GB
PyTorch Profiler ImageNet-small 86.4% 30.3 MB

TABLE IV
Comparison of profiler functionalities.

Profiler Epoch Batch Async Wait Delay

Lotus Ë Ë Ë Ë Ë
Scalene é é é é é
py-spy Ë é é é é
austin Ë é é é é
PyTorch Profiler é é é Ë é

Additionally, this example underscores the importance of
LotusMap’s mapping quality. For instance, even though
ToTensor is a short-lived function, it occurs frequently.
Without capturing its mappings using techniques described
in § IV-B, we wouldn’t be able to account for its signifi-
cant contribution to the trends observed in Figure 6(f,g,h).
Bucketing and handling of inconsistent functions are also
important to ensure that hardware performance counters are
attributed correctly. For example, if decode_mcu, the most
CPU time-consuming function, is incorrectly bucketed with
RandomResizedCrop, we would observe a 30.21% increase in
the CPU time of RandomResizedCrop. For brevity, we do not
include analysis on AMD (see our repository for details).
Takeaway 5: Selecting the number of data loader workers is

non-trivial, as increasing their number could have diminishing

returns in reducing end-to-end job elapsed time while leading

to an increase in CPU time. Lotus helps reveal contentions in

hardware resources under different configurations.

VI. Comparison of Profilers
We compare LotusTrace with several other profiling tools.

Our experiments show that LotusTrace (1) incurs smaller
time and storage overheads, while providing more information
compared to alternatives (§ VI-B); and that (2) it is easy to
use and requires minimal code changes for instrumenting
new machine learning pipelines (§ VI-C).

A. Experiment Setup

We compare LotusTrace with four representative Python
profilers.
• Scalene [23]: a state-of-the-art sampling-based Python
profiler for CPU and GPU usage with respect to time and
memory consumed by each line of Python code.

• py-spy [24]: a sampling-based Python profiler that cap-
tures CPU time per function.

• austin [25]: a sampling-based Python profiler for CPU and
memory consumed per function.
• PyTorch profiler [31]: PyTorch’s built-in tracing-based
profiler (torch.profiler).
For performance, we compare the wall time overhead

throughout the program’s lifetime relative to a baseline run
without profiling, as well as the log storage overhead. For
functionality, we assess whether each profiler captures key
preprocessing metrics: the overall and per-operation elapsed
times in an epoch (Epoch), the per batch elapsed time (Batch),
the asynchronous interaction between the main process and
the dataloaders that enables data flow visualization (Async),
the main process batch wait time (Wait), and the batch
consumption delay time (Delay).

B. Overhead and Functionality

We evaluate the profilers on the IC pipeline with the
ImageNet dataset described in Section V-A, using a batch size
of 512, 1 GPU, and 1 data loader, with sampling randomness
disabled for consistency. Since some profilers face challenges
with storage overhead or out-of-memory (OOM) errors with
the full ImageNet, we also include a subset of ImageNet
consisting of 26,061 images (ImageNet-small), to facilitate
comparison in these cases. Table III and Table IV summarize
the profiling overhead and functionality of each tool. Overall,
LotusTrace provides the most detailed preprocessing insights
with the least overhead.

Scalene, py-spy, and austin use sampling to capture profiling
information. Scalene has a high wall time overhead of 96%,
interfering with program completion time. Its default sampling
rate of 10 ms is too coarse to measure many preprocessing
operations that take <10ms per image (Table II). Increasing the
sampling rate puts the profiler on the critical path, distorting
results [23]. py-spy has a lower wall time overhead of 8%
but still suffers from the coarse 10 ms default sampling
rate. It can report per-epoch preprocessing times within 1%
of LotusTrace, but lacks markers for batch boundaries to
report per batch time. Austin supports a finer 100µs sampling
rate, enabling more accurate capture of short operations.
However, the finer sampling leads to 1000× higher storage
overhead than LotusTrace (6.8GB vs 6.1MB on ImageNet-
small). Additionally, its default sampling rate of 100µs is too
coarse to measure many preprocessing operations that take
<100µs per image (Table II). Austin’s per-epoch preprocessing
and operation times are within 0% and 15% of LotusTrace,
respectively. Like py-spy, it lacks batch markers.
PyTorch’s tracing-based profiler effectively captures the

main process’s wait time for a batch but provides no visibility
into preprocessing worker execution. It has a high overhead,
with 86% wall time and 5× storage compared to LotusTrace
on ImageNet-small. The profiler buffers profiling data in
memory until program completion, causing OOM errors on
the full ImageNet dataset.
In contrast, LotusTrace uses instrumented tracing to

capture fine-grained timings of the entire preprocessing
pipeline with a low wall time overhead of <2%. LotusTrace

39

is the only profiler that can capture the asynchronous flow of
data between the main process and workers, enabling unique
metrics like per-batch timings, wait times, and batch delays
not captured by other tools.

C. Ease of use

We discuss the generalizability and the ease of use of
LotusTrace by comparing the instrumentation efforts needed
to profile the three ML pipelines described in § V-A.
Despite the difference in task, model, dataset, and prepro-

cessing operations, all pipelines require less than 25 lines
of code changes for instrumentation. The changes mainly
involve passing log file paths and modifying preprocessing
operations, with the application logic and program flow
remaining unchanged with the instrumentation in all cases.
The IS pipeline needs 17 lines of changes, of which 7 lines are
for passing the log file path and 10 lines are for consolidating
preprocessing operations within a torchvision.Compose call.
The OD pipeline requires 23 lines of changes, with 8 lines for
passing file paths and 15 lines for preprocessing operations.
The IC pipeline needs 10 lines of changes, consisting of 5
lines for passing file paths and 5 lines for preprocessing
operations/dataset class.

Although LotusTrace requires code changes, the effort is
small and can be justified given the additional insights into
the preprocessing pipeline execution. In comparison, purely
sampling-based profilers and PyTorch profiler do not require
any code changes but offer limited information.

VII. Related Work

Preprocessing optimization. Recent studies have explored
various CPU-based and accelerator-based optimizations for
preprocessing pipelines [1], [2], [7]–[9], [12]–[15], [17]–[22],
[50], [51]. For CPU-based optimizations, tf.data [8] simplifies
composing preprocessing steps in Tensorflow by providing a
declarative API and automatic tuning performance knobs such
as prefetching, parallel computing, and IO. Plumber [9] collects
aggregate statistics about CPU cycles, I/O, and materialization
cost to analytically bound and configure a parallelism strategy
for the preprocessing pipeline. While these prior works have
focused on identifying bottlenecks and optimizations, they
do not provide a tool to characterize the performance of
the preprocessing pipelines under different configurations.
Lotus is unique in its ability to identify bottlenecks because
it enables characterization both at the level of the ML
framework as well as the CPU processor. This aids in the
identification of how the bottleneck can shift from the
framework level, due to misconfiguration, to the CPU level,
due to specific architecture component contention, guiding
future optimization. Orthogonal to our focus are GPU-based
preprocessing libraries such as DALI [11], which offloads
the bottleneck to (expensive) GPUs. The choice between
CPU and GPU-based preprocessing depends on the specific
workload and system configurations. Moreover, GPU-based
preprocessing libraries often require CUDA expertise to write
performant custom operations.

Profiling Machine Learning Pipelines. Framework-based
profilers, such as the PyTorch profiler, were designed to
aid in ML training, but they have limitations. The PyTorch
profiler, for instance, focuses on capturing asynchronous
interactions between CPU and GPU operations rather than
the data flow between the main process and DataLoader
workers. General-purpose Python profilers such as cPro-
file [52], Profile [53], pprofile [54], line_profiler [55], and
pyinstrument [56] do not support multi-processing, and are
also not able to capture the asynchronous data flow. The recent
focus on improving preprocessing efficiency has motivated
solutions aimed at understanding the preprocessing pipeline.
For instance, Plumber [9] collects aggregate statistics to
capture per-operation throughput and CPU time, but lacks
support for identifying hardware bottlenecks or stalls in the
asynchronous data flow. Another work focuses on profiling
and understanding tradeoffs between caching intermediate
results to storage and recomputation [16]. Lotus provides
complementary insights into the execution trends in pre-
processing steps. While existing tools for profiling Python
applications and accessing low-level hardware data offers
some of this information, we outlined their limitations in
§ VI and § IV, and demonstrated that Lotus addresses the
profiling goals.

VIII. Conclusion
ML data preprocessing has emerged as an important

performance bottleneck in ML training pipelines. To facilitate
current and future work on optimizing data preprocessing,
there is a growing need for better tools that provide fine-
grained insights into the execution of preprocessing opera-
tions. In this work, we present Lotus, a new profiling tool
for PyTorch preprocessing pipelines. Lotus combines a new
instrumentation methodology to capture fine-grained timing
information about individual preprocessing steps, with a new
mapping technique that allows it to link hardware-level events
with distinct Python operations. Using several preprocessing
pipelines from the MLPerf benchmark, we demonstrate that
Lotus provides insights into the pipeline execution which is
not otherwise available with existing state-of-the-art profilers,
while requiring minimal instrumentation effort. Lotus is open
sourced, and we welcome contributions from the community
as we enhance it with additional features, such as automated
log analysis, and evaluate it with other use cases.

References
[1] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Ana-

lyzing and mitigating data stalls in DNN training,” Proceedings VLDB
Endowment, vol. 14, no. 5, pp. 771–784, Jan. 2021.

[2] M. Zhao, E. Adamiak, and C. Kozyrakis, “cedar: Composable and
optimized machine learning input data pipelines,” Jan. 2024.

[3] NVIDIA, “NVIDIA DGX-1 THE ESSENTIAL INSTRUMENT FOR AI
RESEARCH,” https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/dgx-1/dgx-1-rhel-datasheet-nvidia-us-808336-r3-web.
pdf, Jul. 2019, accessed: 2024-5-14.

[4] NVIDIA, “NVIDIA DGX-2 THE WORLD’S MOST POWERFUL DEEP
LEARNING SYSTEM FOR THE MOST COMPLEX AI CHALLENGES,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf, Oct. 2018,
accessed: 2024-5-15.

40

[5] P. Tredak and S. Layton, “S8906: Fast data pipelines for deep learning
training, 2018.”

[6] J. Lisiecki and M. Zientkiewicz, “S9925: FAST AI DATA
PREPROCESSING WITH NVIDIA DALI,” https://developer.
download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9925-fast-ai-data-pre-processing-with-nvidia-dali.pdf, Mar. 2019,
accessed: 2024-5-15.

[7] A. Audibert, Y. Chen, D. Graur, A. Klimovic, J. Šimša, and C. A. Thekkath,
“tf.data service: A case for disaggregating ML input data processing,” in
Proceedings of the 2023 ACM Symposium on Cloud Computing. ACM,
pp. 358–375.

[8] D. G. Murray, J. Šimša, A. Klimovic, and I. Indyk, “tf.data: A machine
learning data processing framework,” Proceedings VLDB Endowment,
vol. 14, no. 12, pp. 2945–2958, Jul. 2021.

[9] M. Kuchnik, A. Klimovic, J. Šimša, V. Smith, and G. Amvrosiadis,
“Plumber: Diagnosing and removing performance bottlenecks in machine
learning data pipelines,” in Proceedings of Machine Learning and Systems,
D. Marculescu, Y. Chi, and C. Wu, Eds., vol. 4. Indio, CA: Systems
and Machine Learning Foundation, 2022, pp. 33–51.

[10] I. Svogor, C. Eichenberger, M. Spanring, M. Neun, and M. Kopp,
“Profiling and improving the PyTorch dataloader for high-latency storage:
A technical report,” arXiv [cs.LG], Nov. 2022.

[11] “NVIDIA developer data loading library (DALI),” https://developer.nvidia.
com/dali, accessed: 2024-5-18.

[12] P. Park, H. Jeong, and J. Kim, “TrainBox: An extreme-scale neural
network training server architecture by systematically balancing
operations,” in 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). IEEE, pp. 825–838.
[13] D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl, “Faster neural network

training with data echoing,” Jul. 2019.
[14] G. Leclerc, A. Ilyas, L. Engstrom, S. Park, H. Salman, and A. Madry,

“FFCV: Accelerating training by removing data bottlenecks,” in 2023

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2023, pp. 12 011–
12 020.

[15] D. Graur, D. Aymon, D. Kluser, T. Albrici, C. A. Thekkath, and
A. Klimovic, “Cachew: Machine learning input data processing as a
service,” in 2022 USENIX Annual Technical Conference (USENIX ATC 22).
Carlsbad, CA: USENIX Association, Jul. 2022, pp. 689–706.

[16] A. Isenko, R. Mayer, J. Jedele, and H.-A. Jacobsen, “Where is my training
bottleneck? hidden Trade-Offs in deep learning preprocessing pipelines,”
in Proceedings of the 2022 International Conference on Management of

Data, ser. SIGMOD ’22. New York, NY, USA: Association for Computing
Machinery, Jun. 2022, pp. 1825–1839.

[17] “TFRecord and tf.train.example,” https://www.tensorflow.org/tutorials/
load_data/tfrecord, accessed: 2024-5-18.

[18] H. Zhao, Z. Yang, Y. Cheng, C. Tian, S. Ren, W. Xiao, M. Yuan, L. Chen,
K. Liu, Y. Zhang, Y. Li, and W. Lin, “GoldMiner: Elastic scaling of
training data Pre-Processing pipelines for deep learning,” Proc. ACM
SIGMOD Int. Conf. Manag. Data, vol. 1, no. 2, pp. 1–25, Jun. 2023.

[19] T. Um, B. Oh, B. Seo, M. Kweun, G. Kim, and W.-Y. Lee, “FastFlow:
Accelerating deep learning model training with smart offloading of
input data pipeline,” vol. 16, pp. 1086–1099.

[20] D. Graur, O. Mraz, M. Li, S. Pourghannad, C. A. Thekkath, and
A. Klimovic, “Pecan: Cost-efficient ML data preprocessing with au-
tomatic transformation ordering and hybrid placement,” in 2024 USENIX

Annual Technical Conference (USENIX ATC 24). USENIX Association,
pp. 649–665.

[21] H. Zhao, Z. Han, Z. Yang, Q. Zhang, M. Li, F. Yang, Q. Zhang,
B. Li, Y. Yang, L. Qiu, L. Zhang, and L. Zhou, “SiloD: A co-design
of caching and scheduling for deep learning clusters,” in Proceedings of

the Eighteenth European Conference on Computer Systems, ser. EuroSys
’23. New York, NY, USA: Association for Computing Machinery, May
2023, pp. 883–898.

[22] G. Lee, I. Lee, H. Ha, K. Lee, H. Hyun, A. Shin, and B.-G. Chun,
“Refurbish your training data: Reusing partially augmented samples for
faster deep neural network training,” in 2021 USENIX Annual Technical

Conference (USENIX ATC 21). USENIX Association, Jul. 2021, pp.
537–550.

[23] E. D. Berger, S. Stern, and J. A. Pizzorno, “Triangulating python
performance issues with SCALENE,” in 17th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 23). Boston, MA:
USENIX Association, Jul. 2023, pp. 51–64.

[24] B. Frederickson, “py-spy: Sampling profiler for python programs,” https:
//github.com/benfred/py-spy.

[25] G. N. Tornetta, “austin: A frame stack sampler for cpython,” https:
//github.com/P403n1x87/austin.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, “PyTorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.

[27] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, D. Kang,
D. Kanter, N. Kumar, J. Liao, D. Narayanan, T. Oguntebi, G. Pekhimenko,
L. Pentecost, V. Janapa Reddi, T. Robie, T. St John, C.-J. Wu, L. Xu,
C. Young, and M. Zaharia, “MLPerf training benchmark,” in Proceedings

of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze, Eds., vol. 2, pp. 336–349.

[28] “LOTUS: A profiling tool for ml preprocessing pipelines,” https://github.
com/rajveerb/lotus/tree/iiswc24ae.

[29] “Intel VTune™ profiler documentation,” https://www.intel.com/content/
www/us/en/developer/tools/oneapi/vtune-profiler-documentation.
html, accessed: 2024-5-30.

[30] “AMD µProf,” https://www.amd.com/en/developer/uprof.html, accessed:
2024-5-30.

[31] “The pytorch profiler: torch.profiler,” https://pytorch.org/docs/stable/
profiler.html.

[32] “perf_events tutorial,” https://perf.wiki.kernel.org, accessed: 2024-5-30.
[33] “pybind11: Seamless operability between c++11 and python.”
[34] “perf-map-agent: A java agent to generate method mappings to

use with the linux ‘perf‘ tool,” https://github.com/jvm-profiling-tools/
perf-map-agent.

[35] “Allow the linux perf profiler to see python calls,” https://github.com/
python/cpython/issues/96143.

[36] “Allow “precompiled” perf-trampolines to largely mitigate the cost of
enabling perf-trampolines,” https://github.com/python/cpython/issues/
109587.

[37] “itt-python,” https://github.com/oleksandr-pavlyk/itt-python.
[38] “Intel perfmon - broadwell formula,” https://github.com/intel/perfmon/

blob/9bc2f87094fc84cc6bcc87df276807b182ddd327/BDX/metrics/perf/
broadwellx_metrics_perf.json.

[39] B. Gregg, “Linux profiling at netflix,” https://www.slideshare.net/
slideshow/scale2015-linux-perfprofiling/44966387, accessed: 2024-8-7.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[41] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on

Computer Vision and Pattern Recognition, 2009, pp. 248–255.
[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Dec. 2015.
[43] N. Heller, N. Sathianathen, A. Kalapara, E. Walczak, K. Moore,

H. Kaluzniak, J. Rosenberg, P. Blake, Z. Rengel, M. Oestreich, J. Dean,
M. Tradewell, A. Shah, R. Tejpaul, Z. Edgerton, M. Peterson, S. Raza,
S. Regmi, N. Papanikolopoulos, and C. Weight, “The KiTS19 challenge
data: 300 kidney tumor cases with clinical context, CT semantic
segmentations, and surgical outcomes,” ArXiv, vol. abs/1904.00445, Mar.
2019.

[44] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-
Hein, “No New-Net,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke

and Traumatic Brain Injuries. Springer International Publishing, 2019,
pp. 234–244.

[45] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,”
in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp.
740–755.

[46] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” Mar. 2017.
[47] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,

M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart,

41

L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra,
“The design and operation of CloudLab,” in Proceedings of the USENIX

Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.
[48] CloudLab, “CloudLab: 10 storage mechanisms.”
[49] “Adding zvols,” https://www.truenas.com/docs/core/coretutorials/

storage/pools/zvols/.
[50] R. Nouaji, S. Bitchebe, and O. Balmau, “SpeedyLoader: Efficient

pipelining of data preprocessing and machine learning training,” in
Proceedings of the 4th Workshop on Machine Learning and Systems, ser.
EuroMLSys ’24. New York, NY, USA: Association for Computing
Machinery, Apr. 2024, pp. 65–72.

[51] D. Kang, A. Mathur, T. Veeramacheneni, P. Bailis, and M. Zaharia,
“Jointly optimizing preprocessing and inference for DNN-based visual
analytics,” Proceedings VLDB Endowment, vol. 14, no. 2, pp. 87–100, Oct.
2020.

[52] B. Rosen and T. Czotter, “The Python Profilers (cProfile).”
[53] J. Roskind, “The Python Profilers (profile).”
[54] V. Pelletier, “pprofile: Line-granularity, thread-aware deterministic and

statistic pure Python profiler.”
[55] “line_profiler: Line-by-line profiling for python.”
[56] J. Rickerby, “pyinstrument: Call stack profiler for Python.”

Appendix
A. Abstract

The artifact contains the source code and documentation
for Lotus, encompassing both LotusTrace and LotusMap
components. We detail the installation procedure and experi-
mental workflows necessary to partially reproduce the results
presented in Figure 4, Figure 5 and Figure 6. In addition, we
provide instructions for generating tracing visualizations, as
shown in Figure 2, and for mapping Python functions to their
C++ counterparts for Intel chips, as shown in Table I.

B. Artifact check-list (meta-information)

• Program: Image classification, Bash, PyTorch, Python, Google
Chrome

• Compilation: CUDA, gcc/g++, CMake
• Binary: Intel VTune
• Model: ResNet18
• Data set: ImageNet 2012
• Run-time environment: Intel processor, Anaconda, Ubuntu

20.04 (kernel version 5.4.0-139-generic)
• Hardware: c4130 node in Cloudlab.
• Metrics: Elapsed time, CPU time, Hardware PMU stats
• Output: Trace, JSON, CSV, and PNG files (plots)
• Experiments: Python scripts, Bash scripts, and Intel VTune
• How much disk space required (approximately)?: 500 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 5 hours
• How much time is needed to complete experiments

(approximately)?: 5 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT license (with some

code under BSD-3 License)
• Archived (provide DOI)?: Zenodo: https://zenodo.org/doi/10.

5281/zenodo.13245169

C. Description

1) How to access: All our code is available in the follow-
ing GitHub repository: https://github.com/rajveerb/lotus/tree/
iiswc24ae. All the scripts, code, submodules and instructions
can be found in the repository.

The up-to-date instructions for setting up the environment
are available in the repository (under SETUP.md). The up-to-
date instructions for installations (Section D) and experiment

workflow (Section E) are also available in the repository (under
REPLICATE.md)

2) Hardware dependencies: There are no specific hardware
dependencies for this project. The code has been tested on
Intel and AMD processors, NVIDIA A40/V100 GPUs. For
replication, we recommend the c4130 node on Cloudlab, which
has an Intel Processor chip supported by Intel VTune and 4
NVIDIA V100 GPUs.

3) Software dependencies: The artifact requires: Anaconda,
Intel VTune, CUDA, CuDNN, Python (3.10), PyTorch (2.0),
Google Chrome, and Ubuntu for replication purpose. We
provide scripts and detailed instructions for installing the
dependencies.
4) Data sets: ImageNet 2012 dataset (~140GB)
5) Models: ResNet18 model

D. Installation

1) Clone the Lotus repository and get submodules:
git clone --depth 1 --recurse-submodules\
git@github.com:rajveerb/lotus.git\
-b iiswc24ae
cd lotus

2) Create a conda environment:
conda create -n lotus python=3.10 -y
conda activate lotus

3) Install itt-python using build instructions below:
pushd code/itt-python
export ITT_LIBRARY_DIR=/opt/intel/oneapi/vtune\

/latest/lib64
export ITT_INCLUDE_DIR=/opt/intel/oneapi/vtune\

/latest/include
python setup.py install
Check if installed
pip list | grep "itt"
popd

4) Follow the LotusTrace build instructions (will take a few
hours) below:

sudo apt install -y g++
bash install_lotustrace.sh
Sanity check
pip list | grep "torch" | grep "2.0.0a0"

5) Follow the torchvision build instructions below:
bash install_torchvision.sh
Sanity check
pip list | grep "torchvision" | grep "0.15.1a0"

6) Install below packages:
conda install ipykernel pandas=2.0.3 -y
pip install matplotlib==3.9.0 natsort==8.4.0\
seaborn==0.13.2

E. Experiment workflow

1) Mapping Results:

1) Get the mapping logs for the preprocessing operations:
bash code/image_classification/LotusMap/LotusMap.sh

2) Run all cells in the code/image_classification/Lo-
tusMap/Intel/logsToMapping.ipynb notebook. This gen-
erates a JSON file with mapping info code/image_classi-
fication/LotusMap/Intel/mapping_funcs.json, similar
to Table I.

42

2) Tracing Results:

1) Run the Image Classification pipeline experiment where
batch size is 512 and number of GPUs is 4 and LotusTrace
is enabled:
Activate VTune, command will fail
an error if it is already activated
source /opt/intel/oneapi/setvars.sh
Sanity check
vtune --version
bash scripts/cloudlab/LotusTrace_imagenet.sh

2) Run the commands below for observations in ‘High variance
in preprocessing time‘ (Figure 4 and the statistics):
python code/image_classification/analysis/\
LotusTrace_imagenet_vary_batch_and_gpu/\
preprocessing_time_stats.py\
--remove_outliers\
--data_dir lotustrace_result/512_gpu4/\
--output_file lotustrace_result/\

preprocessing_time_stats.log
python code/image_classification/analysis/\

LotusTrace_imagenet_vary_batch_and_gpu/\
box_plot_preprocessing_time.py\

--remove_outliers\
--data_dir lotustrace_result/512_gpu4\
--output_file lotustrace_result/\

box_plot_preprocessing_time.png

3) Run the commands below for observations in ‘Significant
wait and delay time‘ (Figure 5 and the statistics):

python code/image_classification/analysis/\
LotusTrace_imagenet_vary_batch_and_gpu/\
delay_and_wait_time_stats_and_plot.py\

--sort_criteria duration\
--data_dir lotustrace_result/b512_gpu4\
--fig_dir lotustrace_result/figures\
--output_file lotustrace_result/\

delay_and_wait_time_stats_and_plot.log

4) Run the visualization script (Figure 2):
python code/visualize_LotusTrace/\

visualization_augmenter.py\
--coarse\
--lotustrace_trace_dir lotustrace_result/b512_gpu4\
--custom_log_prefix lotustrace_log\
--output_lotustrace_viz_file\
lotustrace_result/viz_file.lotustrace

Open the file in chrome trace viewer for visualization.
Navigate to chrome://tracing URL in Google Chrome,
upload the viz_file.lotustrace and visualize the trace.

3) Hardware Performance Results:

1) Run the steps below to generate hardware performance
numbers for Image Classification pipeline where batch size
is 1024, number of GPUs is 4, and number of dataloaders
is 20. LotusTrace and Intel VTune are enabled:
source /opt/intel/oneapi/setvars.sh
bash scripts/cloudlab/LotusTrace_imagenet_vtune.sh

2) Follow the steps below to get a CSV of hw performance
numbers (has to be performed manually):
Below step will provide a link, open a browser window,\
and login to the VTune GUI (set the password upto you)
vtune-backend --web-port 8080 --data-directory ./vtune\
_mem_access_vary_dataloader/b1024_gpu4_dataloader20

- Navigate to Microarchitecture Exploration tab
- Perform grouping by Source Function / Function /
Call Stack

- Select all cells and paste it in a CSV file called
code/image_classification/analysis/combine_lo-
tus/lotustrace_uarch/b1024_gpu4_dataloader20.csv

3) Plot Figure 6 (a) by running code/image_classi-
fication/analysis/combine_lotus/elapsed_time_-
plot.ipynb notebook

4) Plot Figure 6 (b) by running code/image_classifi-
cation/analysis/combine_lotus/per_python_func_-
plot_vary_dataloaders.ipynb notebook

5) Plot Figure 6 (c) by running below command:
python code/image_classification/analysis/combine_lotus/\
hw_event_analyzer.py\

--mapping_file code/image_classification/LotusMap/\
Intel/mapping_funcs.json\
--uarch_dir code/image_classification/analysis/\
combine_lotus/lotustrace_uarch\
--combined_hw_events code/image_classification/\
analysis/combine_lotus/combined_lotustrace_uarch.csv\
--cpp_hw_events_plot_dir code/image_classification/\
analysis/combine_lotus/cpp_hw_events_figs

Check out the code/image_classification/analysis/-
combine_lotus/cpp_hw_events_figs for the plots.

6) Figure 6 (e)-(h) by running code/image_classifica-
tion/analysis/combine_lotus/c_to_python_anal-
yser.ipynb notebook Check out the plots in the
code/image_classification/analysis/combine_lo-
tus/mapped_python_figs directory.

F. Evaluation and expected results

Upon successful completion of each section, users should
be able to achieve the following results:
1) Section IV-B: Generate the mapping of Python functions to

their C++ counterparts for Intel chips, as shown in Table I.
2) Section V-C: Replicate the results shown in Figure 4 and

Figure 5 for the configuration with a batch size of 512, 4
GPUs, and 4 dataloaders. Generate tracing visualizations
similar to those presented in Figure 2.

3) Section V-D: Replicate the results shown in Figure 6
(a,b,c,e,f,g,h) for the configuration with a batch size of
1024, 4 GPUs, and 20 dataloaders.

We focus on specific configurations due to time constraints,
but the same steps can be applied to other configurations to
reproduce the complete figures.

G. Notes

The replicated plots for Figure 6 (e,f,g,h) show raw perfor-
mance numbers and are not normalized with respect to the
minimum, since we focus on one configuration.

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/
artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

43

