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Data preprocessing is a crucial step in the machine learning process that transforms raw data into a more
usable format for downstream ML models. However, it can be costly and time-consuming, often requiring the
expertise of domain experts. Existing automated machine learning (AutoML) frameworks claim to automate
data preprocessing. However, they often use a restricted search space of data preprocessing pipelines which
limits the potential performance gains, and they are often too slow as they require training the ML model
multiple times. In this paper, we propose DiffPrep, a method that can automatically and efficiently search
for a data preprocessing pipeline for a given tabular dataset and a differentiable ML model such that the
performance of the ML model is maximized. We formalize the problem of data preprocessing pipeline search
as a bi-level optimization problem. To solve this problem efficiently, we transform and relax the discrete,
non-differential search space into a continuous and differentiable one, which allows us to perform the pipeline
search using gradient descent with training the ML model only once. Our experiments show that DiffPrep
achieves the best test accuracy on 15 out of the 18 real-world datasets evaluated and improves the model’s test
accuracy by up to 6.6 percentage points.
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1 INTRODUCTION
Machine learning (ML), in particular, supervised ML is increasingly being used for solving challeng-
ing real-world problems in a wide range of fields, such as medicine [19], finance [9], politics [34],
etc. The workflow of developing an ML application may vary from projects but it typically involves
four stages: data acquisition, data preprocessing, model training, and model evaluation [16].
Data preprocessing is an essential step in a typical ML workflow because in practice, the raw

data collected often contain data issues and can rarely be directly used by ML models [13]. For
example, data errors such as missing values and outliers will significantly reduce the ML model
performance if not cleaned [24]; certain models like k-nearest neighbors (KNN) [32] expect data

Authors’ addresses: Peng Li, pengli@gatech.edu, Georgia Institute of Technology, Atlanta, GA, USA; Zhiyi Chen, Georgia
Institute of Technology, Atlanta, GA, USA, zchen798@gatech.edu; Xu Chu, Georgia Institute of Technology, Atlanta, GA,
USA, xu.chu@cc.gatech.edu; Kexin Rong, Georgia Institute of Technology, Atlanta, GA, USA, krong@gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART183
https://doi.org/10.1145/3589328

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 183. Publication date: June 2023.

https://doi.org/10.1145/3589328
https://doi.org/10.1145/3589328


183:2 Peng Li, Zhiyi Chen, Xu Chu, and Kexin Rong

in different columns to have a similar range, which requires the raw data to be normalized. In
addition, real-world data often have multiple such data issues [2]: a dataset may contain missing
values, outliers, and a large discrepancy on feature scales. To handle this case, we may first impute
missing values with mean imputation, then remove outliers using the Z-score method, and finally
normalize the data using standardization. As a result, data preprocessing usually involves multiple
operators organized using a data preprocessing pipeline, where the operators in the pipeline are
applied sequentially and each operator transforms the data to tackle a specific data issue.
Designing data preprocessing pipelines is challenging for data scientists as it involves many

design decisions on transformation types, order, and operators [7, 14]. First, data scientists must
decide which types of transformations (e.g., outlier removal, discretization, normalization) are
needed and the order of different transformations in the pipeline. For example, outlier removal
may or may not be needed and can be applied before or after normalization. For each type of
transformation, there are multiple choices of operators–for example, standardization, min-max
scaling, and robust scaling are all commonly used operators for normalization. Data scientists need
to decide which operator to use for each transformation. Furthermore, different features may need
to be preprocessed differently, which requires data scientists to design a feature-wise pipeline rather
than using the same preprocessing pipeline for all features. For example, when repairing missing
values in a dataset, some features may prefer mean imputation while others may prefer median
imputation, depending on their distributions.

Even for experienced data scientists, it is usually not clear how to design a preprocessing pipeline
that will lead to the best performance. Making such decisions heavily relies on domain knowledge,
including the characteristics of the data, the types of downstreamMLmodels, and the data scientists’
experience. Traditional data cleaning works usually seek to design pipelines that optimize data
quality independently of downstream applications [7]. However, since the ground-truth clean data
of real-world datasets are rarely available, the data quality may not be accessible or accurately
estimated. Moreover, previous works have shown that data cleaning or preprocessing without
considering downstream ML models can sometimes negatively impact the performance of ML
models [24, 27]. In practice, data scientists often use the time-consuming trial-and-error method to
design preprocessing pipelines, which is reported to account for 80% of data scientists’ time [35],
or simply use some default configurations which usually result in suboptimal performance.

To reduce human effort inML development, extensive study has beenmade on automatedmachine
learning (AutoML) systems. Existing AutoML systems like Azure AutoML [4] and H2O.ai [23] can
automatically perform data preprocessing andmodel trainingwithout toomuch human involvement.
Most AutoML systems consist of a search space and some optimization methods [16]. The search
space is defined by a set of possible parameters (choices) in ML development workflows. Our
discussions in this paper focus on data preprocessing-related parameters, such as the choices of
transformation types and operators. The optimization methods are used to automatically select a
combination of parameters from the search space that leads to the highest model performance. With
respect to data preprocessing pipelines, we find that existing AutoML solutions show limitations in
both the size of search space and the efficiency of the optimization method:
Limitation 1: Limited search space for data preprocessing pipelines. The search space
of an AutoML system determines the upper bound of its model performance. In general, larger
search spaces are more likely to contain high-performing configurations, which could lead to
better performance [8]. Despite the importance of data preprocessing in ML workflows, we found
that existing AutoML frameworks only consider a limited search space of parameters for data
preprocessing pipelines. In Figure 1, we rank existing AutoML systems according to the size of the
search space they considered, which is determined by four variables: the choices of transformation
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Systems Operator Types Order Feature-
wise

Optimization
Method

H2O × × × × Random Search

Azure ✓ × × × Bayesian Optimization

Auto-Sklearn ✓ ✓ × × Bayesian Optimization

Learn2Clean ✓ ✓ ✓ × Q-Learning

DiffPrep-Fix ✓ ✓ × ✓ Bi-level Optimization with 
Gradient DescentDiffPrep-Flex ✓ ✓ ✓ ✓

Smallest

Largest

Size of
Search Space

Fig. 1. Data Preprocessing in AutoML Systems

types, the choices of transformation order, the choices of transformation operators, and whether
the same pipeline is used for each data feature. H2O only supports a single default preprocessing
pipeline with fixed transformation operators, types and order. Azure would search for the best
operator for some transformations, such as normalization, but the transformation types and order
are fixed. Auto-Sklearn [11] can determine the types of transformation needed and select suitable
operators, but it has a fixed order of applying transformations. Learn2Clean [5] considers operators,
types and order in its search space, but it uses the same pipeline to preprocess all features. Therefore,
existing AutoML systems have only explored a small portion of the entire design space of data
preprocessing pipelines, which limits the performance gains of downstream ML models.
Limitation 2: Low efficiency on optimization methods. As the search space becomes larger,
it is increasingly important that the optimization methods can efficiently identify parameters
with good performance. Unfortunately, most existing AutoML systems use optimization methods
like random search or Bayesian optimization (Figure 1), which require training the ML model
multiple times and do not scale well with the search space. Specifically, random search randomly
samples parameters from the entire search space and trains the ML model with each set of sampled
parameters; Bayesian optimization builds a probabilistic model that maps parameters to model
performance, which requires iteratively training the ML model with new optimal parameters
and updating the probabilistic model with the model performance. The optimization becomes
particularly challenging if we want to support a larger search space in data preprocessing, such
as using feature-wise pipelines. For example, if there are 𝑛 possible pipelines for one feature,
the number of possible pipelines for data with 𝑐 columns is 𝑛𝑐 , which means the space grows
exponentially with the number of features. When there are many features or the ML model is large,
random search or Bayesian optimization can be computationally expensive and time-consuming.
Our proposal. In this work, we propose DiffPrep, an automatic data preprocessing method
that can efficiently select high-quality data preprocessing pipelines for any given dataset and
differentiable ML model. Unlike traditional data preprocessing or cleaning methods that focus on
improving data quality independently of the downstream applications [7], DiffPrep co-optimizes
data preprocessingwithmodel training: the goal is to select data preprocessing pipelines thatmaximize
the validation accuracy (or minimize the validation loss) of the ML model trained on the dataset.
Since the model training aims at minimizing the training loss, while the pipeline selection aims at
minimizing the validation loss, we end up with a so-called bi-level optimization problem [26].
Different from existing AutoML systems, DiffPrep considers feature-wise data preprocessing

pipelines in addition to transformation type, operators, and order. Feature-wise pipelines signifi-
cantly broaden the search space for data preprocessing compared to existing AutoML systems, since
the number of possible pipelines grows exponentially with the number of features. We consider
two usage scenarios with DiffPrep. If users provide a pre-defined order, our method (DiffPrep-Fix)
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will fix the order and automatically select the types and operators to generate a pipeline for each
feature. If no order is provided, our method (DiffPrep-Flex) will automatically select the order, type
and operator to generate a pipeline for each feature. It would explore the entire design space of
data preprocessing pipelines, which is the largest search space in Figure 1. In both scenarios, we
have empirically found that the larger search space improves the quality of the resulting pipelines.

Efficiently searching over this large search space is challenging: since the search space is discrete
and non-differentiable, we need to enumerate each option and train ML models repeatedly to find
high-quality pipelines. Our key insight is to make the ML model performance differentiable with
respect to preprocessing pipeline choices so that we can leverage efficient optimization methods like
gradient descent. To do so, we first parameterize the search space of data preprocessing pipelines
such that each choice in the pipeline can be represented using binary parameters. We then relax the
search space to be continuous using the softmax function and Sinkhorn normalization to make the
pipeline differentiable. This allows DiffPrep to use gradient descent as the optimization method
to solve the bi-level optimization problem, which allows us to optimize the pipeline and model
simultaneously with training the ML model only once.
Contributions. We make the following contributions in this paper.
• We propose DiffPrep, the first automatic data preprocessing method to consider the design
space of transformation types, operators, order and feature-wise pipelines.

• We formalize the problem of automatic data preprocessing as a bi-level optimization problem
and use gradient descent to solve the bi-level optimization problem efficiently.

• We conduct experiments on 18 real-world datasets to evaluate the effectiveness of our method.
The results show that our method achieves the best test accuracy on 15 out of 18 datasets and
improves the test accuracy by up to 6.6 percentage points.

Organization. The rest of this paper is organized as follows. Section 2 introduces preliminaries for
constructing a data preprocessing pipeline and formally defines our studied problem. In Section 3,
we discuss our method to automatically search a data preprocessing pipeline given a fixed order of
transformations. In Section 4, we present our approach with flexible order of transformations. In
Section 5, we show the experimental results. We discuss the related work in Section 6 and conclude
the paper in Section 7.

2 PRELIMINARY
2.1 Transformation Operators and Types

Transformation Operators. Generally, a data preprocessing operator/algorithm, which we term
as a transformation operator (TF operator), is a function defined by 𝑓 : X1 → X2, where an original
feature in feature space X1, is mapped to a transformed feature in feature space X2. In this paper,
we focus on TF operators where both input and output are scalars, which we refer to as feature-wise
transformation operators. Other TF operators that transform a vector into another vector, such as
principal component analysis, and entity resolution operators [6, 42] that take a vector as input, are
not considered in this paper. We note that most TF operators used in practice fall into this category.
For example, among the TF operators provided by scikit-learn [31] in sklearn.preprocessing
module, 14 out of 18 are feature-wise TF operators. Some TF operators have parameters. For
example, to use the Z-Score method, we need to specify the threshold 𝑘 to determine whether a
value is an outlier (e.g., k = 3).
Transformation Types. Based on the purpose of the transformation, TF operators can be grouped
into different types, which we refer to as transformation types (TF types). For example, missing
value imputation is a TF type that consists of TF operators such as mean imputation and median
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Table 1. Example of TF Types and TF operators

Transformation Types Transformation Operators

Missing Value
Imputation

Numerical
Features

Mean
Median
Mode

Categorical
Features

Most Frequent Value
Dummy Variable

Normalization

Standardization
Min-Max Scaling
Robust Scaling

Max Absolute Scaling

Outlier
Removal

Z-Score (𝑘)
MAD (𝑘)
IQR (𝑘)

Discretization Uniform (𝑛)
Quantile (𝑛)

imputation. Table 1 shows some examples of TF types and the TF operators for each TF type.
Formally, we define a TF type 𝐹 as a set of TF operators, denoted by 𝐹 = {𝑓𝑖 : 𝑖 = 1, 2, ...}.
Design Considerations for Transformation Operators. The possibilities for transformation
operators are much greater than what we cover in this paper. For example, it is possible to define
custom conditions for selecting specific subsets of the dataset and to use custom functions to
transform them. However, it is difficult to search in such a vast search space. Furthermore, when
co-optimizing data preprocessing and model training, using a large number of operators that can
modify data arbitrarily can increase the risk of model overfitting, as observed in prior work [20].
Therefore, DiffPrep focuses on a limited set of operators that are commonly supported by ML
frameworks (e.g. scikit-learn) and widely used. We have found empirically that this set of operators
already leads to improved performance on many real-world datasets. Additionally, the operators
supported by DiffPrep are designed for general purpose to transform data based on some prior
knowledge rather than modifying the dataset arbitrarily. For instance, operators for outlier removal
and missing value imputation can only affect specific (usually small) subsets of the dataset, which
are usually prone to be dirty data, while normalization and discretization operators can only scale
and shift the distribution of entire features, but not completely distort the data distribution.
2.2 Data Preprocessing Pipeline Construction
As we mentioned before, data preprocessing usually involves multiple transformations that are
combined in a pipeline and each feature can use a different pipeline. For simplicity, let us first
assume that the data only contain one feature and we want to construct a data preprocessing
pipeline for it. Figure 2 shows a typical data scientists’ workflow to construct a data preprocessing
pipeline, which involves the following steps.
Step 1: Data exploration. The initial step in creating a data preprocessing pipeline is usually data
exploration. During this step, data scientists examine the data to understand its characteristics and
identify any potential or existing issues. Some issues, such as missing values, are relatively easy to
detect, while others, such as outliers, may require more involved data analysis [15].
Step 2: Prototype selection. The second step is called prototype selection, where based on the data
issues, data scientists would select the TF types to be involved and decide the order of TF types to
be applied [14, 33, 37]. For example, we choose to first impute missing values, then remove outliers
and finally perform data normalization. Note that in a pipeline, the input of one operator is the
output of its previous operator. Therefore, different orders of TF types can result in totally different
outputs. For example, if outlier removal occurs before normalization, not only the input data for
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Fig. 2. A typical data scientists’ workflow to construct a data preprocessing pipeline

normalization are changed, but also the statistics used to normalize the data (e.g., the minimum
and maximum value of the column) are affected due to the removal of outliers, which can yield a
significantly different output compared with having outlier removal after normalization. However,
in practice, it is usually not clear how to decide the order of TF types and data scientists would
simply choose some default order based on their experience. The outcome of this step is a data
preprocessing prototype, which is an ordered sequence of TF types formally defined as follows.

Definition 2.1. (Data Preprocessing Prototype). Let S = {𝐹 } denote the space of TF types. We
define a data preprocessing prototype T as T = {𝑇𝑖 ∈ S : 𝑖 = 1, 2, ...}, where 𝑇𝑖 is the 𝑖-th TF type
to be applied and selected from the space.

Note that in the literature, the notion of data preprocessing prototype is also known as logical
pipeline plan [37] or pipeline prototype [33], which is defined as a directed acyclic graph of TF
types. This definition suggests that there is no repetition of a TF type in a prototype [14]. This is
because in practice, a type of transformation would rarely be repeated (e.g., it does not make sense
to impute missing values twice). Following this widely-used definition of prototype, we require
that ∀𝑝 ≠ 𝑞,𝑇𝑝 ≠ 𝑇𝑞 . We want to point out that this assumption does not prevent users from using
a TF type multiple times. If repetition is really needed, we can define two TF types 𝑇1 and 𝑇2 on
the same transformation and consider them as two different TF types. This allows for repeated
transformation types in a prototype.
Step 3: Operator selection. The third step is operator selection, where given a data preprocessing
prototype, data scientists would select a specific TF operator for each TF type in the prototype. For
example, we use mean imputation to impute missing values, use the Z-score approach to remove
outliers and perform standardization to normalize data. To select suitable operators for TF types,
data scientists have to consider not only the characteristics of data but also the downstream ML
model. For example, for normalization, if the downstream model is k-nearest neighbors, min-max
scaling is usually preferable as it transforms all the columns into the same scale. In contrast, if the
model is logistic regression, standardization may be better as it makes convergence faster. However,
such heuristic rules may not work for every dataset, and in practice, selecting suitable operators
usually requires trial-and-error. By selecting a TF operator for each TF type, we can instantiate a
data preprocessing pipeline, which is formally defined as follows.

Definition 2.2. (Data Preprocessing Pipeline). Given a data preprocessing prototype T , we define
a data preprocessing pipeline GT as GT = {𝑔𝑖 : 𝑖 = 1, 2, ...}, where 𝑔𝑖 ∈ 𝑇𝑖 is the TF operator selected
for 𝑇𝑖 in the prototype and the 𝑖-th operator to be applied in the pipeline.

Step 4: Pipeline evaluation. The final step is pipeline evaluation, where data scientists would use
the pipeline to transform the raw data and evaluate the performance of the pipeline by training and
testing the end ML model on the transformed data. To transform the raw data with the pipeline, we
can sequentially apply the TF operator in the pipeline. Formally, let 𝑥 denote the raw feature of one
example and 𝑥𝑖 be the transformed feature after 𝑖 steps transformation, where 𝑥0 = 𝑥 . Then, 𝑥𝑖 can
be computed by applying 𝑔𝑖 (the 𝑖-th TF operator in the pipeline) on its input 𝑥𝑖−1 as: 𝑥𝑖 = 𝑔𝑖 (𝑥𝑖−1).
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The output of the pipeline is the output of the last TF operator in the pipeline. Formally, let 𝑠
denote the number of TF operators in the pipeline and GT (𝑥) denote the final output of the pipeline
GT . Then, we have GT (𝑥) = 𝑥𝑠 .
After pipeline evaluation, data scientists may refine the prototype and the pipeline based on the

evaluation results. For example, they may add/delete TF types in the prototype, change the order
of TF types, replace the TF operator for some TF types, etc. The above process will be repeated
until the end ML model achieves desired performance. As a result, constructing data preprocessing
pipelines is an iterative process that requires substantial domain knowledge and heavily relies on
human experts to make decisions, which can be time-consuming and costly.

2.3 Problem Statement
The core idea of our approach is to formulate the decision-making process of data scientists as an
optimization problem. Assume that each data example has 𝑐 features denoted by 𝒙 = [𝑥1, 𝑥2, ...𝑥𝑐 ].
Let T 𝑖 ,G𝑖

T denote the prototype and the pipeline for the 𝑖-th feature. Let𝒘 denote the parameters
of the ML model ℎ𝒘 : X𝑐 → Y. The model will take features of an example as input and generate a
prediction 𝑦 = ℎ𝒘 (𝑥1, 𝑥2, ...𝑥𝑐 ). Let 𝑙𝑜𝑠𝑠 (𝑦,𝑦) be the loss function that returns a loss score given
the prediction 𝑦 and the ground truth label 𝑦. Then, the training loss and validation loss on the
transformed data can be computed as:

𝐿𝑡𝑟𝑎𝑖𝑛 (G1
T , ...,G

𝑐
T ,𝒘) =

∑︁
𝒙,𝑦∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑠𝑠 (ℎ𝒘 (G1
T (𝑥

1), ...,G𝑐
T (𝑥

𝑐 )), 𝑦)

𝐿𝑣𝑎𝑙 (G1
T , ...,G

𝑐
T ,𝒘) =

∑︁
𝒙,𝑦∈𝐷𝑣𝑎𝑙

𝑙𝑜𝑠𝑠 (ℎ𝒘 (G1
T (𝑥

1), ...,G𝑐
T (𝑥

𝑐 )), 𝑦)

Problem Statement. Given a training set 𝐷𝑡𝑟𝑎𝑖𝑛 and a validation set 𝐷𝑣𝑎𝑙 , a space of TF operators
and TF types S, and a set of ML model parameters 𝒘 , we would like to find a pipeline G𝑖

T (with
its prototype T 𝑖 ) from the space for each feature 𝑥𝑖 , such that the performance of the ML model
trained and evaluated on the transformed data is maximized. This data preprocessing pipeline search
problem (DPPS) can be formulated as an optimization problem:

min
G1
T ,...,G

𝑐
T

𝐿𝑣𝑎𝑙 (G1
T , ...,G

𝑐
T ,𝒘

∗)

s.t. 𝒘∗ = argmin
𝒘

𝐿𝑡𝑟𝑎𝑖𝑛 (G1
T , ...,G

𝑐
T ,𝒘)

This is called a bi-level optimization problem in which one optimization problem is embedded
within another [26]. In the inner optimization, we fix the preprocessing pipeline parameters
G1
T , ...,G

𝑐
T and focus on finding the best model parameters𝒘∗ to minimize the training loss on the

transformed training data. In the outer optimization, we fix the model parameters and focus on
finding the best pipeline parameters to minimize the validation loss on the transformed validation
data. An alternative problem formulation is to optimize both the pipeline and model parameters
to minimize the training loss, which becomes a one-level optimization. However, previous works
(e.g., DARTS [25]) have shown that one-level optimization would make it easier to overfit the
training data. Therefore, in this work, we use bi-level optimization to reduce the risk of overfitting.
In our experiments, we empirically verified that the bi-level approach helps improve the model test
accuracy compared to using a one-level optimization (Section 5.4).
The most straightforward way to solve the above bi-level optimization problem is to train the

downstream ML model by minimizing 𝐿𝑡𝑟𝑎𝑖𝑛 (G1
T , ...,G

𝑐
T ,𝒘) for each possible data preprocessing

pipeline in the space, and then select the one that has theminimal validation loss𝐿𝑣𝑎𝑙 (G1
T , ...,G

𝑐
T ,𝒘

∗).
This naive approach is computationally expensive as it requires training the downstreamMLmodels
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as many times as the number of possible data preprocessing pipelines. Consider a prototype with
𝑠 TF types, where each TF type consists of𝑚 TF operators. Under this prototype, there are𝑚𝑠

possible pipelines by choosing different TF operators for each TF type. Since different features can
use different pipelines, with 𝑐 features, we have𝑚𝑠𝑐 possible pipelines, which is exponential to
the number of TF types and the number of features. This is only the number of possible pipelines
under one prototype. If we consider using different prototypes, the space will become even larger.
Therefore, this naive approach is infeasible in practice.

3 DATA PREPROCESSINGWITH FIXED PROTOTYPE
Let us first assume that we have a fixed pre-defined data processing prototype T = {𝑇1, ...,𝑇𝑠 }
that is used for all features. This is a common scenario where data scientists would like to skip
the prototype selection step and use a default prototype so that they can spend more time on
operator selection. This is also the setup of many existing systems [5, 10, 33, 40] for automatic data
preprocessing, where the prototype is pre-defined by users and fixed in advance.
Given this prototype, we need to assign each TF type in the prototype with a TF operator to

generate a pipeline and we need to generate a pipeline for each feature. As the number of possible
choices is exponentially large, the problem is: how to efficiently find the optimal assignment for each
feature such that the validation loss is minimized? This search problem is challenging because the
search space is discrete and non-differentiable, which means we have to enumerate every possible
case to find the optimal one. To solve this problem, we first parameterize the search space such that
each assignment of TF operators (i.e., each choice of pipelines) can be represented using binary
pipeline parameters (Section 3.1). Then, we relax the search space to be continuous so that the
model loss is differentiable w.r.t the pipeline parameters (Section 3.2). The relaxation enables us to
solve the bi-level optimization problem efficiently using gradient descent (Section 3.3).

3.1 Parameterization
Without loss of generality, assume that each TF type 𝑇𝑖 in the prototype consists of𝑚 TF operators
denoted by 𝑇𝑖 = {𝑓𝑖1, 𝑓𝑖2, ...𝑓𝑖𝑚} (if different TF types contain a different number of operators,𝑚
denotes the maximum number of TF operators). To instantiate a pipeline, we need to select one
specific TF operator for each TF type. Each selection can be represented using a 𝑠 ×𝑚 matrix
𝜷 = {𝛽𝑖 𝑗 }, 𝛽𝑖 𝑗 ∈ {0, 1} is defined as follows:

𝛽𝑖 𝑗 =

{
1 𝑓𝑖 𝑗 is selected
0 Otherwise

(1)

In other words, 𝛽𝑖 𝑗 is 1 if we select 𝑓𝑖 𝑗 for 𝑇𝑖 , otherwise it is 0. Note that because only one TF
operator is selected for each TF type, there is exactly one element each row in the matrix to be 1
and 0s elsewhere. Hence, we have

∑
𝑗 𝛽𝑖 𝑗 = 1.

Example 3.1. Assume that the given prototype consists of three TF types, i.e., T = {𝑇1,𝑇2,𝑇3}.
Each TF type consists of four possible TF operators, i,e., 𝑇𝑖 = {𝑓𝑖1, 𝑓𝑖2, 𝑓𝑖3, 𝑓𝑖4}. Consider the data
preprocessing pipeline GT = {𝑓12, 𝑓21, 𝑓34}. The selection of TF operators that generates this pipeline
can be represented using the following matrix.

𝜷 =


0 1 0 0
1 0 0 0
0 0 0 1


Each 𝜷 matrix uniquely defines a data preprocessing pipeline under the given prototype and

we can use 𝜷 matrix to compute the output of the pipeline. Let 𝑥 denote the raw feature of one
example and 𝑥𝑖 be the transformed feature after 𝑖 steps transformation, where 𝑥0 = 𝑥 . Then, we
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Fig. 3. DiffPrep-Fix Architecture

can compute 𝑥𝑖 as:
𝑥𝑖 =

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗 𝑓𝑖 𝑗 (𝑥𝑖−1) (2)

Since only 𝛽𝑖 𝑗 associated with the selected TF operator is equal to 1 and others are 0, Equation 2
returns exactly the output of the selected TF operator. The final output of the pipeline 𝑥𝑠 becomes
a variable parameterized by 𝜷 matrix denoted by 𝑥𝑠 = 𝑥 (𝜷). Assume that the dataset has 𝑐 features
and let 𝜷𝑖 denote the parameters that defines the pipeline for the 𝑖-th feature 𝑥𝑖 . Then, the training
loss and the validation loss also become variables parameterized by all 𝜷 matrices, which can be
represented as:

𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷1, ..., 𝜷𝑐 ,𝒘) =
∑︁

𝒙,𝑦∈𝐷𝑡𝑟𝑎𝑖𝑛

𝑙𝑜𝑠𝑠 (ℎ𝒘 (𝑥1 (𝜷1), ..., 𝑥𝑐 (𝜷𝒄 )), 𝑦) (3)

𝐿𝑣𝑎𝑙 (𝜷1, ..., 𝜷𝑐 ,𝒘) =
∑︁

𝒙,𝑦∈𝐷𝑣𝑎𝑙

𝑙𝑜𝑠𝑠 (ℎ𝒘 (𝑥1 (𝜷1), ..., 𝑥𝑐 (𝜷𝒄 )), 𝑦) (4)

We can now rewrite the DPPS problem statement with a fixed prototype using 𝜷 matrices as follows,
where the search space of pipelines is converted into a space of 𝜷 matrices.

min
𝜷1,...,𝜷𝑐

𝐿𝑣𝑎𝑙 (𝜷1, ...𝜷𝑐 ,𝒘∗) (5)

s.t. 𝒘∗ = argmin𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷1, ..., 𝜷𝑐 ,𝒘) (6)

Architecture. Figure 3 shows the architecture of DiffPrep with a fixed prototype. For each input
feature, DiffPrep will learn a set of 𝜷 parameters that defines a data preprocessing pipeline. Each
𝛽𝑖 𝑗 parameter is attached with a TF operator indicating whether this operator is selected. The final
output of DiffPrep pipelines will be the preprocessed features parameterized by 𝜷 parameters,
which will be fed into ML models for training and evaluation.

3.2 Differentiable Relaxation
Although we have parameterized the search space of pipelines using 𝜷 matrices, the search space
is still discrete as 𝜷 matrices are binary parameters, i.e., 𝛽𝑖 𝑗 ∈ {0, 1}. To make the search space
continuous, we relax 𝜷 to be continuous parameters that can take continuous values from 0 to 1,
i.e., 𝛽𝑖 𝑗 ∈ [0, 1]. However, we need to retain the constraints between parameters in the original
binary matrix (

∑
𝑗 𝛽𝑖 𝑗 = 1) such that these parameters are semantically meaningful. To enforce that

each row sums up to 1, we can define 𝛽𝑖 𝑗 using a softmax function as:

𝛽𝑖 𝑗 =
exp(𝜏𝑖 𝑗 )∑
𝑘 exp(𝜏𝑖𝑘 )

(7)

where 𝝉 = {𝜏𝑖 𝑗 } ∈ R𝑠×𝑚 are underlying parameters.
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Algorithm 1 Solving Bi-level Optimization with Gradient Descent
1: Initialize 𝝉 and𝒘
2: while not converged do
3: Update 𝝉 : 𝝉 = 𝝉 − 𝜂1∇𝝉𝐿𝑣𝑎𝑙 (𝜷 (𝝉 ),𝒘 − 𝜂2∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷 (𝝉 ),𝒘))
4: Update𝒘 :𝒘 = 𝒘 − 𝜂2∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷 (𝝉 ),𝒘)
5: return 𝜷 (𝝉 ),𝒘

By enforcing these constraints, we can interpret 𝛽𝑖 𝑗 (Equation 1) as the probability that 𝑓𝑖 𝑗
is selected for 𝐹𝑖 . We can still use Equation 2 to compute the transformed data, which can be
interpreted as the expected value of the transformed data. Similarly, we can compute the expected
value of training loss and validation loss using Equation 3 and Equation 4.

3.3 Bi-level Optimization
Making 𝜷 continuous allows us to solve the bi-level optimization problem efficiently using gradient
descent instead of enumerating all possible 𝜷 . To minimize the validation loss (Equation 5), we
can iteratively update the underlying parameters 𝝉 using the gradient of the validation loss with
respect to 𝝉 as follows:

𝝉 = 𝝉 − 𝜂1∇𝝉𝐿𝑣𝑎𝑙 (𝜷 (𝝉 ),𝒘∗) (8)
where 𝜂1 is the learning rate for updating 𝝉 . However, to obtain the optimal model𝒘∗ in Equation
8, we need to solve the inner optimization problem (Equation 6) by completely training an ML
model until convergence for every update of 𝝉 , which is computationally expensive. To solve this
issue, instead of finding the optimal 𝒘∗, we approximate it by doing only a single training step,
which is a one-step gradient descent on the current model parameters𝒘 (denoted by𝒘 ′) as:

𝒘∗ ≈ 𝒘′ = 𝒘 − 𝜂2∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷 (𝝉 ),𝒘) (9)
where 𝜂2 is the learning rate for model training 1. Similar approximation can also be found in previ-
ous work [12, 25] for solving other bi-level optimization problems. We summarize the procedure of
solving the bi-level optimization (Equation 5 and Equation 6) using gradient descent in Algorithm 1,
where the pipeline parameters 𝜷 (𝝉 ) and model parameters𝒘 are alternately updated using gradient
descent until convergence.
Gradient Computation. In Algorithm 1, ∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷 (𝝉 ),𝒘) can be derived from Equation 3, where
𝜷 can be considered as constant. However, since 𝜷 (Equation 7) and𝒘 ′ (Equation 9) are variables of
𝝉 , to compute the gradients ∇𝝉𝐿𝑣𝑎𝑙 (𝜷 (𝝉 ),𝒘 ′ (𝝉 )), we need to use the chain rule 2:

∇𝝉𝐿𝑣𝑎𝑙 (𝜷 (𝝉 ),𝒘 ′ (𝝉 )) = ∇𝜷𝐿𝑣𝑎𝑙 (𝜷,𝒘 ′) · ∇𝝉𝜷 − 𝜂2∇𝒘′𝐿𝑣𝑎𝑙 (𝜷,𝒘′) · ∇𝒘,𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘) · ∇𝝉𝜷 (10)

We can decompose Equation 10 into three parts: 𝐷1, 𝐷2, 𝐷3, where 𝐷1 = ∇𝝉𝜷 , 𝐷2 = ∇𝜷𝐿𝑣𝑎𝑙 (𝜷,𝒘 ′)
and 𝐷3 = ∇𝒘′𝐿𝑣𝑎𝑙 (𝜷,𝒘′) · ∇𝒘,𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘). The gradient 𝐷1 can be derived from Equation 7. The
gradient 𝐷2 is also easy to compute, where we consider𝒘 ′ as constant and compute the gradient
of validation loss w.r.t. 𝜷 . This can be derived from Equation 4 or as we will show later, using
backpropagation through the pipeline. However, computing𝐷3 is difficult since it involves a second-
order derivative and matrix-vector product computation. Following the previous work on neural
network architecture search [25], we approximate it using numerical differentiation. Let 𝜖 be a
small scalar and𝒘± = 𝒘 ± 𝜖∇𝒘′𝐿𝑣𝑎𝑙 (𝜷,𝒘 ′), then 𝐷3 can be estimated as:

𝐷3 ≈
∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘+) − ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘−)

2𝜖
(11)

1In practice, to avoid tuning two learning rates, we can simply set 𝜂1 = 𝜂2 [25].
2Chain rules for multivariable functions: Suppose that 𝑥 (𝑡 ) and 𝑦 (𝑡 ) are differentiable functions of 𝑡 and 𝑧 = 𝑓 (𝑥 (𝑡 ), 𝑦 (𝑡 ) )
is a differentiable function of 𝑥 and 𝑦. Then the chain rule states 𝑑𝑧

𝑑𝑡
= 𝜕𝑧

𝜕𝑥
𝜕𝑥
𝜕𝑡

+ 𝜕𝑧
𝜕𝑦

𝜕𝑦

𝜕𝑡
.
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∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘+), ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘−) are the gradients of the training loss w.r.t 𝜷 , where we consider
𝒘+ and 𝒘− as constant. They can be derived from Equation 3 or as we will show later using
backpropagation through the pipeline. Therefore, to update the underlying parameters 𝝉 , we need to
compute three gradients w.r.t. 𝜷 with different model parameters: ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘+), ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘−)
and ∇𝜷𝐿𝑣𝑎𝑙 (𝜷,𝒘 ′).
Backpropagation through the pipeline. The gradients of loss w.r.t. 𝜷 can be computed using
backpropagation through the pipeline. Let 𝜕𝐿

𝜕𝑥𝑠
be the derivative of the loss w.r.t. the input of the

ML model or the final output of the preprocessing pipeline. From Equation 2, using the chain rule,
we have

𝜕𝐿

𝜕𝛽𝑖 𝑗
=

𝜕𝐿

𝜕𝑥𝑖
𝑓𝑖 𝑗 (𝑥𝑖−1),

𝜕𝐿

𝜕𝑥𝑖−1
=

𝜕𝐿

𝜕𝑥𝑖

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗
𝜕𝑓𝑖 𝑗

𝜕𝑥𝑖−1
(12)

However, in this equation, the gradient term 𝜕𝑓𝑖 𝑗

𝜕𝑥𝑖−1
, namely, the gradient of the output of a TF

operator w.r.t. its input depends on the internals of a TF operator, which may not be easy to
compute. Also, we expect users to add their own customized TF operators, but users may not be
able to derive the gradients. Therefore, we assume that all TF operators are black-box functions,
where we only have access to the output and input without knowing their internal algorithms, and
we approximate the gradients using numerical differentiation. Let 𝜖 be a small scalar. This gradient
can be estimated as:

𝜕𝑓𝑖 𝑗

𝜕𝑥𝑖−1
≈

𝑓𝑖 𝑗 (𝑥𝑖−1 + 𝜖) − 𝑓𝑖 𝑗 (𝑥𝑖−1 − 𝜖)
2𝜖

(13)

Then, we can use Equation 12 to backpropagate the gradients of the loss w.r.t. the output of each
TF operator and each 𝛽𝑖 𝑗 .
Implementation with automatic differentiation. Many automatic differentiation engines
(e.g. Pytorch [30], TensorFlow [1]) can perform backpropagation automatically and efficiently
to compute the gradients. However, these tools usually require that all the computations in the
forward propagation are differentiable and implemented using their frameworks. Since we consider
TF operators as black-box functions of which the internal algorithms are unknown, we cannot
leverage these tools directly to backpropagate the preprocessing pipeline. To solve this issue, we
modify the original forward propagation of the pipeline (Equation 2) to be:

𝑥𝑖 =

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗𝑜𝑖 𝑗 + 𝑥𝑖−1

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗𝑑𝑖 𝑗 − 𝑥𝑖−1

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗𝑑𝑖 𝑗 (14)

where 𝑜𝑖 𝑗 = 𝑓𝑖 𝑗 (𝑥𝑖−1) is the output of the black-box TF operator; 𝑑𝑖 𝑗 =
𝜕𝑓𝑖 𝑗

𝜕𝑥𝑖−1
is the numerical

derivative computed using Equation 13; 𝑥𝑖−1 is a snapshot of 𝑥𝑖−1, which is a constant number that
has the same value as 𝑥𝑖−1 but does not require gradient (e.g., 𝑥𝑖−1 = 𝑥𝑖−1.detach() in PyTorch or
𝑥𝑖−1 = stop_gradient(𝑥𝑖−1) in TensorFlow); 𝛽𝑖 𝑗 is a snapshot of 𝛽𝑖 𝑗 . Note that all the variables
with tilde are constant numbers that do not have gradients.

In the forward pass, Equation 14 yields exactly the same outputs as Equation 2, but it only
requires the output of the TF operators and the numerical derivatives computed using the input
and output of TF operators. Therefore, the internal implementation of TF operators is not involved,
which enables the automatic backpropagation to be performed. In the backward pass, the automatic
differentiation engines will compute the gradients as:

𝜕𝐿

𝜕𝛽𝑖 𝑗
=

𝜕𝐿

𝜕𝑥𝑖
𝑜𝑖 𝑗 ,

𝜕𝐿

𝜕𝑥𝑖−1
=

𝜕𝐿

𝜕𝑥𝑖

𝑚∑︁
𝑗=1

𝛽𝑖 𝑗𝑑𝑖 𝑗 (15)
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Algorithm 2 DiffPrep-Fix
Require: Space of TF types and operators 𝑆 , pre-defined prototype T , training set 𝐷𝑡𝑟𝑎𝑖𝑛 , validation set 𝐷𝑣𝑎𝑙

Ensure: Optimal pipeline parameters 𝜷 and model parameters𝒘
1: Initialize 𝝉 and𝒘
2: while not converged do
3: Fit TF operators on the transformed training data
4: Forward Propagation: Compute 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘+), 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘−), 𝐿𝑣𝑎𝑙 (𝜷,𝒘′)
5: Backward Propagation: Compute ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘+), ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷,𝒘−), ∇𝜷𝐿𝑣𝑎𝑙 (𝜷,𝒘′)
6: Compute ∇𝝉𝐿𝑣𝑎𝑙 (𝜷,𝒘′)
7: Update 𝝉 : 𝝉 = 𝝉 − 𝜂1∇𝝉𝐿𝑣𝑎𝑙 (𝜷,𝒘′)
8: Update𝒘 :𝒘 = 𝒘 − 𝜂2∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜷 (𝝉 ),𝒘)
9: return 𝜷 (𝝉 ),𝒘

This yields exactly the same gradients as Equation 12 with the gradients of black-box TF operators
replaced by approximate numerical gradients. Therefore, this allows us to backpropagate the
preprocessing pipeline correctly and automatically using any automatic differentiation engines.
Algorithm.Algorithm 2 shows the pseudocode of DiffPrep with a fixed prototype. We first initialize
the underlying pipeline parameters and model parameters (Line 1). Most TF operators need to
be fitted before performing transformation. For example, standardization needs to compute the
mean and standard deviation of the input data. Therefore, at each iteration, we first fit all the TF
operators using the transformed training data (Line 3). Note that each TF operator should be fitted
on its input training data, which is the output data of its previous step in the pipeline (i.e., the
operator 𝑓𝑖 𝑗 should be fitted on 𝑥𝑖−1 over all training data). Since 𝑥𝑖−1 depends on 𝜷 parameters
(Equation 14), it will be changed every iteration as 𝜷 parameters are updated. Therefore, we need
to refit TF operators at the beginning of every iteration. Then we can perform forward propagation
using Equation 14 (Line 4) and backward propagation using automatic differentiation (Line 5). We
compute the gradients needed for updating underlying pipeline parameters 𝝉 using Equation 10
and Equation 11 (Line 6). We update the underlying pipeline parameters and model parameters
alternatively using gradient descent (Line 7 - 8). This will be repeated until convergence.
Complexity. The number of 𝜷 parameters needed is 𝑠 ×𝑚 × 𝑐 , where 𝑠 is the number of TF types,
𝑚 is the number of TF operators for each TF type and 𝑐 is the number of features. The running
time is dominated by the forward propagation and backward propagation. Without DiffPrep, the
training process only needs to update the model parameters (Line 8), which requires one pass of
forward propagation and one pass of backpropagation. With DiffPrep, updating 𝜷 needs three
more passes of forward propagation (Line 4) and three more passes of backpropagation (Line 5).
To improve the efficiency of the algorithm, we fit TF operators (Line 3) and update 𝜷 (𝝉 ) (Line
4 - 7) with a mini-batch randomly sampled from the training/validation set, instead of using all
training/validation examples, which is similar to using stochastic gradient descent in place of
gradient descent. We apply this strategy in our experiments.

4 DATA PREPROCESSINGWITH FLEXIBLE PROTOTYPE
We now discuss the more general and flexible case, where the data preprocessing prototype is not
pre-defined. In such a case, prior to operator selection using the method we introduced in Section 3,
we need to select a prototype from space for each feature. A prototype is an ordered sequence of TF
types. Therefore, for prototype selection, we need to determine (1) the TF types that are included
in the prototype and (2) the order of TF types in the sequence.
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To simplify this search problem, we introduce an identity transformation operator (𝐼 ) into each
TF type, which is defined as 𝐼 (𝑥) = 𝑥 . The identity TF operator is a function that maps data to
itself, so selecting the identity TF operator for a TF type during operator selection is equivalent to
dropping this TF type in the prototype. This allows us to include all TF types in the prototype and
only focus on their order, rather than deciding which to include or exclude. A prototype becomes a
permutation of all TF types with the option to exclude any by selecting the identity operator for it.
Now, the problem is: how to find the optimal prototype for each feature such that the optimal

pipeline under the optimal prototype minimizes the validation loss? A naive approach is to enumerate
every possible prototype and use the method introduced in Section 3 to find the optimal pipeline
for each prototype. However, this approach is not feasible because the search space of prototypes
is large. Given a space that contains 𝑠 TF types, the number of possible permutations is 𝑠!. Since
different features can use different prototypes, for a dataset with 𝑐 features, there are 𝑠!𝑐 possible
combinations, which is exponential to the number of features.
The hardness of the above search problem is again because the search space of prototypes is

discrete and non-differentiable. To solve this problem efficiently, we use a method similar to that
introduced in Section 3: we first parameterize the search space using a set of binary prototype
parameters (Section 4.1) and then make the search space to be continuous and differentiable (Sec-
tion 4.2). Finally, using the method introduced in Section 3.3, we can solve the bi-level optimization
using gradient descent, which enables our method to learn the prototype parameters, pipeline
parameters and model parameters simultaneously and efficiently in one training loop.

4.1 Parameterization
By introducing identity TF operators, given a space of TF types S = {𝐹1, 𝐹2, ...𝐹𝑠 }, a prototype
T = {𝑇1,𝑇2, ...𝑇𝑠 } would be a permutation of S. Hence, we can represent a prototype using a 𝑠 × 𝑠

permutation matrix 𝜶 = {𝛼𝑖 𝑗 }, 𝛼𝑖 𝑗 ∈ {0, 1} defined as follows.

𝛼𝑖 𝑗 =

{
1 𝑇𝑖 = 𝐹 𝑗

0 Otherwise
(16)

In other words, 𝛼𝑖 𝑗 is 1 if the 𝑖-th TF type in the prototype is 𝐹 𝑗 , otherwise it is 0. Note that the
permutation matrix has exactly one element of 1 each row and each column and 0s elsewhere, i.e.,
the sum of each row and each column is exactly 1. Hence, we have

∑
𝑖 𝛼𝑖 𝑗 = 1 and

∑
𝑗 𝛼𝑖 𝑗 = 1.

Example 4.1. Assume that the space consists of three TF types 𝑆 = {𝐹1, 𝐹2, 𝐹3}. Consider the
prototype T = {𝐹2, 𝐹3, 𝐹1}. We have 𝛼12 = 1, 𝛼23 = 1, 𝛼31 = 1 and 0s elsewhere. Hence, This
prototype can be represented using the following 𝜶 matrix.

𝜶 =


0 1 0
0 0 1
1 0 0


To generate a pipeline, in addition to the prototype, we also need to select a TF operator for each

TF type. Let 𝐹𝑖 = {𝑓𝑖1, 𝑓𝑖2...𝑓𝑖𝑚}, where 𝑓𝑖 𝑗 is the 𝑗-th TF operator for the TF type 𝐹𝑖 . Then, we can
still use Equation 1 to define the 𝜷 matrix, which represents the result of operator selection. An 𝜶
matrix and a 𝜷 matrix together uniquely defines a data preprocessing pipeline. The data after 𝑖
steps transformation can be computed as:

𝑥𝑖 =

𝑠∑︁
𝑗=1

𝑚∑︁
𝑘=1

𝛼𝑖 𝑗𝛽 𝑗𝑘 𝑓𝑗𝑘 (𝑥𝑖−1) (17)
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Fig. 4. DiffPrep-Flex Architecture

Note that in Equation 17, only the TF type 𝐹 𝑗 selected for the 𝑖-th step has 𝛼𝑖 𝑗 = 1 and only the TF
operator selected for 𝐹 𝑗 has 𝛽 𝑗𝑘 = 1. Therefore, the summation is exactly the output of the selected
TF operator for the 𝑖-th TF type in the prototype.

Similar to Equation 3 and 4, we can also compute the training loss 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 1, ...,𝜶 𝑐 , 𝜷1, ..., 𝜷𝑐 ,𝒘)
and validation loss 𝐿𝑣𝑎𝑙 (𝜶 1, ...,𝜶 𝑐 , 𝜷1, ..., 𝜷𝑐 ,𝒘) using Equation 17, which will be parameterized by
𝜶 , 𝜷 matrices. We can also rewrite the DPPS problem statement using 𝜶 , 𝜷 matrices as:

min
𝜶 1,...,𝜶𝑐 ,𝜷1,...,𝜷𝑐

𝐿𝑣𝑎𝑙 (𝜶 1, ...𝜶 𝑐 , 𝜷1, ...𝜷𝑐 ,𝒘∗) (18)

s.t. 𝒘∗ = argmin𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 1, ...𝜶 𝑐 , 𝜷1, ..., 𝜷𝑐 ,𝒘) (19)
Architecture. Figure 4 shows the architecture of DiffPrep with a flexible prototype. For each input
feature, DiffPrep will learn a set of 𝜶 and 𝜷 parameters that defines a data preprocessing pipeline.
The 𝜶 parameters define the prototype and the 𝜷 parameters define the results of operator selection.
The final output of DiffPrep-Flex pipelines will be the preprocessed features parameterized by 𝜶 , 𝜷
parameters, which will be fed into ML models.

4.2 Differentiable Relaxation
We can reuse the method described in Section 3.2 to relax 𝜷 parameters. For 𝜶 matrix, similar to
relaxing 𝜷 matrix, we can relax 𝜶 to be continuous variables 𝛼𝑖 𝑗 ∈ [0, 1], but we need to retain
the constraints between parameters in the original binary matrix (

∑
𝑖 𝛼𝑖 𝑗 = 1,

∑
𝑗 𝛼𝑖 𝑗 = 1). In

other words, 𝜶 matrix requires to be a non-negative squared matrix with both rows and columns
summing up to 1, which is so-called a doubly stochastic matrix (DSM). To enforce that 𝜶 is a DSM,
we generate it using Sinkhorn normalization. Sinkhorn [38, 39] showed that any non-negative
square matrix can be converted into a DSM by repeatedly and alternatively normalizing its rows
and columns. Cruz et al. [36] introduced Sinkhorn Layer that converts CNN predictions to a DSM
using Sinkhorn normalizations. Following Adams et al. [3], we define Sinkhorn normalization over
any squared matrix 𝑋 as:

𝐶𝑖 𝑗 (𝑋 ) =
𝑋𝑖 𝑗∑
𝑖 𝑋𝑖 𝑗

, 𝑅𝑖 𝑗 (𝑋 ) =
𝑋𝑖 𝑗∑
𝑗 𝑋𝑖 𝑗

, 𝑆 (𝑋 ) = lim
𝑙→∞

𝑆𝑙 (𝑋 )

𝑆𝑙 (𝑋 ) =
{
𝑋𝑖 𝑗 𝑙 = 1
𝑅(𝐶 (𝑆𝑙−1 (𝑋 )) 𝑙 > 1

where 𝑅 and𝐶 are the row and column normalization. 𝑆 (𝑋 ) is the result of Sinkhorn normalization,
which is a DSM.

Inspired by these work, we define 𝜶 matrix as 𝜶 = 𝑆 (𝜽 ), where 𝜽 = {𝜃𝑖 𝑗 } ∈ R𝑠×𝑠+ are non-
negative underlying parameters. Note that this normalization is a differentiable process, which
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Algorithm 3 DiffPrep-Flex
Require: Space of TF types and operators 𝑆 , training set 𝐷𝑡𝑟𝑎𝑖𝑛 , validation set 𝐷𝑣𝑎𝑙

Ensure: Optimal prototype parameters 𝜶 , pipeline parameters 𝜷 , and model parameters𝒘
1: Initialize 𝜽 , 𝝉 and𝒘
2: while not converged do
3: Fit TF operators on the transformed training data
4: Forward Propagation: Compute 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘+), 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘−), 𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′)
5: Backward Propagation: Compute ∇𝜶 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘+),∇𝜶 𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘−), ∇𝜶 𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′),

∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘+), ∇𝜷𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘−), ∇𝜷𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′)
6: Compute ∇𝝉𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′), ∇𝜽𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′)
7: Update 𝝉 , 𝜽 : 𝝉 = 𝝉 − 𝜂1∇𝝉𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′), 𝜽 = 𝜽 − 𝜂1∇𝜽𝐿𝑣𝑎𝑙 (𝜶 , 𝜷,𝒘′)
8: Update𝒘 :𝒘 = 𝒘 − 𝜂2∇𝒘𝐿𝑡𝑟𝑎𝑖𝑛 (𝜶 , 𝜷,𝒘)
9: return 𝜶 (𝜽 ), 𝜷 (𝝉 ),𝒘

allows us to compute the gradients w.r.t the underlying parameters. By enforcing these constraints,
we can interpret 𝛼𝑖 𝑗 (Equation 16) as the probability that 𝐹 𝑗 is the 𝑖-th transformation type in the
prototype, and 𝛽𝑖 𝑗 (Equation 1) as the probability that 𝑓𝑖 𝑗 is selected for 𝐹𝑖 . In this sense, Equation 17
will return the expected value of the transformed data, which can be used to compute the expected
training and validation loss.

4.3 Bi-level Optimization
Now we can use gradient descent to solve the bi-level optimization (Equation 18 and 19) and find
the optimal prototype and pipeline represented by 𝜶 and 𝜷 parameters, similar to Algorithm 2.
Algorithm. Algorithm 3 shows the pseudocode of DiffPrep with flexible prototypes. Compared
to Algorithm 2, the input only requires a space of TF types and TF operators, and does not need
a pre-defined prototype. At each iteration, we compute the gradients of the validation loss with
respect to both 𝜶 and 𝜷 using the method described in Section 3.3 (Line 4 - 6). Then we update the
prototype parameters, pipeline parameters and model parameters (Line 7 - 8) until convergence.

5 EXPERIMENTS
We conduct extensive experiments to evaluate the effectiveness and efficiency of DiffPrep. All our
experiments were performed on a single machine with a 2.20GHz Intel Xeon(R) Gold 5120 CPU.
The source code of our experiments is available at https://github.com/chu-data-lab/DiffPrep.

5.1 Experimental Setup
Datasets.We evaluate our approaches on 18 diverse real-world datasets from the OpenML data
repository [41]. These datasets are frequently used in the AutoML and data cleaning literature [5,
20, 23, 24, 28]. Table 2 shows the size and number of label classes of each dataset, as well as the
number of missing values and outliers detected using the Z-score method (i.e., values more than 3
standard deviations away from the mean of the column are considered outliers). We randomly split
each dataset into training/validation/test sets by a ratio of 60%/20%/20%.
Model. For all preprocessing methods considered in the experiments, we use Logistic Regression
as the downstream ML model, which is a classical differentiable model commonly used in practice
and frequently considered in the literature [10, 22, 29, 40].
Search Space. We consider four TF types in our experiments, including missing value imputation,
normalization, outlier removal and discretization. For each TF type, we select several TF operators
that are widely used in practice and provided by scikit-learn [31] as shown in Table 1. For operators
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that have parameters, we discretize them with different parameters. For example, for the Z-score
method, we consider Z-score(2), Z-score(3) and Z-score(4) as 3 different TF operators. We also add
an identity operator to each TF type which amounts to a skipping operator. Since most TF operators
provided by scikit-learn require the input data to contain no missing values, we do not add the
identity operator to the missing value imputation. We enforce the missing value imputation to be
the first TF type in the prototype so that missing values are imputed in the first step. In addition,
many operators only accept numerical input data. Therefore, after missing value imputation, we
transform all categorical features into numerical features using one-hot encoding.
Methods Compared. We compare the following data preprocessing approaches.

• DiffPrep-Fix (DP-Fix). This is our approach with a pre-defined fixed transformation order. We use
the order {missing value imputation, normalization, outlier removal, discretization}. Our method
learns the best 𝜷 parameters that define a pipeline for each feature. Note that different features
can have different 𝜷 parameters and thus can be preprocessed differently.

• DiffPrep-Flex (DP-Flex). This is our approach with a flexible transformation order. It will automat-
ically learn 𝜶 parameters that define the transformation order and 𝜷 parameters that define a
pipeline under the learned order for each feature.

• Default (DEF). This is the default data preprocessing pipeline that is commonly used in practice
and adopted in AutoML frameworks such as H2O [23]. It first imputes numerical missing values
with the mean value of the column and categorical missing values with the most frequent value
of the column. Then, it normalizes each feature using standardization. Note that this default
pipeline does not include outlier removal and discretization, which is the default setup for many
existing AutoML frameworks [4, 23]. All features use the same pipeline.

• RandomSearch (RS). This approach searches for a pipeline by training ML models with randomly
sampled pipelines 𝑁 times and selecting the one with the best validation accuracy. We use the
same transformation order as DiffPrep-Fix and sample one TF operator for each TF type from
the space (Table 1) to generate a sampled pipeline. All features are preprocessed using the same
pipeline. We set the number of trials 𝑁 = 20.

• Auto-Sklearn (AS) [10]. This is an open-source AutoML package with automatic data preprocess-
ing. Its built-in data preprocessor performs missing value imputation, removing low-variance
features and normalization for numerical features, and performs category shift, missing value
imputation, minority coalescence and one-hot encoding for categorical features. The built-in
data preprocessor already contains operators like category coalescence, category shift, TF-IDF
encoding that are not included in our space. It uses Bayesian optimization to search the optimal
pipeline that will be used to preprocess all the features. The time limit for search is set to 1
hour and default settings are used for other configurations. AS also provides a feature processor
that performs feature engineering operators, such as feature extraction and feature embedding,
which are out of the scope of data preprocessing. Since we focus on data preprocessing and
feature engineering is not performed for all other methods, for a fair comparison, we turn off
the feature processor and only use the data processor. We will report the results of AS with its
feature processor later in Section 5.6, where we will show that our methods can also be combined
with a feature processor.

• Learn2Clean (LC) [5]. This is a reinforcement-learning-based data cleaning and preparation
method proposed in the literature. It uses Q-learning to select the optimal preprocessing pipeline
that maximizes the ML model performance. The TF types, operators and order are all flexible,
but it only generates one pipeline to preprocess all the features in the same way. We modify the
search space of TF operators to be the same as ours (Table 1).
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• BoostClean (BC) [20]. This is an automatic data cleaning approach that uses boosting to select an
ensemble of data cleaning operators (or pipelines) from a pre-defined candidate set to maximize
validation accuracy. BoostClean combines the ML models trained on different transformed data
induced by different pipelines, thus it needs to train multiple models on different candidate
pipelines. BoostClean does not support feature-wise pipelines. To generate candidate pipelines,
we use the same transformation order as DiffPrep-Fix and randomly sample 50 pipelines from the
space (Table 1). BoostClean is designed for binary classification but can be adapted for multi-class
classification by breaking it down into multiple binary tasks using the one-vs-all method. We
adopt this method in our experiments. We set its ensemble size 𝐵 = 5, the best setup it reported.

Training Process. We use an SGD optimizer to optimize the model parameters and use an Adam
optimizer to optimize the pipeline parameters. The learning rate is tuned using the validation set.
The batch size is 512 and the number of training epochs is 1000. We keep track of the validation loss
during training and report the result at the epoch with the minimum validation loss. The training
and evaluation are implemented using PyTorch [30], which utilizes parallelism by default.
Evaluation Metrics. Our goal is to automatically and efficiently compose a data preprocessing
pipeline to maximize downstream ML model performance. Therefore, we use the test accuracy of
the model and the end-to-end running time as the evaluation metrics.

5.2 Performance Comparison

Table 2. Comparison of model test accuracy on 18 real-world datasets using different data preprocessing

pipelines. DiffPrep (DP-Fix and DP-Flex combined) achieves the best test accuracy on 15 out of 18 datasets.

Data Characteristics Test Accuracy
Dataset #Ex. #Feat. #classes #MVs #Out. DEF RS AS LC BC DP-Fix DP-Flex

abalone 4177 9 28 0 200 0.24 0.243 0.216 0.186 0.168 0.238 0.255
ada_prior 4562 15 2 88 423 0.848 0.844 0.853 0.816 0.848 0.854 0.846
avila 20867 11 12 0 4458 0.553 0.598 0.615 0.597 0.585 0.638 0.63
connect-4 67557 43 3 0 45873 0.659 0.671 0.667 0.658 0.69 0.732 0.701
eeg 14980 15 2 0 209 0.589 0.658 0.657 0.641 0.659 0.678 0.677
google 9367 9 2 1639 109 0.586 0.627 0.664 0.549 0.616 0.645 0.641
house 1460 81 2 6965 617 0.928 0.938 0.945 0.812 0.928 0.932 0.945
jungle_chess 44819 7 3 0 0 0.668 0.669 0.678 0.676 0.667 0.682 0.682
micro 20000 21 5 0 8122 0.564 0.579 0.584 0.582 0.561 0.586 0.588
mozilla4 15545 6 2 0 290 0.855 0.922 0.931 0.854 0.93 0.923 0.922
obesity 2111 17 7 0 25 0.775 0.841 0.737 0.723 0.652 0.893 0.896
page-blocks 5473 11 5 0 1011 0.942 0.959 0.969 0.92 0.951 0.957 0.967
pbcseq 1945 19 2 1445 99 0.71 0.73 0.712 0.704 0.72 0.725 0.743
pol 15000 49 2 0 8754 0.884 0.879 0.877 0.737 0.903 0.904 0.919
run_or_walk 88588 7 2 0 8548 0.719 0.829 0.851 0.728 0.835 0.907 0.917
shuttle 58000 10 7 0 5341 0.964 0.996 0.998 0.997 0.997 0.998 0.997
uscensus 32561 15 2 4262 2812 0.848 0.84 0.851 0.786 0.848 0.857 0.852
wall-robot-nav 5456 25 4 0 1871 0.697 0.872 0.869 0.69 0.9 0.898 0.914

Accuracy Comparison. Table 2 shows the test accuracy of the ML model on 18 real-world datasets
with different preprocessing methods. We have the following observations from Table 2:
(1) Different preprocessing pipelines can lead to significantly different model performances. For

example, on wall-robot-nav, using different pipelines, the accuracy differs by more than 20%.
(2) DiffPrep (DP-Fix and DP-Flex combined) achieves the best test accuracy on 15 out of 18 datasets.

Our methods surpass the best baseline method by more than 1% on 9 datasets. In particular,
on run_or_walk, obesity and connect-4, our methods outperform the best baseline method by
6.6%, 5.5% and 4.2%, respectively. This shows the effectiveness of DiffPrep and the significant
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improvement of model performance by using a larger search space. The reasons for gains vary
by datasets. For example, connect-4 may benefit from cleaning outliers properly as it has a great
number of outliers. On this dataset, we found DP-Fix selects Z-score methods for some features,
while selecting skip operators for some other features. This shows the benefits of DiffPrep
by using feature-wise pipelines, where we can clean true outliers in some features without
affecting other features that may not contain true outliers. We will explain the contribution of
each component of DiffPrep in more detail in the ablation study (Section 5.4).

(3) DiffPrep-Fix (DP-Fix) and DiffPrep-Flex (DP-Flex) respectively outperform the best baseline
methods on 11 and 13 datasets. Comparing DiffPrep-Flex with DiffPrep-Fix, DiffPrep-Flex
outperforms DiffPrep-Fix on 9 out of 18 datasets, but the two methods differ by less than 2% on
17 datasets. DiffPrep-Flex does not significantly improve upon DiffPrep-Fix despite the larger
search space, because the fixed order we used for DiffPrep-Fix is already the optimal order for
many datasets. Hence, changing the order in DiffPrep-Flex may not lead to further improvement.
Also, as the gradient descent is not always guaranteed to find the global optimum, it is possible
to find a less optimal solution, especially for DiffPrep-Flex which has a harder optimization
problem due to its flexibility. However, DiffPrep-Fix with default order is insufficient as it may
not work well for all datasets. As we will show in the ablation study, if the order is not set
properly, DiffPrep-Fix may perform worse, while DiffPrep-Flex can avoid such cases. In addition,
the default order will be invalid if users add custom TF types. The benefit of DiffPrep-Flex is
that it does not require and is not affected by the pre-defined transformation order.

(4) RandomSearch (RS) performs better than Default on 15 out of 18 datasets. Especially on wall-
robot-nav and run_or_walk, the accuracy is improved by 17.5% and 11%, respectively. This
indicates that using the same default preprocessing pipeline for all datasets is generally not a
good strategy, despite its wide adoption in practice.

(5) BoostClean (BC) performs worse than DiffPrep (DP-Fix and DP-Flex combined) on 17 out of 18
datasets. Comparing BC with RandomSearch (RS), on binary classification tasks, BoostClean
(BC) outperforms RS on 6 out of 9 datasets. This is because BoostClean uses an ensemble of
models and statistical boosting to improve model performance. Also, BoostClean has a larger
candidate set with 30 additional pipelines compared to RandomSearch, increasing its chance
of finding a better pipeline. However, on datasets with more than 2 classes, BoostClean only
outperforms RandomSearch on 3 out of 9 datasets. Especially on obesity and abalone, BoostClean
is 18.9% and 7.5% worse than RandomSearch. This is because BoostClean uses the one-vs-all
method to handle multi-class classification, which may cause class imbalance issue and thus
lead to worse model performances when the number of classes is large.

(6) Although Auto-Sklearn and RandomSearch use different optimization methods, they perform
close to each other on most datasets, where the difference is less than 2% on 14 out of 18 datasets.
This is because they use a similar search space. In comparison, our methods consider a larger
space with feature-wise pipelines and flexible order, which further improves the performance.

(7) Learn2Clean (LC) on average performs worst and it outperforms Default only on 6 datasets.
Although Learn2Clean has a larger search space than other baseline methods, the Q-learning
method is not effective to find a good pipeline and thus it performs worse than other methods.

RunningTimeComparison. To compare running time, we categorize all the datasets into different
bins based on the number of rows of each dataset (e.g., 0-10K, 10-20K) and we report the average
end-to-end running time of different methods over datasets in each bin as shown in Figure 5 (a). As
expected, Default takes the shortest time since it only trains the model once with the fixed pipeline.
RandomSearch (RS) is about 20 times slower than Default, since it simply trains the model 20 times
with 20 randomly sampled pipelines. Auto-Sklearn (AS) takes about 1 hour constantly as it keeps
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searching for the best result within the given 1 hour time limit. BoostClean (BC) is about 50 times
slower than Default on binary class datasets as it needs to train a model on every candidate pipeline,
but it is much slower on multi-class datasets as it uses the one-vs-all method and needs to rerun
the whole algorithm for each subclass. Additionally, while both RandomSearch and BoostClean can
utilize parallelism to decrease running time by training multiple models simultaneously on multiple
machines, this study only considers the single machine setup, which is more common for general
users. Overall, DiffPrep-Fix takes about half of the time of RandomSearch, which amounts to 10
times slower than Default and it is generally faster than Learn2Clean. DiffPrep-Flex takes similar
time as RandomSearch and is generally faster than Auto-Sklearn. Also, we can see the running
time of our methods grows linearly with the size of the dataset, showing their scalability.
Note that although DiffPrep only requires training the model once, the additional overhead

comes from the forward/backward propagation through the pipelines. Recall that DiffPrep uses
“dynamic” pipelines that are changed at every iteration. Therefore, we need to reinvoke TF operators
to transform data at every iteration. The ratio between our method and the Default method depends
on the time it takes to propagate through the pipelines and through the model. Our experiments
use logistic regression, in which propagation through the model is relatively fast. However, as the
model sizes increase, the ratio between our methods and the Default will go down. For example,
Figure 5 (b) shows that with a larger ML model (two-layer neural network with 100 neurons),
DiffPrep-Fix is 2-3 times slower and DiffPrep-Flex is 6-7 times slower than Default, both of which
are much faster than other baseline methods.

(a) Logistic Regression (b) Two-layer Neural Network

Fig. 5. Comparison of end-to-end running time of different preprocessing methods.

5.3 Sensitivity Analysis

Non-linear ML models. One concern for our methods is that the approximate gradient computa-
tion (e.g., Equation 11) may not work well for non-linear ML models. To understand the impact of
end ML models, we test our methods with a non-linear ML model: a two-layer neural network with
ReLU activation and 100 neurons in the hidden layer. As shown in Table 3, compared with other
methods, DiffPrep (DP-Fix and DP-Flex combined) achieves the best test accuracy on 10 out of
18 datasets. Especially on pbcseq and avila, our method outperforms the best baseline method by
3.1% and 3%, respectively. This shows that our method is still effective with non-linear models in
practice. This corroborates with findings in DARTS [25], which uses similar approximate gradient
computation for neural network architecture search and empirically works for non-linear models.
Impact of validation size on overfitting. Our methods aim to minimize validation loss, but this
could lead to model overfitting on the validation set, especially when the validation set is small. To
understand how the validation size affects the performance, we first hold out 20% data as the test
set and then randomly split the remaining data into validation/training sets with ratios ranging
from 1% to 99%. We repeat it 5 times and run DiffPrep-Fix with each split. Figure 6 shows the
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Table 3. Comparison of model test accuracy using a two-layer neural network.

Dataset DEF RS AS LC BC DP-Fix DP-Flex

abalone 0.251 0.266 0.251 0.271 0.162 0.246 0.273
ada_prior 0.829 0.845 0.855 0.815 0.829 0.834 0.84
avila 0.82 0.914 0.864 0.824 0.928 0.946 0.958
connect-4 0.802 0.799 0.804 0.795 0.8 0.807 0.806
eeg 0.906 0.955 0.933 0.834 0.955 0.924 0.939
google 0.576 0.657 0.667 0.573 0.657 0.677 0.666
house 0.928 0.935 0.921 0.928 0.935 0.908 0.928
jungle_chess 0.854 0.856 0.852 0.825 0.842 0.853 0.861
micro 0.626 0.626 0.63 0.617 0.615 0.628 0.626
mozilla4 0.916 0.934 0.932 0.925 0.933 0.935 0.934
obesity 0.91 0.95 0.941 0.815 0.927 0.941 0.943
page-blocks 0.966 0.967 0.975 0.983 0.959 0.969 0.959
pbcseq 0.743 0.743 0.748 0.697 0.743 0.779 0.779
pol 0.989 0.967 0.988 0.99 0.988 0.981 0.984
run_or_walk 0.985 0.986 0.99 0.984 0.983 0.99 0.991
shuttle 0.999 0.998 0.999 0.999 0.999 1 0.999
uscensus 0.856 0.845 0.854 0.79 0.856 0.854 0.853
wall-robot-nav 0.898 0.961 0.962 0.92 0.957 0.965 0.962

mean and standard error of the test accuracy for some datasets. When the validation is extremely
small (1%), although the training set is large, the test accuracy is generally bad. This is because the
pipeline parameters optimizing on the validation set make our method overfit the validation set.
From 1% to 25%, the test accuracy improves significantly as overfitting is reduced. From 25% to
50%, the gain becomes insignificant on most datasets because the validation set is large enough to
prevent overfitting. However, as we further increase the validation size, the test accuracy drops
on most datasets. Especially, when the validation set becomes extremely large (99%), the accuracy
is generally bad as the ML model overfits the small training set. Therefore, we can conclude that
using either a too small validation set or a too small training set can result in overfitting issues
and using 60:20 train/val split (i.e., 25% ratio in the plot) is good enough in practice. The results on
other datasets and on DiffPrep-Flex reveal similar findings and thus are omitted here.

Fig. 6. Using either a too small validation set or a too small training set can result in poor test accuracy due

to overfitting. 60: 20 train/val split is generally good enough in practice.

5.4 Ablation Study

Contribution of feature-wise pipelines. To study the benefits of using feature-wise pipelines, we
turn off feature-wise pipelines on DiffPrep-Fix by letting all features share the same 𝜷 parameters.
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Table 4. Results of Ablation Study

Dataset DiffPrep-Fix DiffPrep-Flex DiffPrep-Fix
(w/o feature-wise)

DiffPrep-Fix
(worst order)

DiffPrep-Fix
(train-opt)

abalone 0.238 0.255 0.237 0.238 0.243
ada_prior 0.854 0.846 0.851 0.848 0.849
avila 0.638 0.63 0.613 0.637 0.637
connect-4 0.732 0.701 0.688 0.719 0.676
eeg 0.678 0.677 0.662 0.648 0.675
google 0.645 0.641 0.621 0.601 0.64
house 0.932 0.945 0.942 0.914 0.938
jungle_chess 0.682 0.682 0.683 0.682 0.681
micro 0.586 0.588 0.576 0.586 0.584
mozilla4 0.923 0.922 0.921 0.854 0.923
obesity 0.893 0.896 0.879 0.863 0.9
page-blocks 0.957 0.967 0.952 0.945 0.964
pbcseq 0.725 0.743 0.722 0.71 0.722
pol 0.904 0.919 0.888 0.882 0.896
run_or_walk 0.907 0.917 0.862 0.888 0.898
shuttle 0.998 0.997 0.998 0.998 0.996
uscensus 0.857 0.852 0.853 0.858 0.857
wall-robot-nav 0.898 0.914 0.905 0.882 0.894

This way, our method can still learn the optimal 𝜷 parameters but all features will be processed in
the same way. The result is shown in Table 4 as DiffPrep-Fix (w/o feature-wise). Without feature-
wise pipelines, the test accuracy drops on 14 out of 18 datasets. Especially on run_or_walk and
connect-4, the accuracy is reduced by 4.5% and 4.4%, respectively. This shows that using feature-
wise pipelines can indeed improve the performance as it significantly enlarges the search space.
Note that compared with the baseline methods in Table 2, even without feature-wise pipelines, our
method still achieves the highest accuracy on 7 out of 18 datasets. This is because our method uses
continuous parameters, which amounts to using a combination of different TF operators for each
TF type and thus results in a larger space than choosing a single TF operator for each TF type.
Benefits of flexible order. Compared with DiffPrep-Fix that uses a pre-defined transformation
order, DiffPrep-Flex can search for the optimal order automatically with no need of user input.
This is essential for less experienced users as they may not know how to set the order properly. To
understand the benefit of using flexible order, we run DiffPrep-Fix with different transformation
orders and we show the performance with the worst order for each dataset in Table 4 as DiffPrep-Fix
(worst order). With a bad order, the performance of DiffPrep-Fix drops significantly: on mozilla4, for
example, the performance is reduced by 6.9%. Compared to DiffPrep-Fix (worst order), DiffPrep-Flex
performs better on 13 out of 18 datasets. This suggests that for inexperienced users, DiffPrep-Flex
is a better method as it can avoid performance degradation due to bad pre-defined order.
Alternative Optimization Objective. To understand the benefits of bi-level optimization, we
experiment with an alternative, one-level optimization objective, where both pipeline parameters
(𝜶 , 𝜷 ) and model parameters (𝒘) are learned to minimize the training loss. This optimization
problem can be solved by computing the gradient of the training loss w.r.t each parameter and
updating 𝜶 , 𝜷 ,𝒘 simultaneously using gradient descent. We run DiffPrep-Fix using this alternative
objective and the results are shown in Table 4 as DiffPrep-Fix (train-opt). Compared with this
alternative method, our original method (DiffPrep-Fix) performs better on 12 out of 18 datasets and
has the same accuracy on 2 datasets. We hypothesize that this is because optimizing pipelines and
models jointly on training data makes it easier to overfit the training data and thus reduces the test
accuracy. In addition, although our method achieves better accuracy in most cases, the difference
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between the two methods is less than 1% on 17 out of 18 datasets. This is because even though the
alternative objective only involves the training set, we tune hyperparameters (e.g., learning rates)
using the validation set and adopt early stopping to mitigate the overfitting. Similar findings are
also observed in DARTS [25], which uses a validation set to select network architecture.

5.5 Case study with Synthetic Datasets
Traditional data cleaning or preprocessing methods focus on improving the data quality without
considering downstream ML models. However, in the context of data cleaning for ML, prior
works [24, 27] have shown that this may not improve and can even downgrade the ML model
performance. This motivates us to take ML models into consideration and use the model accuracy
as guidance to select preprocessing pipelines. To justify this motivation, we randomly inject 10%
missing values into three datasets. Since the ground truth of the synthetic datasets is known, we
can evaluate the quality of missing value imputation using the root mean squared error (RMSE)
between imputed values and ground truth values. Table 5 shows the model accuracy and the quality
of missing value imputation using different preprocessing methods. Note that we omit data quality
for BoostClean (BC) as it uses an ensemble of ML models trained on different imputed data. The
results show that DiffPrep consistently achieves the best model accuracy on all synthetic datasets.
However, the imputation methods selected by our methods are not necessarily the method with
the best data quality. For example, on wal-robot-nav, the imputation quality of DiffPrep-Flex is
the worst, however, it achieves better accuracy than other baseline methods. This indicates that
selecting operators by data quality purely may not lead to the best model performance. Instead, we
need to jointly consider other operators in the pipeline and the ML model to achieve the best result.

Table 5. Comparison of model accuracy and data cleaning quality on synthetic datasets with injected errors.

Model Accuracy Imputation Quality (RMSE)
Dataset DEF RS AS LC BC DP-Fix DP-Flex DEF RS AS LC DP-Fix DP-Flex

avila 0.521 0.577 0.575 0.536 0.546 0.630 0.614 1.043 1.05 1.043 1.05 0.696 0.8
eeg 0.577 0.646 0.637 0.521 0.641 0.661 0.663 1787.601 1788.85 1787.601 1788.85 2662.249 2000.434
wal-robot-nav 0.66 0.863 0.818 0.646 0.862 0.892 0.888 1.25 0.965 1.25 1.312 1.273 1.427

5.6 Beyond Data Preprocessing
While DiffPrep focuses on optimizing data preprocessing-related parameters, it can be easily inte-
grated with AutoML methods that target other components in the ML pipeline, such as feature
selection, feature embedding and hyperparameter tuning. In previous experiments, we have com-
bined DiffPrep with learning rate tuning. In this example, we demonstrate how DiffPrep can work
with feature extraction. Specifically, we train a random forest classifier on the raw input data as a
features extractor, where we can use the tree node embeddings and predicted probability as the
extracted features. We append the extracted features to the original data and feed the data into
DiffPrep for data preprocessing and model training. Table 6 shows the changes in the number of
features and test accuracy of DP-Fix with and without the feature extractor. The accuracy signifi-
cantly improved on 16 out of 18 datasets due to feature extraction. For reference, we report the
performance change of Auto-Sklearn (AS) with its feature processor turned on, which performs
feature extraction and selection on top of data preprocessing. The accuracy is significantly improved
on 11 out of 18 datasets. Note that the performance on some datasets become worse, as enabling
feature processor can make the search harder due to the increase in training time and search space.

6 RELATEDWORK

Automated Machine Learning. The traditional workflow of developing ML models requires
significant domain knowledge and human effort, especially for data preprocessing and model
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Table 6. Test accuracy combined with a feature preprocessor.

Dataset DP-Fix w/o Feat vs. w/ Feat AS w/o Feat vs. w/ Feat
# Feats Change Test Accuracy Change # Feats Change Test Accuracy Change

abalone 9→424 0.238→0.26 9→851 0.216→0.237
ada_prior 15→408 0.854→0.848 15→120 0.853→0.846
avila 11→410 0.638→0.994 11→23760 0.615→0.94
connect-4 43→445 0.732→0.813 43→10454 0.667→0.808
eeg 15→333 0.678→0.93 15→679 0.657→0.91
google 9→388 0.645→0.673 9→174 0.664→0.674
house 81→472 0.932→0.935 81→47 0.945→0.928
jungle_chess 7→409 0.682→0.809 7→2106 0.678→0.855
micro 21→425 0.586→0.605 21→1771 0.584→0.627
mozilla4 6→407 0.923→0.947 6→416 0.931→0.94
obesity 17→420 0.893→0.943 17→629 0.737→0.886
page-blocks 11→391 0.957→0.967 11→176 0.969→0.969
pbcseq 19→415 0.725→0.807 19→103 0.712→0.692
pol 49→442 0.904→0.98 49→623 0.877→0.884
run_or_walk 7→401 0.907→0.989 7→12942 0.851→0.992
shuttle 10→394 0.998→0.999 10→220 0.998→0.925
uscensus 15→416 0.857→0.851 15→279 0.851→0.85
wall-robot-nav 25→428 0.898→0.994 25→1956 0.869→0.759

training, which can be time-consuming and expensive. Automated machine learning, also known
as AutoML, aims to reduce the need of human involvement by automating the whole process of ML
model development. Our work provides an effective and efficient solution to automate the process
of data preprocessing.

Many existing AutoML tools enable automation in the process of data preprocessing and model
training. Azure [4] is an AutoML system developed by Microsoft. It uses matrix factorization and
Bayesian optimization to automatically select models and tune hyperparameters. However, for data
preprocessing, it only considers tuning the normalization methods. For other transformations, it
simply uses pre-defined default methods, such as mean imputation for missing value imputation.
The order of transformations is fixed and different features are preprocessed in the same way.
Auto-Sklearn [10] is an open-source AutoML package. It also relies on Bayesian optimization
to automate data preprocessing and model training. Specifically, it adopts random-forest-based
sequential model-based optimization to explore the search space. For data preprocessing, Auto-
sklearn considers tuning a larger set of transformations than Azure. However, it also uses a fixed
order of transformation and preprocesses all features in the same way. In comparison, our methods
allow flexible order of transformations and different features can use different pipelines. Instead of
Bayesian optimization, we use bi-level optimization with gradient descent, which is faster and only
needs to train the model once.
Data Cleaning for ML. Our work builds upon a line of data cleaning methods that incorporate
signals from the downstream ML models into the design of cleaning objectives [27]. DiffML [17] is
our closest work in this area since it adopts a similar idea of making ML pipelines differentiable so
that preprocessing steps can be jointly learned with the ML model using backpropogation. However,
DiffML considers each preprocessing step separately while we consider a pipeline of preprocessing
steps and formulate the ordering using Sinkhorn. In addition, DiffML minimizes training loss
with one-level optimization, while we minimize validation loss with bi-level optimization, which
reduces the risk of overfitting. BoostClean [20] automatically selects cleaning algorithms from the
search space via statistical boosting to maximize the ML model’s validation accuracy. It supports
conditional cleaning operations defined by a combination of custom detection and repair functions.
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However, only 192 to 1976 operators were used in the evaluation, which is much smaller than
the number of pipelines evaluated in our search space. BoostClean does not consider feature-wise
pipelines. AlphaClean [22] is a similar automatic data cleaning pipeline generation system that
finds cleaning pipelines from data cleaning libraries to maximize user-defined quality measures.
AlphaClean uses tree search algorithms and learns pruning heuristics to reduce the search space.
Learn2Clean [5] uses reinforcement learning to select a sequence of data preprocessing operators
such that the ML model performance is maximized. However, reinforcement learning needs to
train and evaluate models many times to obtain rewards, which could lead to scalability challenges.
ActiveClean [21] focuses on gradient-based models and prioritizes cleaning examples with higher
gradients that are likely to have large impacts on the model. CPClean [18] quantifies the impact of
data cleaning on ML models using the uncertainty of predictions and prioritizes cleaning examples
that would lead to the maximum reduction on the uncertainty of predictions. Both ActiveClean and
CPClean solve the problem of which examples should be cleaned, while our method is design to
select appropriate preprocessing/cleaning operators. Data Cleaning and AutoML [28] investigated
the impact of data cleaning for AutoML systems and found that data errors did not affect the AutoML
performance significantly as AutoML can select robust models and adjust ML pipelines to handle
data errors properly. This verifies our motivation to take downstream models into consideration
when handling data errors rather than isolating data cleaning as a separate process.
Network Architecture Search. Network architecture search (NAS) aims to automate the design of
neural network architectures. Although our work is not directly related to NAS, many of our ideas
are inspired by DARTS [25], which is a differentiable NAS method. To search network architecture
efficiently, DARTS first relaxes the categorical choice of network operators using continuous
architecture parameters, which is similar to the pipeline parameters we used for choices of TF
operators. It then formulates the architecture search as a bi-level optimization problem, which can
be solved by updating the architecture and model parameters alternatively using gradient descent.
Although DARTS and DiffPrep are similar in their methodology, there are two major differences.
First, most architecture operators (e.g., convolution, ReLU) are differentiable and their gradients
can be easily computed using automatic differentiation engines (e.g., PyTorch). However, the TF
operators for data preprocessing can be complex and the gradients may not be easily computed.
Second, the same type of TF operators rarely appears more than once in a pipeline and the order
of TF operators (types) are usually flexible. In comparison, architecture operators usually repeat
multiple times in an architecture but their order is usually fixed (e.g., DARTS uses ReLU-Conv-BN).
7 CONCLUSION
In this paper, we propose DiffPrep, a method that can automatically and efficiently search the
optimal data preprocessing pipeline for a given tabular dataset and an ML model such that the
performance of the ML model is maximized. We formalize the problem of automatic data prepro-
cessing as a bi-level optimization problem. We then relax the discrete search space using continuous
parameters, which enables us to search optimal preprocessing pipelines efficiently using gradient
descent. The experiments show that our method achieves the best test accuracy on 15 out of 18
real-world datasets and improves the model’s test accuracy by up to 6.6 percentage point. We note
that our proposed differentiable search strategy can only search for optimal data preprocessing
pipelines when the end model is differentiable. We leave it to future work on how to search for the
optimal data processing pipeline for non-differentiable end models, such as random forests.
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