
Scaling a Declarative Cluster Manager Architecture withQuery
Optimization Techniques

Kexin Rong

Georgia Institute of Technology

VMware Research

krong@gatech.edu

Mihai Budiu

Feldera*

mbudiu@feldera.com

Athinagoras Skiadopoulos

Stanford University

askiad@stanford.edu

Lalith Suresh

Feldera*

lalith@feldera.com

Amy Tai

Google

amy.tai.2009@gmail.com

ABSTRACT
Cluster managers play a crucial role in data centers by distribut-

ing workloads among infrastructure resources. Declarative Cluster

Management (DCM) is a new cluster management architecture

that enables users to express placement policies declaratively using

SQL-like queries. This paper presents our experiences in scaling

this architecture from moderate-sized enterprise clusters (10
2 − 10

3

nodes) to hyperscale clusters (10
4
nodes) via query optimization

techniques. First, we formally specify the syntax and semantics of

DCM’s declarative language, C-SQL, a SQL variant used to express

constraint optimization problems. We showcase how constraints on

the desired state of the cluster system can be succinctly represented

as C-SQL programs, and how query optimization techniques like in-

cremental view maintenance and predicate pushdown can enhance

the execution of C-SQL programs. We evaluate the effectiveness

of our optimizations through a case study of building Kubernetes

schedulers using C-SQL. Our optimizations demonstrated an al-

most 3000× speed up in database latency and reduced the size of

optimization problems by as much as 1/300 of the original, without

affecting the quality of the scheduling solutions.

PVLDB Reference Format:
Kexin Rong, Mihai Budiu, Athinagoras Skiadopoulos, Lalith Suresh,

and Amy Tai. Scaling a Declarative Cluster Manager Architecture with

Query Optimization Techniques. PVLDB, 16(10): 2618-2631, 2023.

doi:10.14778/3603581.3603599

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available

at https://github.com/vmware/declarative-cluster-management/releases/

tag/vldb23.

1 INTRODUCTION
Cluster managers like Kubernetes [8], OpenStack [2], and Open-

Shift [3] are important building blocks of today’s data centers. They

dynamically assign workloads to the underlying infrastructure and

*Work done while at VMware Research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.

doi:10.14778/3603581.3603599

Figure 1: During cluster management decisions (e.g., assign-
ing pods to nodes in Kubernetes), DCM retrieves the latest
cluster state, encodes the state and constraints into an op-
timization problem, solves it using a constraint solver, and
returns the tables with values assigned to variable columns.

configure them according to a variety of policies. Some policies rep-

resent hard constraints (e.g., “never assign two replicas of a storage

service to the same node”), which must always hold in any clus-

ter management decision. Others are soft constraints (e.g., “spread
these web servers across different geographies if possible”), which

represent preferences and decision quality. Cluster management

logic is notoriously hard to develop [72], since it often involves

NP-hard combinatorial optimization tasks that cannot be efficiently

solved using best-effort heuristics, as is the norm today.

Declarative Cluster Managers (DCM) [72] is a novel architec-

ture that allows developers to specify what the cluster manager

should achieve, not how it should do so. DCM users can declara-

tively specify constraints over cluster states stored in a relational

database. Using current cluster state and constraints, the DCM run-

time constructs an optimization problem that can be solved using

off-the-shelf constraint solvers (Figure 1). Compared to existing

solutions that rely on ad-hoc, imperative code, DCM’s declarative

approach significantly reduces the development and maintenance

efforts for complex cluster management logic. DCM also improves

scheduling performance by leveraging constraint solvers that scale

to larger problem sizes compared to brittle, handcrafted heuristics.

Driven by the needs of hyperscale operators who are interested in

DCM, we have embarked on a journey to scale DCM frommoderate-

sized enterprise clusters (10
2−103 nodes) to hyperscale clusters (104

nodes). Our key insight for scalability is to leverage the incremental

cluster state evolution: changes in cluster state are often much

smaller than the size of thewhole database; doingwork proportional

https://doi.org/10.14778/3603581.3603599
https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23
https://github.com/vmware/declarative-cluster-management/releases/tag/vldb23
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3603581.3603599

to the size of the changes instead of the size of the database can

provide substantial benefits. Achieving this design goal turns out to

be challenging and necessitates novel techniques at the intersection

of constraint optimization and database query optimization.

First, we formally define DCM’s query language C-SQL, which

allows users to declaratively specify constraint queries against rela-
tions. While C-SQL is syntactically similar to SQL, it semantically

represents optimization problems. C-SQL programs are evaluated

in two phases: (1) relation evaluation, wherein the DCM runtime

retrieves cluster state required for the optimization problem; and (2)

constraint evaluation, wherein the runtime encodes the cluster state

into constraint formulae to be solved by a standard solver. This new

formalism allows us to explore optimization opportunities through

the lens of query optimization for C-SQL programs.

To speed up relation evaluation, we integrate DCM with an

incremental query engine, Differential Datalog (DDlog) [10, 67].

Previously, DCM relied on a traditional in-memory embedded data-

base (H2 [4]), which forced users to write unnatural, manually

incrementalized C-SQL queries for performance. For example, to

manually simulate incremental view maintenance, users had to

carefully design the schema by splitting static and dynamic parts

of the cluster states into separate tables. Instead, we leverage the

incremental engine of DDlog to automatically incrementalize com-

putations.WithDDlog, users can express constraint queries without

worrying about performance, embodying a truly declarative pro-

gramming model. Integrating DDlog with DCM was a significant

engineering undertaking, requiring 11K lines of code; we elaborate

on the challenges faced and lessons learned in §5.

To speed-up constraint evaluation, we introduce Feasibility-

Preserving Predicate Pushdown (FP-pushdown) for automatically

reducing optimization problem size in C-SQL programs without

altering feasible solutions. Constraint solvers simplify a given opti-

mization problem in a “presolve" phase before they start searching

for solutions, by eliminating unnecessary variables and restricting

variable domains. Inspired by the predicate pushdown technique,

FP-pushdown pushes down relevant constraints from the solver’s

presolve phase to the relation-evaluation phase of the DCM pro-

cessing pipeline, restricting the search space in advance. This is

achieved by statically analyzing C-SQL programs, symbolically in-

ferring variable domains, and generating predicates that can be

pushed down to the (incremental) relation evaluation. Although

FP-pushdown does not interact with runtime cluster state, it offers

substantial performance benefits. For instance, the optimization

reduced a 50K-node Kubernetes cluster placement problem to an

equivalent one with fewer than 1.4K nodes, cutting 95th percentile

scheduling latency from 8 seconds to 80-800 milliseconds.

In summary, this work makes the following contributions:

(1) We report on experiences scaling up a new architecture for

declarative cluster management. We discuss our central design goal

of making the architecture’s processing pipeline incremental as

well as the challenges of achieving this goal.

(2) We provide a formal specification of DCM’s declarative con-

straint language C-SQL, highlighting its similarities and differences

with respect to standard SQL.

(3) We introduce two optimization techniques, based on incremen-

tal view maintenance and predicate pushdown, to improve the

execution efficiency of C-SQL programs.

(4) Through a case study of building Kubernetes schedulers using

C-SQL, we demonstrate that our optimizations enabled a nearly

3000× improvement in latency for fetching and updating the cluster

state database, and reduced the size of optimization problems down

to 0.29-2.7% of the original without affecting feasibility.

2 CLUSTER MANAGEMENT BACKGROUND
In this section, we explain the context in which DCM was de-

signed. We first present the use case of a modern cluster scheduler

in Kubernetes, and the challenges with current designs based on

hand-crafted heuristics (§2.1). We then describe how DCM’s declar-

ative approach significantly improves the programmability and

scalability compared to the status-quo (§2.2).

2.1 Heuristic-based Cluster Management
Weuse the example of building a Kubernetes scheduler [13] through-

out this paper. Note that neither the problems nor the solutions pre-

sented are unique to scheduling in Kubernetes. Similar challenges

recur across various distributed systems, such as for policy-based

configuration, data replication, and load-balancing across machines,

all of which can be reduced to combinatorial optimization problems.

Policies. The Kubernetes scheduler assigns pods to nodes. A pod

is the smallest unit of scheduling in Kubernetes and typically rep-

resents one or more containers each. Pods can be tagged with a

set of policies that constrain which nodes they can be assigned

to. The scheduler supports over 30 types of different hard and soft

constraints. These include various flavors of capacity constraints;

inter-pod/node affinities and anti-affinities that affect which nodes,

regions or data-centers pods can be placed in; taints and tolera-

tions that “attract” and “repel” pods from nodes based on operator

goals; networking constraints like the availability of host ports; and

myriad soft constraints that encode opportunities for performance

gains, such as preferring nodes that already have the required con-

tainer images for a pod. In addition, the scheduler uses a plugin

framework that allows operators to add custom policies based on

their specific deployments, which users leverage heavily.

Cluster state representation. The scheduler typically maintains

a swathe of in-memory data structures that represent a view of

the relevant cluster state. For example, in Kubernetes [8], a central-

ized, persistent data store hosts all cluster states, whereas services

like the Kubernetes scheduler maintain an in-memory cache of

that state, synchronized via a client library. The scheduler typically

caches a view of the set of pods, nodes, volumes, and application

abstractions such as groups of replicas. Policies often need to cross-

reference multiple types of state to make decisions (e.g., to reason

about existing pod, node and volume arrangements simultaneously).

In addition, many policies require the scheduler to incrementally

materialize summaries of the cluster state that are not directly ex-

posed by the centralized data store. For example, the scheduler

has its own logic to keep track of the spare resource capacity of

each node in the cluster. The scheduler also maintains ad-hoc aux-

iliary data structures to cache prior decisions [13, 32, 79] to make

coherent future decisions without having to scan the cluster state

repeatedly. These types of precomputing and caching optimizations

are necessary to keep scheduler performance tractable.

Challenges with the filter-score architecture. Today’s clus-

ter managers such as Kubernetes [13], Borg [74, 79], Twine [73],

Protean [32] and vSphere [29] use the "filter-score" architecture

to implement policy-based optimization logic, such as scheduling,

resource management, and placement. In this design, policies are

organized as a processing pipeline that evaluates every node that

is considered for scheduling (usually all nodes or a sample of all

nodes) to place a given pod. For each pair of pod 𝑝 and node 𝑛, the

pipeline first evaluates policies with hard constraints, each of which

is implemented as a single function that decides whether or not 𝑝

can be placed on 𝑛. This is the filter phase. If 𝑝 survives all filtering

policies, it proceeds to the scoring phase, where the pipeline evalu-

ates each soft constraint and outputs a score for a given node. After

processing all candidate nodes, the pod is assigned to the highest

ranked node. There are two key issues with existing designs:

• Over time, the sprawl of ad-hoc data structures in the cluster

state representation degrades maintainability. A common issue is

that the custom data structures used for precomputing and caching

optimizations are brittle when requirements evolve [42, 43, 45, 47,

48, 51]. Adding new features and policies thereby becomes hard

and requires significant refactoring.

• Implementing complex policies efficiently at scale is challeng-

ing [44, 49, 55]. To maintain tractable scheduling performance,

sampling is often employed, where a small subset of nodes are

considered for each scheduling decision. However, as each policy is

written in imperative code, sampling cannot be easily implemented

in a policy-aware manner and can therefore miss feasible solutions.

2.2 Declarative Cluster Managers with DCM
To overcome the programmability and scalability challenges in exist-

ing designs, recent work introduced the idea of a declarative cluster
manager (DCM [72]). DCM replaces the imperative, filter-score

pipeline of a heuristic-based cluster manager with a declarative one

using SQL-like syntax, where developers specify what the cluster
manager should achieve, not how.

A DCM-powered scheduler uses a relational database model,

instead of ad-hoc data structures, to represent cluster states. It uses

a declarative query language, instead of hand-crafted heuristics,

to specify policies for the cluster manager. The policies are de-

fined using variables and constraints. Variables represent cluster

properties that need to be decided (e.g., machine allocated for each

service), and constraints express the space of legal solutions (e.g.,

no two services should execute on the same machine). A compiler

transforms the constraints and the database schema to generate an

encoder program. At runtime, the encoder is invoked when cluster

state changes and generates an optimization problem by combining

the constraints and the current state. A constraint solver produces

a solution for the optimization problem, which is then converted

into decisions by DCM (e.g., where to schedule each process). The

workflow is illustrated in Figure 1.

3 C-SQL DESIGN AND EXECUTION
We formalize the declarative language of DCM, C-SQL, for the first

time in this paper. This section discusses C-SQL’s semantics (§3.1),

compilation and evaluation (§3.2), and how it is used in cluster

management problems (§3.3).

Overview. C-SQL is an extension of standard SQL for specifying

constraint optimization problems using variables and constraints.

In the data model, besides standard SQL column types, C-SQL tables

can also have columns of variables. Each cell in a column of variables

contains a single variable name. When translating C-SQL queries

to optimization problems, variables will translate into decision

variables for the constraint solver, while traditional table columns

will translate to constants in the optimization formulas. Base tables

can contain both variable and constant columns.

A C-SQL program comprises constraint queries that express con-
straints over variable columns. A constraint query is a query with a

CHECK or MAXIMIZE clause, syntactically similar to SELECT clauses.

CHECK represents hard constraints, while MAXIMIZE represents an
optimization function that we wish to maximize. CHECK clauses

require a boolean expression and MAXIMIZE clauses accept a nu-

meric expression
1
. The C-SQL program composed of multiple such

queries enforces the conjunction of all CHECK clauses andmaximizes

the sum of all MAXIMIZE expressions2. Queries are constructed using
regular SQL syntax: SELECT, JOIN, WHERE, GROUP BY, and aggre-

gates. A query evaluates to a symbolic formula.

3.1 C-SQL Syntax and Semantics
The syntax of C-SQL is given in Figure 2 and Figure 3. The

language semantics is given in Figure 4. C-SQL extends SQL to

express symbolic formulae over variables (e.g. ,“x + 2 < 5”, where “x”

is a variable). These formulae become inputs to constraint solvers,

which assign values to variables to satisfy constraints. For ease of

use, C-SQL builds on SQL’s syntax and semantics with respect to

types, relations and expression evaluation.

Types and Formulas. We assume the standard SQL base types,

including N (integers), B (Booleans), R (reals). For each base type

𝑇 we introduce a new type, 𝐹 (𝑇), which is the type of symbolic
formulas with type 𝑇 . Formulas are syntactic objects defined by

the grammar in Figure 2 (left). All formulas are statically typed. A

Constantwith a base type𝑇 has type 𝐹 (𝑇) when used in a formula.

For example, 5 has type N, but when used within a formula, has

type 𝐹 (N). Each VariableName also has a type 𝐹 (𝑇) for some base

type 𝑇 . For example, if x is a VariableName with type 𝐹 (N), “x +
5 < 2” is a formula with type 𝐹 (B). Each binary or unary opera-

tion requires arguments of some appropriate types, e.g., addition

requires operands of type 𝐹 (N) and produces a result 𝐹 (N).
Relations. We use the term “relation” to refer to database tables,

views, and queries. A database maps identifiers (table and view

names) to relations (table and view contents). We denote the con-

tents of table 𝑇 in the database as 𝐷𝐵 [𝑇]. As in SQL, all relations

are statically typed, with types that can be inferred by a simple

syntax-directed analysis. All values in a column have the same type,

which is either specified by the database schema or inferred from

the query or view definition. A relation is a multiset of rows. A row

of a relation is a function that maps each column name to a value

of the corresponding type. For example, {col0 ↦→ 5} is a row with

a single column named col0 and a value of 5 for this column. A

column in a relation can either be a base type 𝑇 or a formula type

1
Booleans are coerced into integers 0 and 1 when used in numeric expressions.

2MINIMIZE clauses are syntactic sugar for maximizing the negation of a formula.

<formula> ::= Constant | VariableName
| <formula> <binOp> <formula>
| <unOp> <formula>
| <aggregate> (<formulaList>)

<formulaList> ::= <formula>
| <formula>, <formulaList>

<binOp> ::= AND|OR|=|!=|>|>=|<|<=|+|-|*|/|%
<unOp> ::= - | NOT
<aggregate> ::= ANY|ALL|SUM|COUNT|MIN|MAX

<expr> ::= <expr> <binOp> <expr>
| <unOp> (<expr>)
| ColumnName
| Constant
| <expr> IS NULL
| <expr> IS NOT NULL

<simpleRowExpr> ::= <expr> AS colName
<rowExpr> ::= <simpleRowExpr>

| <rowExpr>, <simpleRowExpr>
<aggregateExpr> ::= <aggregate> (<expr>)

<view> ::= CREATE VIEW identifie
AS relation

<idOrRel> ::= identifier | <relation>
<relation> ::=
SELECT [DISTINCT] <rowExpr>
FROM (<join> | <idOrRel>)
[WHERE <baseExpr>]
[GROUP BY baseColumnList]
[HAVING <baseExpr>]

<join> ::=
<idOrRel> JOIN <idOrRel>>
ON <baseExpr>

Figure 2: C-SQL syntax: formulas, expressions, queries. Angle brackets denote non-terminals.

<problem> ::= <constraint> [, <constraint>]*
<constraint> ::= CREATE CONSTRAINT identifier AS

<checkOrOptimize> FROM <relation>
<checkOrOptimize> ::= CHECK <expr>

| CHECK <setConstraint>
| MAXIMIZE <expr>

<setConstraint> ::= AllDifferent (<expr>) | AllEqual (<expr>)

Figure 3: C-SQL syntax: constraints.

𝐹 (𝑇). For tables, all values in a column of type 𝐹 (𝑇) are required
to hold VariableName values; more complex expressions are not

allowed in tables. For example, the table in Figure 5 has one col-

umn node_name that contains variables; the type of the column is

𝐹 (varchar(100)). More general formulas of type 𝐹 (𝑇) can only

appear in queries or views.

As in SQL, the semantics of a query or view is a function of a

database instance 𝐷𝐵, which stores the contents of all base tables.

Similarly, the semantics of a relation is a multiset of tuples, with

the extension that some columns describe symbolic formulae. The

semantics of the CREATE VIEW statement, shown in Figure 4(view),
is to extend the database𝐷𝐵 by adding a new view. We do not allow

recursive view definitions, so this formula is well-defined.

Expressions. As in SQL, expressions can appear in SELECT, WHERE,
GROUP BY, JOIN, and HAVING statements. The grammar of our core

language of expressions, row expressions, and aggregate expres-

sions is shown in Figure 2 (middle). Note that some non-terminals

that appear in this grammar are the same as the non-terminals in

the grammar of formulas (e.g, <binOp>, <aggregate>). This is not
an accident: formulas will be built from expressions that appear in

C-SQL queries. As in SQL, an expression 𝑒 can only be evaluated

in the context of a row 𝑟 ; we denote “ the semantics of expression

𝑒 evaluated for the row 𝑟” as ⟦𝑒⟧(𝑟). An expression in a context

evaluates to a symbolic formula if any of its arguments is a for-

mula; otherwise it evaluates to a constant. Figure 4 describes the

semantics of expressions.

Example. Consider the expression “1+Age”, where Age is a column

name. When applied to a row with an integer column Age, e.g.,
𝑟 = {Age ↦→ 10}, this expression evaluates to an integer with value

11. However, when applied to a row where Age is a symbolic integer

formula, e.g. ,𝑟 = {Age ↦→ x + 2}, the expression evaluates to the

integer formula 1 + (x + 2).
Expressions over relations and aggregates. As in SQL, eval-

uating an expression in the context of a relation 𝑅 evaluates the

expression for each row of the relation and takes the union of the

results (equations (eR) and (rowRel) from Figure 4). Also similar to

SQL, aggregate expressions can only be evaluated in the context

of a collection of values, such as those in a table, query, view, or a

group produced by a group-by clause. Similar to SQL, the semantics

of an aggregate is a corresponding formula involving the aggregate,

as shown in Equation (agg).
Semantics ofRelations. Recall that relations can be tables, queries,
or views (defined by queries). We define the semantics of a rela-

tion inductively on the defining query structure. We assume that

syntactic sugar has been eliminated using standard query plan op-

timization techniques [16]: converting IN queries and correlated

subqueries into joins, converting joins into Cartesian products fol-

lowed by filtering, and converting HAVING into queries followed by

WHERE. Queries that operate on relations containing base types can

use the full SQL language with no restrictions. However, queries

that operate on formulas are restricted, in the sense that some

columns are not allowed to contain formulas; the simplified gram-

mar in Figure 2 (right) describes valid queries when some input

relations have at least one column that is a symbolic formula.

In this grammar, we denote any <expr> that evaluates to a

base type (instead of a formula type) by <baseExpr>, and a list

of columns that all have base types by <baseColumnList> 3
.

Notice that we do not allow filtering, joining, or grouping by

expressions whose type is a symbolic formula: all these clauses

require a <baseExpr> as argument. This restriction ensures that the

constraints generated are tractable. Despite these constraints, the

resulting language is powerful enough to express all the constraints

required by our application domain.

The semantics of a <relation> is always evaluated in the con-

text of a database 𝐷𝐵. The semantics of tables, views, filters, group-

by and joins is exactly the same as in SQL; reusing the SQL syntax

makes the language familiar to users. Formula types are not per-

mitted for filter, group by or join expressions, which allows them

to be directly evaluated by the database.

Generating constraints. Recall that our goal is to use C-SQL

to generate constraints. So far we have reused SQL to create a

language with symbolic formulas. We now extend SQL syntax to

create constraints from formulas, as shown in Figure 3.

The semantics of a constraint is composed by a pair of symbolic

formulas with type ⟨𝐹 (B), 𝐹 (R)⟩: the first element is a Boolean

formula representing a hard constraint that must be satisfied; the

second element is an optimization function whose value must be

maximized. The two formulas generally share variables.

3
These are semantic checks enforced by the type-checker, not by the grammar. The

semantics of <baseExpr> is given by the semantics rules for <expr>.

⟦Const⟧(𝑟) = Const (const)
⟦ColName⟧(𝑟) = 𝑟 (ColName) (col)

⟦𝑒1 <binOp>𝑒2⟧(𝑟) = ⟦𝑒1⟧(𝑟) <binOp> ⟦𝑒2⟧(𝑟) (binop)
⟦<unOp>𝑒𝑥𝑝𝑟⟧(𝑟) = <unOp> ⟦𝑒𝑥𝑝𝑟⟧(𝑟) (unop)
⟦𝑒 IS NULL⟧(𝑟) = ⟦𝑒𝑥𝑝𝑟⟧(𝑟) = NULL

⟦𝑒 IS NOT NULL⟧(𝑟) = ⟦𝑒𝑥𝑝𝑟⟧(𝑟) ≠ NULL

⟦𝑒 AS colName⟧(𝑟) = {colName ↦→ ⟦𝑒⟧(𝑟) } (name)
⟦rowExpr⟧(𝑟) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒∈rowExpr (⟦𝑒⟧(𝑟) (row)

⟦𝑒⟧(𝑅) = ∪𝑟∈𝑅 {⟦𝑒⟧(𝑟) } (eR)
⟦<agg>(𝑒)⟧(𝑅) = <agg>(⟦𝑒⟧(𝑅)) (agg)
⟦rowExp⟧(𝑅) = ∪𝑟∈𝑅⟦rowExp⟧(𝑟) (rowRel)

⟦identifier⟧(𝐷𝐵) = ∪𝑟∈𝐷𝐵 [identifier] {⟦𝑟⟧(𝑟) } (identifier)
⟦CREATE VIEW V AS 𝑄⟧(𝐷𝐵) = 𝐷𝐵 := 𝐷𝐵 ⊎ {V ↦→ ⟦𝑄⟧(𝐷𝐵) } (view)

⟦SELECT 𝑟 FROM 𝑅⟧(𝐷𝐵) = ⟦𝑟⟧(⟦𝑅⟧(𝐷𝐵)) (select)
⟦WHERE 𝑒⟧(𝑅) = {𝑟 | ⟦𝑒⟧(𝑟) = true, 𝑟 ∈ 𝑅 } (filter)

⟦GROUP BY 𝑐𝑜𝑙⟧(𝑅) = ∪𝑔∈𝑅 {𝑔 [𝑐𝑜𝑙] ↦→ {𝑟 | 𝑟 ∈ 𝑅 ∧ 𝑔 [𝑐𝑜𝑙] = 𝑟 [𝑐𝑜𝑙] }} (group)
⟦𝑅1 × 𝑅2⟧(𝐷𝐵) = {𝑐𝑜𝑛𝑐𝑎𝑡 (𝑠, 𝑡) | 𝑠 ∈ ⟦𝑅1⟧(𝐷𝐵), 𝑡 ∈ ⟦𝑅2⟧(𝐷𝐵) } (join)
⟦CHECK 𝑒⟧(𝑟) = ⟨⟦𝑒⟧(𝑟), 0⟩ (checkrow)

⟦CHECK AllEqual(𝑒)⟧(𝑅) = ⟨AllEq{⟦𝑒⟧(𝑟) |𝑟 ∈ 𝑅 }, 0⟩ (alleq)
AllEq(𝑆) = {∧𝑖,𝑗𝑠𝑖 = 𝑠 𝑗 |𝑠𝑖 ∈ 𝑆, 𝑠 𝑗 ∈ 𝑆 }

⟦CHECK AllDifferent(𝑒)⟧(𝑅) = ⟨AllDiff {⟦𝑒⟧(𝑟) |𝑟 ∈ 𝑅 }, 0⟩ (alldiff)
AllDiff (𝑆) = ({∧𝑖≠𝑗𝑠𝑖 ≠ 𝑠 𝑗 |𝑠𝑖 ∈ 𝑆, 𝑠 𝑗 ∈ 𝑆 }

⟦MAXIMIZE(𝑒)⟧(𝑅) = ⟨𝑡𝑟𝑢𝑒,∑︁𝑟∈𝑅⟦𝑒⟧(𝑟)⟩ (maximize)
⟦CHECK 𝑒𝑥𝑝𝑟⟧(𝑅) = ⟨∧𝑟∈𝑅⟦𝑒𝑥𝑝𝑟⟧(𝑟), 0⟩ (check)
⟦problem⟧(𝐷𝐵) = combine ({⟦𝑐⟧(𝐷𝐵), 𝑐 ∈ problem}) (problem)

𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ({ ⟨𝑐𝑖 , 𝑜𝑖 ⟩ }𝑖) = ⟨∧𝑖𝑐𝑖 ,
∑︁
𝑖 𝑜𝑖 ⟩

Figure 4: Semantics of C-SQL. Left: semantics of expressions. Right: semantics of relations. 𝑟 is a row, 𝑅 is a relation.

Check. A CHECK statement must be followed by an expression of

type 𝐹 (B). Applying the statement to a row evaluates the expression

for the specified row. The semantics is given in Equation (checkrow):
it generates a Boolean symbolic formula and a 0 value for the

optimization function. Solving the constraint will provide values

for all involved symbolic variables. For example, the formula CHECK
var+2=5 generates a constraint that has a unique solution var=3.

Applying the CHECK statement to a relation generates the con-
junction of the constraints for all rows, as given in Equation (check).
Maximize. A MAXIMIZE statement generates an optimization func-

tion 𝑓 , denoted as the pair (true, 𝑓), which consists of the satisfied

Boolean constraint “true” and the optimization function 𝑓 . The

statement takes an arbitrary expression of type 𝐹 (N) or 𝐹 (R) and
reinterprets this formula as an optimization function whose value

must be maximized. A single formula is generated for the entire

program, and multiple formulas can be combined using weights

to signify their importance, in line with common constraint solver

practices [6]. It is important to note that maximizing the sum of

MAXIMIZE clauses does not guarantee the maximization of each

individual clause, as certain clauses may not be maximizable si-

multaneously (e.g., MAXIMIZE x and -x). However, when clauses

contain independent decision variables, maximizing the sum effec-

tively maximizes each individual clause.

problem. Finally, a <problem> is a sequence of CREATE CONSTRAINT

statements. Its semantics is given in Equation (problem): it com-

bines all Boolean constraints using conjunction, and combines all

optimization functions using addition.We look for an assignment to

variables that satisfies all constraints and maximizes the function.

3.2 Evaluating C-SQL programs
Evaluating a C-SQL program given a state of the database involves

two stages, as illustrated by the two arrows in Figure 1. First, in rela-
tion evaluation, the DCM runtime generates code, which queries

all the relations (typically tables and views stored in a database)

referenced in the C-SQL program when invoked. Following that,

the constraint evaluation stage encodes the given set of relations

into an optimization problem and solves it using a standard con-

straint solver. As a result of the evaluation, we get an assignment of

values to variables according to the constraints specified in C-SQL.

The DCM compiler generates an encoder from the C-SQL pro-

gram specified by the developer. The frontend is based on Cal-

cite [15], which parses C-SQL programs and generates, analyzes,

and optimizes the resulting query. The compiler supports multiple

backends to interface with different solvers. The flagship back-

end produces a Java-based encoder that interfaces with Google’s

CP/SAT solver [5] to solve constraints. The generated encoder

fetches the relations’ contents from the database and translates

the result into constraints as defined by C-SQL’s semantics. For

each constraint query 𝑐 , the compiler generates code to efficiently

iterate over the relations referenced by the query and produce the

corresponding constraint formulae using the solver-specific APIs

(Figure 7). Relations are treated as vectors of records and iterated

over using “for" loops and indices constructed by the encoder. Fur-

ther compiler details are available in the DCM paper [72].

C-SQL cannot prevent the user fromwriting inefficient programs,

a known challenge for declarative programming models. To help

users, the compiler issues warnings when it produces inefficient

code (e.g., nested “for" loops without indexes). At runtime, the en-

coder offers rich diagnostics, such as the number of variables and

constraints used in each invocation of the solver, to help users un-

derstand performance and identify inefficiencies in their programs.

3.3 C-SQL by Example
We now explain how DCM’s C-SQL-based programming model

works, using the Kubernetes example.

Cluster state database. A DCM-powered Kubernetes scheduler

represents the cluster state in a relational database. The state in-

cludes: the set of pods, nodes, volumes, replica sets, and myriad

metadata associated with all these objects. Importantly, by anno-

tating some columns as variable columns, the schema now serves

as a declarative specification of the cluster state. For Kubernetes

schedulers, a variable column would be the node_name in the pods
table (Figure 5), which represents the variables in a scheduling

decision. For discrete variables such as the node_name column, the

variable domain can be specified using a foreign key constraint.

Relations are updated by user code. In case of the scheduler, the

DCM user receives notifications about changes to the cluster state

(e.g., new pods created) with a Kubernetes client library and reflects

these changes into the relations with DML statements.

-- @VARIABLE_COLUMNS (node_name)
CREATE TABLE pods (

pod_uid CHAR(14) NOT NULL PRIMARY KEY,
status VARCHAR(10) NOT NULL,
node_name VARCHAR(100),
... -- more columns
FOREIGN KEY (node_name) REFERENCES nodes(name));

Figure 5: node_name column represent decision variables.
Other columns contain values supplied by the database.

CREATE CONSTRAINT node_predicates AS
CHECK (node_name IN (SELECT node_name FROM valid_nodes))
FROM pods_to_assign;

CREATE CONSTRAINT node_preferences AS
MAXIMIZE (node_name IN (SELECT node_name FROM least_loaded))
FROM pods_to_assign;

CREATE CONSTRAINT preemption_objective AS
MAXIMIZE (priority * (node_name != 'NULL_NODE'))
FROM pods_to_assign;

CREATE CONSTRAINT pod_affinity AS
CHECK (pods_to_assign.has_pod_affinity_requirements = false) OR

(pods_to_assign.node_name NOT IN
(SELECT t1.node_name FROM pods_to_assign AS t1
JOIN inter_pod_affinity_matches AS t2
ON t1.uid = t2.pod_uid
AND CONTAINS(t2.pod_matches, t1.uid)))

FROM pods_to_assign;

Figure 6: Example hard and soft constraints.

// Hard constraint: node_predicates (pta = pods_to_assign)
for (int pta_it = 0; pta_it < pta_it.size(); pta_it++) {

model.varInDomain(pods_to_assign.getCol("node_name").get(pta_it),
valid_nodes.getCol("node_name"));

}
// Objective function: node_preferences
for (int pta_it = 0; pta_it < pta_it.size(); pta_it++) {

// Auxiliary variable to encode the truth value
// of the varInDomain constraint
BoolVar tmp_1 = model.varInDomainAsBoolVar(

pods_to_assign.getCol("node_name").get(pta_it),
least_loaded.getCol("node_name"));

model.addToObjectiveFunction(bool_to_int(tmp_1));
}

Figure 7: Simplified view of generated encoder code for top
two C-SQL queries in Figure 6.

Policies as constraints. Policies are expressed in DCM as con-

straint queries against relations using C-SQL. Figure 6 shows ex-

ample hard and soft constraints specified via CHECK and MAXIMIZE
clauses against a table (pods_to_assign). The top two constraints

require that variables from the column node_name are assigned a

value present in the valid_nodes view (hard constraint), preferably

one that also appears in the least_loaded view (soft constraint).

The bottom two constraints showcase slightly more complex objec-

tives: preemption_objective maximizes the priority of pending

pods, and pod_affinity checks whether the assigned node satis-

fies the pod affinity requirements. Figure 7 shows a simplified view

of the corresponding encoder the compiler produces, which sets

up constraints for the constraint solver.

Compiler and runtime processing pipeline. Figure 8 shows

DCM’s Java APIs. Model.compile() takes in a C-SQL program,

generates code, compiles and loads the code into memory, wrapped

Operation Description
model = Model.compile(CSQLProgram) Invoke DCM compiler to generate a solving strategy

from the C-SQL program

model.solve(conn, timeout) Pull data from JDBC connection, solve constraints and

return solution as tables

Figure 8: DCM’s programming model.

as a Model object. At runtime, Model.solve() fetches the required
input data from the database, solves the optimization problem, and

returns a solution as tables where variable columns are replaced

by values that satisfy the constraints. Model.solve() is invoked
whenever a new cluster management decision needs to be made

(e.g., schedule all pods that are pending assignment).

4 CHALLENGES SCALING C-SQL
Cluster management logic is highly incremental in nature; the clus-

ter state database changes often but most changes are small relative

to the size of the overall database. For example, even in a datacenter

with O(100K) pods, a typical scheduling decision might only in-

volve O(100) pods at a time, triggered by job arrivals or completions.

These decisions often need to be made at sub-second timescales,

such as a few milliseconds of scheduling latency per pod. The fre-

quent interaction with the cluster state database in DCM’s C-SQL

processing pipeline and the incremental nature of cluster manage-

ment lead to the following design goal:

Design goal. The work performed by the scheduling pipeline should
be proportional to the size of the change, and not the database size.

In this section we describe the challenges of achieving this goal

in the relation-evaluation (§4.1) and constraint-evaluation (§4.2)

parts of the C-SQL processing pipeline.

4.1 Simulating IVM
We first discuss the challenges with efficient relation evaluation. As

explained in §3.3, the cluster state database hosts tables and views

representing all the inputs required to make cluster management

decisions. It is non-trivial to compute these views efficiently at scale,

since some involve joining of large base relations. For example,

computing a view to filter out machines that do not have any spare

capacity requires a join between four tables, representing the set

of all pods, their resource demands, the set of all nodes and the

node resource capacities. Since tables have relatively small changes

between successive invocations of model.solve(), recomputing

the views from scratch each time is inefficient. Top-down query

evaluation as with most databases is therefore a poor fit for such

workloads. To improve efficiency, DCM users had to manually

simulate incremental maintenance of materialized views (IVM)

prior to this work. We describe two common approaches below.

Split views. The first approach splits the database schema into

tables or views representing changing and fixed portions of the

state. For example, we have separate tables for the placed pods and

yet-to-be-placed pods, as opposed to a single table. Views that use

pods as input would then be written to specifically refer to placed

pods and/or pending pods, which further complicates the data

model. Moreover, it is the DCM user’s responsibility to maintain

these separate views as the cluster state evolves, which defeats the

benefits of a declarative programming model.

Figure 9: Simplified computation graph for the “inter-pod
anti-affinity matches" view. Solid lines indicate input/output
relationships, dashed lines indicate foreign key relationships.
The relations in gray are re-used across several view calcula-
tions. With IVM, no view splitting is needed.

To illustrate split view, consider the inter pod anti-affinity

matches view in Figure 9. This is a key view in our DCM-powered

Kubernetes scheduler, which shows groups of pods that are mutu-

ally anti-affine and should not be placed on the same nodes. Only a

few rows of the view change whenever new pods arrive (or a few ex-

isting pods leave). However, to keep performance tractable, several

base tables and views in the dataflow, including pods, pod labels,

match expressions, as well as intermediate views like matching

pods had to be split according to the pattern described above. Many

tables and intermediate views in Figure 9 (gray boxes) are also

consumed by multiple downstream relations that relate to other

policies. For example, the match expressions and matching pods

relations are used in several scheduling policies that are configured

using Kubernetes’ label-based matching DSL. Without result re-use

and caching, these relations would be evaluated multiple times per

scheduling decision. To avoid redundant view evaluations, we need

to maintain base tables that cache results via imperative code which

is again, a burden on the DCM user.

Without split views, the scheduling latency is dominated by the

database’s latency to evaluate all views. For example, on a small

cluster with 100 nodes, the database computation (H2 configured,

running in-memory) takes several seconds, whereas the rest of the

pipeline contributes under 10-20 milliseconds in total.

Aggregates and triggers. The second pattern is to compute ex-

pensive aggregates by simulating materialized views using triggers.

Consider the view maintaining the spare capacity per node: on

every update to a “pods" table that assigned a pod to a node, we set

up a trigger that updates that node’s spare capacity. This requires

the developer to write imperative code and keep it in sync with the

declarative specification of the schema and constraints of C-SQL.

To illustrate the large development efforts required, we describe

our own experience extending a C-SQL specification to support

custom resources in Kubernetes. Custom resources are specified by

operators at runtime, typically used for configuring special hard-

ware like GPUs or FPGAs. A standard scheduler handles a fixed

set of resource types and a column each for demands and capac-

ities for: CPU, memory, disk, and other standard resource types.

However, when using custom resources, the set of resource types

itself is dynamic which prevents us from using a separate column

for each resource type. Therefore, we need to split off information

about resource demands and capacities from the pods and nodes

base tables into additional tables called pod_resource_demands

and node_resource_capacities, each of which has a column each

for resource types and resource demands/capacities. In doing so,

the spare capacity view computation becomes a four-way join in-

stead of the original two-way join between the pods and nodes

base tables. The schema change also requires rewriting the triggers

written using H2’s Java APIs.

4.2 Handling Large Optimization Problems
Next, we describe challenges with the evaluation of large constraint

optimization problems. The cluster state from the database is en-

coded into an optimization problem solved by the constraint solver.

The constraint size is proportional to the database size, making

solvers the main bottleneck for DCM’s scalability as clusters grow.

For example, we observed that increasing the cluster size from 500

to 50000 nodes increases the 95th percentile of constraint evaluation

latency by two orders of magnitude to 7 seconds, vastly exceeding

the goal of millisecond timescale scheduling.

To maintain good performance, it is crucial to keep the size of the

optimization problem small. The solver attempts to simplify the op-

timization problem prior to finding solutions by applying complex

rules in a “presolve” phase to remove redundant variables and con-

straints and tighten variable domains. We have previously noticed

that this presolve phase is the primary contributor to increased

latency at larger cluster sizes [72].

The fact that cluster management problems are highly incremen-

tal also leads to opportunities for improving the solver’s efficiency.

Since changes are often much smaller than the size of the database,

only a subset of cluster states should be affected by these changes.

For example, consider placing a pod with well-defined affinity con-

straints in a 10K node cluster. If only 10 nodes can satisfy these

affinity constraints, it is highly inefficient to pass to the solver a

formula involving the remaining 9990 nodes. Ideally, we would

like to filter out these 9990 nodes early in the processing pipeline.

However, this type of filtering is non-trivial when a mix of complex

constraints expressed by C-SQL programs are involved.

5 IVM FOR THE CLUSTER STATE
As discussed in §4.1, incremental view maintenance (IVM) is key

to scaling the relation evaluation component of the C-SQL pipeline.

Instead of requiring users to simulate IVM through imperative code,

we replace the query engine of DCM’s database with an IVM engine

that can automatically incrementalize the computation.

C-SQL’s design allows for the use of any SQL-based IVM en-

gine. Our queries use joins, aggregates, GROUP BY, HAVING, window
operator OVER, and UNION. Differential Datalog (DDlog [10, 67])

support all above SQL features and has the added benefits of being

developed in-house and having been deployed in production. It can

also be embedded in-memory within a program, similar to our prior

use of H2 for DCM. We therefore decided to build upon DDlog.

DDlog is a programming language for expressing incremental

computations. DDlog’s core incremental engine is based on Dif-

ferential Dataflow [9, 58]. DDlog programs are written in Datalog,

with extensions for rich types, arithmetic, strings, functions and a

procedural language for writing user-defined functions.

A DDlog program instance represents a set of input relations as

well as queries on those relations that result in output relations;

output relations are equivalent to database views. DDlog programs

compute on changes to inputs relations; a program accepts a batch of

changes (inserts, deletes, updates) to all input relations and outputs

a corresponding batch of changes to all output relations. Crucially,

the computation of output changes is done directly, without evalu-

ating the queries for the full database.

A DDlog program is compiled down to a Rust program that links

to the Differential Dataflow library [9]. Client programs instantiate

DDlog programs, update input relations and receive changes to

output relations. DDlog programs keep state in memory, which

makes them a good fit for representing a scheduler’s view of cluster

state. We implemented a compiler that translates SQL views into

DDlog programs; we describe it in §5.2.

5.1 Simplified Programming Model
The use of an IVM engine can lead to significant simplification

of C-SQL programs. By avoiding split views (§4.1), views can be

kept simple while providing high performance. For example, pre-

viously, when a single logical view was decomposed into several

views, it was difficult to identify which queries were performance

bottlenecks. It was also tedious to rewrite queries as the database

schema evolved to reflect new features. With incremental view

maintenance however, we were able to write straightforward SQL

that stayed true to our design goal of declarative programming: the

developer should focus on the what, not the how.
We explain this simplification by revisiting the inter pod anti-

affinity matches view in Figure 9. This Figure shows the imple-

mentation before DDlog, which requires multiple views per table

as well as imperative user code invoked by triggers. In addition,

all gray views in Figure 9 were either evaluated multiple times per

scheduling decision, or incrementalized manually using triggers.

With DDlog, all base tables and views are incrementally updated

and materialized, eliminating the need for imperative user code,

split views, and triggers.

Case Study. Wehighlight the code simplification enabled byDDlog

via a case study. Kubernetes extensively uses key-value labels to tag

cluster entities (e.g., pods, nodes), enabling control plane code to

employ a DSL to specify search queries for entities based on these

labels. For instance, an anti-affinity requirement for pod 𝐴 with a

match expression (app In [web-server]) mandates that pod 𝐴

avoids nodes with a pod labeled app and value web-server.
Figure 10 (top) shows a simplified version of the view we wrote

before using the IVM engine to identify the set of pods that match

an anti-affinity requirement. The full version required about 70 lines

of SQL. Without DDlog, we had to carefully design the schema to

reduce the number of records scanned. For example, a separate table

pod_aa_match_expressions was created to isolate match expres-

sions specified in the anti-affinity requirement and the view was

scoped to only consider pods that are yet to be assigned (pods_to_-
assign). Even with carefully designed indexes, we can not guaran-

tee that the pod_info and pod_labels tables will not be scanned
by the query planner in databases like H2. The query is therefore

not fully incremental. Worse, the same match expression logic has to
be duplicated for each type of scheduling policy that needs it, such as

CREATE VIEW inter_pod_aa_matching_pods AS
(SELECT * FROM pods_to_assign
JOIN pod_aa_match_expressions ON pods_to_assign.pod_name =

pod_aa_match_expressions.pod_name
JOIN pod_labels ON pod_aa_match_expressions.label_operator = 'Exist'

AND pod_aa_match_expressions.label_key = pod_labels.label_key
JOIN pod_info on pod_labels.pod_name = pod_info.pod_name
WHERE pods_to_assign.has_pod_aa_requirements = true)

UNION
(SELECT * FROM pods_to_assign
JOIN pod_aa_match_expressions

ON pods_to_assign.pod_name = pod_aa_match_expressions.pod_name
JOIN pod_labels ON pod_aa_match_expressions.label_operator = 'In'

AND pod_aa_match_expressions.label_key = pod_labels.label_key
AND pod_labels.label_value = pod_aa_match_expressions.label_value

JOIN pod_info on pod_labels.pod_name = pod_info.pod_name
WHERE pods_to_assign.has_pod_aa_requirements = true)

CREATE VIEW matching_pods AS
(SELECT DISTINCT expr_id, pod_uid
FROM (SELECT DISTINCT * FROM match_expressions

WHERE match_expressions.label_operator = 'In') me
JOIN pod_labels ON me.label_key = pod_labels.label_key

AND me.label_value = pod_labels.label_value)
UNION
(SELECT DISTINCT expr_id, pod_uid
FROM (SELECT DISTINCT * FROM match_expressions

WHERE match_expressions.label_operator = 'Exist') me
JOIN pod_labels ON me.label_key = pod_labels.label_key)

Figure 10: Example of view simplification enabled by the
IVM engine. Note that the bottom view does not have joins
specific to the anti-affinity logic or the set of pods to assign.

pod and node affinities [46], taints and tolerations [50] and many

more. Doing so bloats the schema artificially, making schema evo-

lution a challenge.

Figure 10 (bottom) shows the simplified code when using an IVM

engine. This concise query, which evaluates all match expressions,

can be shared by different downstream views. Notably, there are

no joins specific to the anti-affinity policy or the set of pods under

consideration. Instead, these joins appear in a single corresponding

downstream view per scheduling policy (e.g., the inter-pod affinity

matches view in Figure 9). By being incrementally updated and

shared across multiple downstream views, the simplified code not

only enhances performance but also promotes maintainability.

Most policies we implemented for scheduling involved match

expressions, like the affinity and anti-affinity versions for inter-pod

and node constraints, as well as taints and tolerations. For these

policies, we see an average of 2.8× reduction in code size from ~185

lines per policy to ~64 lines by using DDlog. Policies where we

simulated IVM using triggers such as the spare capacity policy saw

no change in the SQL, but no longer needed triggers (roughly 80

lines of Java on average). Similarly, several views that were not

incremental originally (like ones to extract the set of pending pods)

became incremental with no code changes with the use of DDlog.

5.2 SQL-to-DDlog Compiler Implementation
We built a SQL-to-DDlog compiler in roughly 7K lines of code

and 4K lines of tests in Java, using the Presto [11] parser as its

frontend. The compiler supports standard SQL: select, project, join,

windowing, groupby, aggregations, set operations, and most SQL

expressions using SQL’s ternary logic semantics. Due to semantics

differences between SQL and DDlog, the compiler only supports

SELECT DISTINCT queries. This particular restriction did not cause

any issues during the migration, as we only worked with data

organized as sets previously.

We also implemented a JDBC API to DDlog using JOOQ [7].

Our frontend interacts with a DDlog program over a JDBC inter-

face as if it were an embedded database without persistence. The

frontend requires the entire schema (DDL) to be specified at ini-

tialization. It then translates the SQL schema to a corresponding

DDlog program using the SQL-to-DDlog compiler, invokes the

DDlog compilation toolchain, and loads the resulting DDlog pro-

gram into memory where it acts as a pipeline maintaining the views

continuously. As a result, our pre-existing corpus of DCM-based

code could be switched to use DDlog and its incremental capabili-

ties with minimal disruption. The code interfacing through JDBC

was unchanged, whereas some SQL schema and views had to be

changed to adapt to differences in the SQL dialect between H2

and Presto. The SQL-frontend and the SQL-to-DDlog compilers are

open-source projects [12].

6 FEASIBILITY-PRESERVING PUSHDOWN
In §4.2, we discussed how constraint solvers are a bottleneck for

DCM’s scalability at larger cluster sizes. To address this challenge,

we introduce the FP-pushdown optimization. FP-pushdown auto-

matically simplifies optimization problems generated from C-SQL

programs by pushing down predicates from constraints to rela-

tions. In C-SQL programs, constraints are generated from relations.

By shrinking a relation, we can make the encoded optimization

problem smaller. We achieve this by statically analyzing constraint

queries and extracting filtering conditions from the constraint side

that can be moved to the relation side. The filtering conditions are

specified as additional views on the base relation, and can bene-

fit from the incremental evaluation enabled by the IVM engine.

The net effect of the optimization is similar to the solver’s presolve

phase, which reduces the number of variables and variable domains.

6.1 Problem Setup: Domain Restricting Views
Many cluster management problems involve combinatorial opti-

mization tasks (e.g., assigning applications to machines), where

the solution set is discrete. We therefore focus the discussion of

FP-pushdown on discrete decision variables, whose domain can be

defined via foreign key constraints as shown in Figure 5.

Suppose that 𝑣𝑎𝑟 is a variable column in the base table, and

that it is also a foreign key referencing column 𝑢𝑖𝑑 in the domain

table 𝐷 . Our goal is to automatically generate one or more views

𝑅, which we refer to as domain restricting views, that narrow the

domain of 𝑣𝑎𝑟 without affecting the feasibility of the optimization

problem. Each view 𝑅 has the same schema as the domain table 𝐷 ,

but only contains a subset of its records. The views are computed

by identifying domain restricting conditions in constraint queries.

Hard and soft constraints may contain a domain restricting con-

dition of the form (var op Q). Here,𝑄 is a query or an expression

that determines the variable domain, and 𝑜𝑝 is a SQL operator (e.g.,

IN, NOT IN, =, ≠). For each 𝑄 , we compute a domain restricting

query (DRQ) 𝑄 ′
, which is a SQL query that defines filtering condi-

tions relevant to the variable’s domain. We consider three types of

DRQs: (1) 𝑄𝑖𝑛𝑐 : DRQs from hard constraints defining parts of the

domain that contain feasible solutions; (2) 𝑄𝑒𝑥𝑐 : DRQs from hard

Algorithm 1 Generating Domain Restricting Views

1: function genDRQ(𝐷,𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)

2: for < 𝑡𝑏𝑙, 𝑐𝑜𝑙 > in 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 do
3: 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 .add("SELECT * FROM D
4: WHERE D.uid IN (SELECT col FROM tbl)")

5: return 𝑞𝑢𝑒𝑟𝑖𝑒𝑠

6: function DomainRestrictingView(𝐷)

7: 𝑐𝑜𝑛𝑑𝑖𝑛𝑐 , 𝑐𝑜𝑛𝑑𝑒𝑥𝑐 = ExtractHardContraints(𝑎𝑙𝑙𝑉 𝑖𝑒𝑤𝑠)

8: q_inc = String.join("UNION", genDRQ(𝐷,𝑐𝑜𝑛𝑑𝑖𝑛𝑐))

9: q_exc = String.join("INTERSECT", genDRQ(𝐷,𝑐𝑜𝑛𝑑𝑒𝑥𝑐))

10: q_s = getTopK(discount(𝐷 , 𝑐𝑜𝑛𝑑𝑒𝑥𝑐 , 𝛾))

11: return "(q_s) UNION (q_inc) EXCEPT (q_exc)"

constraints defining parts of the domain that do not contain feasible

solutions and (3) 𝑄𝑠 : DRQs based on domain knowledge defining

parts of the domain that are likely to contain feasible solutions.

Given a set of DRQs, we can compute a single domain restricting

view 𝑅 for the variable column via 𝑅 ≡ 𝑄𝑖𝑛𝑐 ∪𝑄𝑠 \𝑄𝑒𝑥𝑐 (line 6-11

in Algorithm 1). 𝑅 now represents a narrowed domain of 𝑣𝑎𝑟 that

we can incorporate into the DCMmodel definition. Let tables/views

being accessed in 𝑄 be 𝑅𝐸𝐿(𝑄). For each table/view 𝑇 in 𝑅𝐸𝐿(𝑄),
we can compute an augmented table 𝑇 ′ ≡ (𝑇 ⊲⊳𝑇 .𝑢𝑖𝑑=𝑅.𝑢𝑖𝑑 𝑅). At
runtime, the DCM replaces 𝑇 with 𝑇 ′

in all queries.

6.2 Inferring Domain Restricting Queries (DRQ)
In this section, we describe how to generate DRQs from hard con-

straints and soft constraints.

Hard constraints. Predicates and subqueries that only involve

constants are a common type of domain restricting conditions found

in hard constraints. For example, the node_predicates constraint

in Figure 6 is a hard constraint that contains a domain restricting

condition of the form (var IN/NOT IN Qc), where 𝑄𝑐 is a sub-

query that does not involve variables. Because these conditions

do not depend on values of other variables, we can extract and

precompute such predicates and subqueries directly as DRQs.

Inclusion DRQs can be pushed down to relations regardless of

whether there are additional predicates in the constraint query,

since including additional values to the domain does not affect the

correctness of the solution. In comparison, exclusion DRQs (𝑄𝑒𝑥𝑐)

can not be pushed down safely if there exist any OR predicates in

the same constraint that involve non-variable columns. For example,

consider the constraint CHECK (NonVarExpr) OR (var NOT IN
Qc)FROM Relation. This constraint can be rewritten by moving

the non-variable expression into the relation: CHECK (var NOT IN
Qc)FROM Relation WHERE NonVarExpr == false. After rewriting,
it is clear that the constraint (var NOT IN Qc) only applies to a

subset of the relation that satisfies the where clause. Therefore, 𝑄𝑐

can not be excluded from the shared domain of all variables.

Top k with domain knowledge. In addition to explicitly defined

hard constraints, users often apply heuristics and implicit prefer-

ences to cluster management problems based on domain knowledge.

We encode such knowledge via a custom sort order on the domain

table 𝐷 . The sort order implies that, all else equal, records that are

ranked high are more likely to contain feasible solutions compared

to ones that are ranked low. For example, one common heuristic for

placing pods is to prioritize nodes with more available resources.

This can be expressed via a sort order based on the spare capacity

column in the nodes table. Another heuristic prefers nodes with-

out any anti-affinity constraints or topology constraints instead of

nodes with many constraints. This can be encoded into the custom

sort order by “discounting" the available resources of a node based

on constraints. For example, we decrease the spare capacity of a

node by a factor of 0 < 𝛾 < 1 each time the node appears in such

constraints. Finally, the domain restricted query (𝑄𝑠) is computed

by taking the top 𝑘 entries from the sorted table.

Unlike hard constraints which do not affect correctness, over-

restricting the variable domain with small values of 𝑘 could trans-

form a solvable problem into one without solutions. At runtime,

if the solver finds no solutions, we simply fall back to the default

DCM solver logic which considers the entire variable domain.

6.3 Efficient Implementation of DRQs
Finally, we describe the implementation details of extracting DRQs

from constraints and using DDlog to enforce them.

To identify constraints that affect the domain of a variable col-

umn 𝑣𝑎𝑟 , we implement an additional pass in DCM’s compiler that

statically inspects the schema and constraints, and applies the rules

in §6.2 to extract domain restricting conditions (line 7 in Algo-

rithm 1). The inclusion DRQ is generated by taking the union of the

inclusion conditions (line 8), while the exclusion DRQ is generated

by the intersection of the exclusion conditions (line 9). The exclu-

sion conditions are also used to adjust the custom sort order on

the domain table 𝐷 before we take the top k (line 10). We include a

detailed analyses of the contribution of different types of DRQs to

the decision variable’s domain size in the technical report [65].

Give the set of DRQs, we construct for each domain table a single

domain restricting view 𝑅 = 𝑄𝑖𝑛𝑐 ∪ 𝑄𝑠 \ 𝑄𝑒𝑥𝑐 (line 11). For each

table or view 𝑇 referenced by a constraint, the compiler outputs

DDL queries for the augmented tables 𝑇 ′
. 𝑇 ′

only contains rows

from 𝑇 that match the domain specified in 𝑅 (§6.1).

The initial schema, along with the generated domain restricting

views and, the augmented tables are provided to DDlog together

with the user queries. The FP-pushdown capability is transparent

to our Kubernetes scheduler: the core user code that translates

the decisions made by the DCM model back to the Kubernetes

API does not depend on the use of FP-pushdown. The additional

views of the augmented schema are also evaluated incrementally on

every modification to the cluster state. We evaluate the end-to-end

implications of the scheme in §7.3.

7 PERFORMANCE EVALUATION
In this section, we evaluate the performance of DCM with the

optimized C-SQL processing pipeline. Results show that:

• IVM is essential to both scheduling latency and throughput,

allowing the system to efficiently compute and query summaries

over the entire cluster state (§7.2)

• Combining IVM and FP-pushdown decreases scheduling laten-

cies by two to three orders of magnitude, thereby enabling a

DCM-based scheduler to scale to a cluster of 50K nodes (§7.3).

7.1 Experiment Setup
We model the evaluation after the original DCM paper to enable a

direct comparison [72].

0 500 1000

4000

8000

12000

#p
od

s (
cu

m
ul

at
iv

e) DCM (10x)

0 500 1000
Time (sec)

 +ivm (10x)

0 500 1000

 +ivm (40x)
inserted scheduled

Figure 11: Number of pods inserted and scheduled over time
in a 500-node cluster with and without IVM (DDlog). The
trace’s arrival rates are sped up by 10×/40×.

100 101 102 103 104

Database Latency (ms)
0.0
0.2
0.4
0.6
0.8
1.0

Em
pi

ric
al

 C
DF

 DCM (10x)
 +ivm (10x)
 +ivm (40x)

Figure 12: Empirical cumulative distribution function (ECDF)
of database latency (fetch and update records) before and
after incremental view maintenance.

Environment. Given the focus on scalability, we use DCM’s bench-

marking harness to evaluate our Kubernetes scheduler in a setting

where the Kubernetes API is mocked (i.e., the nodes themselves are

simulated). We have tested with simulated cluster sizes of 500, 5000

and 50000 nodes. We report results from 5 runs for each configu-

ration. The experiments were conducted on a server with 8 Intel

Xeon Platinum 8259CL CPUs and 32GB memory.

Workload. Our evaluation utilizes the 2019 Azure public trace [59],
which contains workload information of replica pod groups that

were launched. Each replica pod group consists of one or more

identical pods that were launched at the same time and have the

same CPU and memory requirements. We replay three variants

of the workload, each with a different fraction F of replica groups

configured with inter-pod anti-affinities and node affinities within

the group. Inter-pod anti-affinity constraints ensure that pods in

the same replica group are not placed on the same node, while node

affinity constraints match pods to a subset of available nodes that

have workload-specific requirements such as custom hardware or

to run workloads in pre-defined availability zones. For example,

setting F=50% subjects half of the pod groups to these constraints.

The larger F is, the harder it is to schedule the workload since these

constraints involve reasoning over groups of pods. The workload

also uses various hard and soft constraints in Kubernetes scheduler,

including capacity constraints and load balancing requirements.

Baseline. Our prior work has already shown that DCM outper-

forms the default Kubernetes scheduler by 2× in scalability [72].

Our experiments therefore focus on comparing against DCM di-

rectly. Specifically, we evaluate the following variants of DCM:

• DCM: The original implementation as described in prior work.

• +ivm: DCM with DDlog as the IVM backend.

• +ivm+pushdown: DCM with DDlog backend and FP-pushdown.

500 5000 500001

10

102

103

104

La
te

nc
y

(m
s)

F=0%

500 5000 50000
nodes

F=50%

500 5000 50000

F=100%

+ivm +ivm+pushdown

Figure 13: Scheduling latency for a batch of pods (max 50) at
10× trace speed up (log-scale) and different cluster sizes.

7.2 Performance with IVM
We first compare DCM with and without IVM in a 500-node setting,

with both systems using the same cluster state schema. We do not

use split views, since it makes the code not maintainable (§4.1).

Figure 11 reports the insert and scheduling throughput of DCM,

measured as the total number of pods inserted and scheduled over

time, without and with an IVM backend. We speed up the pod

arrival rate in the trace by 10× and 40×. We find that while DCM

without IVM can quickly insert new records into the database in

response to the newly created pods (red dotted line), its schedul-

ing rate (blue solid line) struggles to keep up. This is because, in

each scheduling iteration, DCM’s queries to fetch the latest states

performs redundant work even when only small changes happen

to the cluster state between iterations. This cluster state database

bottleneck is apparent in Figure 12, which reports the empirical

cumulative distribution function (ECDF) of database latency that

includes the total time to fetch and update records from the data-

base. Concretely, the 95th percentile (p95) database latency at 10×
trace speed up decreases from over 5 seconds without IVM to 1.7ms

with IVM (read from intersections between latency curves and a

horizontal line at 𝑦 = 0.95), which is a near 3000× speed up.

In comparison, using IVM, scheduling throughput can keep up

with the request arrival rate and the database latencies remain

tractable (p95 latency around 3.5ms) even at 40× and higher trace

speedups. Figure 14 shows the relative contribution of the database

to the overall scheduling latency compared to other steps with IVM.

In the 500 node case, the p95 latency of fetching all the required

cluster states from the database is under 2ms. The low database

latency shows that cluster state management using IVM via DDlog

is not a bottleneck even with high arrival rates.

7.3 Performance with IVM and FP-pushdown
Given IVM is indispensable for DCM’s performance, we conduct

all remaining experiments using the DDlog backend.

Impact of FP-pushdown optimization. Figure 13 reports the

scheduling latencies for DCM with and without the FP-pushdown

optimization. The presented latencies are for a batch of pods, as the

scheduler batches up to 50 decisions at a time.

Without FP-pushdown, scheduling latency increases significantly

from a median of hundreds of milliseconds to a few seconds as the

cluster sizes increase. In comparison, latency with FP-pushdown

grows more slowly, staying within the hundreds of milliseconds

0.00

0.25

0.50

0.75

1.00
+ivm

N=500

+ivm+pushdown

0.00

0.25

0.50

0.75

1.00

EC
DF

N=5000

1 10 102 103 104

Latency (ms)
0.00

0.25

0.50

0.75

1.00

1 10 102 103 104

Latency (ms)
N=50000

database modelCreation presolve orToolsTotal

Figure 14: Scheduling latency breakdown per batch of pods
(max 50) at 𝐹 = 100% and different cluster sizes.

median latency even at 50K node scale. This is because, with FP-

pushdown, the size of the optimization problem is no longer a

function of the cluster size but a function of the size of changes

(i.e., the number of new pods that need to be placed in the system

and the nodes being updated as a result). DCM with FP-pushdown

consistently improves performance over reasoning about all nodes,

where even the p95 latency with 50K nodes is faster than the 5th

percentile latency without FP-pushdown.

With 𝐹 = 0%, FP-pushdown only reasons about the top-K nodes

in the cluster, making performance constant relative to cluster sizes,

given that the batch size of pods per decision is a constant capped

at 50. With 𝐹 = 50% and 𝐹 = 100%, given the complex mix of

constraints configured, we find that scheduling performance varies

with the cluster size. With node affinities, a scheduling problem

sometimes becomes straightforwardwith a small search spacewhen

the number of pods per decision is small. At the higher percentiles,

we see larger problem sizes in cases with larger batches of pods per

decision, each with a different group of nodes it has affinity to. We

have included additional results in the appendix of the technical

report [65] showing that FP-pushdown reduces optimization prob-

lem sizes by over 300× in the 50K node case and its performance is

stable across a range of top-k parameters.

Finally, as was our design goal, FP-pushdown did not affect the

feasibility of the solver in any of the above test cases.

Latency breakdown. Figure 14 reports the detailed breakdown

of scheduling latency at 𝐹 = 100% and cluster sizes of 500, 5000

and 50000 nodes with and without the FP-pushdown optimiza-

tion. Specifically, the breakdown includes the time to fetch data

from the database (database), to encode the fetched data into an

optimization problem (modelCreation), and the total time spent

in the or-tools solver (orToolsTotal). We also highlight the time

spent in the presolve phase in or-tools (presolve), where the solver
simplifies the optimization problem using complex heuristics.

In baseline DCM, as the cluster size increases, the gap between

the relative contributions of the database and the constraint solver

to the overall latency widens. Specifically, the p95 latency of the

database increases from 2.0ms at 500 nodes to 87ms at 50000

nodes, the p95 latency of orToolsTotal increases from 333ms

to 706ms, and the p95 latency of modelCreation increases from

68ms to 7056ms. As explained earlier, the constraint solver’s scal-

ability is increasingly a bottleneck at larger cluster sizes. Given

the larger number of records involved, all phases in the pipeline,

from database fetches, to model creation, presolving and the overall

solution search experience significant latency increases. Model cre-

ation in particular experiences the worst latency degradation of all

the phases, given that that phase involves several passes over the

fetched input data to produce the optimization problem encoding.

In comparison, with FP-pushdown, the scheduling latency is

relatively unaffected by the increasing cluster sizes. This is because

we efficiently and automatically scope the problem so that the

fetched data in each placement decision remains small even at large

cluster sizes. This in turn leads to all subsequent phases involving

the DCM runtime and solver use to speed up as well.

8 RELATEDWORK

Declarative data-center management. Several works have tack-
led the inflexibility of modern cluster manager designs. DCM [72]

tackles recurring combinatorial optimization tasks in data-centers

via a SQL-based programming model, which we formalize as C-SQL

in this paper. DBOS [69] proposes amulti-node datacenter operating

system, built around a distributed database to manage state, encour-

aging a programming model based on traditional SQL and stored

procedures. C-SQL can be used to add constraint optimization based

decision-making to a DBOS deployment. C-SQL is sufficiently ex-

pressive to deal with a broad range of cluster management tasks for

two reasons. First, the relational model shines at representing com-

plex system state, as seen by several systems that used relational

languages to simplify systems programming [14, 30, 56, 62, 81].

Second, cluster management problems are often constraint opti-

mization problems [19, 22, 23, 25–27, 34, 37, 76, 77], and C-SQL

extends SQL to support constraint specification.

Constraint solvers for resource management. Many works

have explored the use of solvers to aid various facets of datacenter

resource management [19, 22, 23, 25–27, 34, 37, 76, 77]. These sys-

tems are not based on a relational programming model like C-SQL,

and instead use hand-crafted constraint solver encodings, which

are comparatively difficult to extend over time. Neither can these

systems leverage query optimization techniques such as IVM with-

out the relational model. Using custom solvers for specific problem

domains can yield significant rewards. For example, Shard Man-

ager [53] uses domain knowledge to partition the problem and use

local search to assign shards in distributed applications. Wrasse [63]

uses a balls-and-bins based abstraction to model allocation prob-

lems and uses a GPU-based solver to find assignments. DCM and

C-SQL allow different constraint solver backends to be plugged in

for constraint evaluation, which allows such approaches to leverage

the simpler and more expressive relational programming model.

Constraint query language. The idea of combining declarative

database programming with constraint solving has been previously

explored in the context of constraint databases [38, 39, 52, 66],

albeit with a different focus on the representation and querying

of spatial temporal data [21, 64, 75]. The main idea is that a tuple

in the relational database model can be generalized to represent

a conjunct of constraints over a small number of variables. These

generalized tuples can therefore provide a finite representation of

infinite sets, such as a spatial object which is an infinite point set.

In comparison, C-SQL targets combinatorial optimization problems

in cluster management applications. In terms of semantics, C-SQL

supports additional forms of constraints in addition to conjunctions,

such as objective functions defined via MAXIMIZE clauses.

Predicate pushdown. Predicate pushdown [78] is a well-known

query optimization technique for pushing filtering and projection

operators down a query plan tree as far as possible, to reduce subse-

quent query processing costs. As a generalization of the pushdown

technique, researchers have explored the idea of moving predicates

around (e.g., up, down and sideways) in the query plan for perfor-

mance reasons [17, 33, 54]. Most query optimization techniques

can not push down predicates below a join operator, unless the

predicates are on columns used in the join condition [24, 61, 68, 80].

More broadly, predicate pushdown style optimization has shown

performance benefits in applications such as sensor networks [70],

dataflow operators [35], video analytics systems [40] and machine

learning inference queries [57]. FP-pushdown is another example

of applying the predicate pushdown technique in a new domain of

constraint solving. FP-pushdown differs from traditional predicate

pushdown techniques since it pushes down predicates from the

constraint side of C-SQL programs to the relation side, instead of

just moving predicates around within relations.

Incremental ViewMaintenance. IVM has been extensively stud-

ied in the database community [18, 28, 31, 36, 60, 82, 83]. In this

work, we build on decades of research in IVM and use an existing

IVM engine as a black-box. We do not claim to make any contribu-

tions to IVM techniques. Our contribution is to show that we can

essentially use a SQL-like language to express constraints and still

apply standard IVM techniques for this new use case which pro-

duces constraints instead of query plans. Although any IVM engine

could be used to speed up C-SQL ’s relation evaluation, we chose to

use DDlog due to its feature set and our operational expertise with

it in production. For example, DBToaster [41], which provides an

open-source IVM engine [1], could also be used but it does not cur-

rently support operators such as UNION, HAVING, and WINDOW used

in DCM. Outside cluster management, incremental computation

is also useful in enabling key control plane functionality, such as

shown in DeltaPath [20] and Full-stack SDN [71].

9 CONCLUSION AND FUTUREWORK
This paper describes how we improved the scalability and pro-

grammability of a Declarative Cluster Manager architecture using

C-SQL, a constraint language that extends SQL. The declarative

programming model allows us to specify the goals of cluster man-

agement while leaving optimization and execution plans to the

runtime, which is not possible with today’s heuristic-based clus-

ter managers. Our C-SQL language is similar to SQL, allowing

us to apply decades of query optimization research to optimize

C-SQL programs. As a result, we can now scale a DCM-powered

Kubernetes scheduler beyond its original limits to hyperscale-sized

clusters with simpler schema and less imperative user code. We

believe that C-SQL is a versatile language for specifying constraint

optimization problems using a SQL-style syntax. We plan to explore

applications of C-SQL beyond cluster management in future work.

REFERENCES
[1] [n.d.]. DBToaster SQL Reference. https://dbtoaster.github.io/docs_sql.html. Last

accessed: June 2023.

[2] [n.d.]. OpenStack. https://www.openstack.org/. Last accessed: June 2023.

[3] [n.d.]. Red Hat OpenShift. https://www.redhat.com/en/technologies/cloud-

computing/openshift. Last accessed: June 2023.

[4] 2007. H2 Database. https://github.com/h2database/h2database/. Last accessed:

June 2023.

[5] 2010. Google OR-Tools. https://developers.google.com/optimization/. Last

accessed: February 2023.

[6] 2010. Google OR-Tools Documentation. https://github.com/google/or-tools/

blob/stable/ortools/sat/docs/README.md. Last accessed: April 2023.

[7] 2011. JOOQ. https://github.com/jOOQ/jOOQ. Last accessed: June 2023.

[8] 2014. Kubernetes (K8s) Github. http://github.com/kubernetes/kubernetes. Last

accessed: June 2023.

[9] 2015. Differential Dataflow. https://github.com/TimelyDataflow/differential-

dataflow. Last accessed: June 2023.

[10] 2021. Differential Datalog. github.com/vmware/differential-datalog. Last

accessed: June 2023.

[11] 2021. PresoDB. https://prestodb.io/. Last accessed: August 2022.

[12] 2022. DDlog’s SQL frontend and SQL-to-DDlog compiler. https://github.com/

vmware/differential-datalog/tree/master/sql. Last accessed: November 2022.

[13] 2022. Kubernetes. https://kubernetes.io/docs/concepts/scheduling-eviction/

kube-scheduler/. Last accessed: June 2023.

[14] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M Heller-

stein, and Russell Sears. 2010. Boom analytics: exploring data-centric, declarative

programming for the cloud. In Proceedings of the 5th European conference on
Computer systems. ACM, 223–236.

[15] Apache. 2014. Apache Calcite. https://calcite.apache.org/. Last accessed: Feb

2023.

[16] Stefano Ceri and Georg Gottlob. 1985. Translating SQL Into Relational Algebra:

Optimization, Semantics, and Equivalence of SQL Queries. IEEE Trans. Softw.
Eng. 11, 4 (apr 1985), 324–345. https://doi.org/10.1109/TSE.1985.232223

[17] Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of queries with user-

defined predicates. ACM Transactions on Database Systems (TODS) 24, 2 (1999),
177–228.

[18] Latha S Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and

Howard Trickey. 1996. Algorithms for deferred view maintenance. In Proceedings
of the 1996 ACM SIGMOD international conference on Management of data. 469–
480.

[19] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A practical algo-

rithm for balancing the max-min fairness and throughput objectives in traffic

engineering. In 2012 Proceedings IEEE INFOCOM. IEEE, 846–854.

[20] Desislava Dimitrova, John Liagouris, Sebastian Wicki, Moritz Hoffmann, Vasiliki

Kalavri, and Timothy Roscoe. 2018. DeltaPath: dataflow-based high-performance

incremental routing. https://doi.org/10.48550/ARXIV.1808.06893

[21] Martin Erwig, Markus Schneider, Michalis Vazirgiannis, et al. 1999. Spatio-

temporal data types: An approach to modeling and querying moving objects in

databases. GeoInformatica 3, 3 (1999), 269–296.
[22] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh,

and Sriram Rao. 2018. Medea: Scheduling of Long Running Applications in

Shared Production Clusters. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery, New York,

NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3190508.3190549

[23] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven

Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling at Scale. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, Savannah, GA, 99–115. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/gog

[24] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[25] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). 455–466.
https://doi.org/10.1145/2619239.2626334

[26] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-

narayanan. 2016. Altruistic Scheduling in Multi-Resource Clusters. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’16). 65–80.

[27] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. Graphene: Packing and Dependency-Aware Scheduling for Data-

Parallel Clusters. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX
Association, USA, 81–97.

[28] Timothy Griffin and Leonid Libkin. 1995. Incremental maintenance of views

with duplicates. In Proceedings of the 1995 ACM SIGMOD international conference
on Management of data. 328–339.

[29] Ajay Gulati and Xiaoyun Zhu. 2012. VMware distributed resource management:

design, implementation, and lessons learned. VMware Technical Journal 1, 1
(2012), 45–64.

[30] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. 2008. SQCK: A declarative file system checker. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and Im-
plementation (OSDI’08). 131–146.

[31] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian.

1993. Maintaining views incrementally. ACM SIGMOD Record 22, 2 (1993),

157–166.

[32] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David

Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas

Moscibroda. 2020. Protean: VM Allocation Service at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 845–861. https://www.usenix.org/conference/osdi20/presentation/

hadary

[33] Joseph M Hellerstein and Michael Stonebraker. 1993. Predicate migration: Op-

timizing queries with expensive predicates. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of data. 267–276.

[34] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia

Lawall. 2009. Entropy: A consolidation manager for clusters. In Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 41–50.

[35] Fabian Hueske, Mathias Peters, Matthias J Sax, Astrid Rheinländer, Rico

Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black

Boxes in Data Flow Optimization. PVLDB 5, 11 (2012).

[36] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2020. General dynamic Yannakakis: conjunctive queries with theta

joins under updates. The VLDB Journal 29, 2-3 (2020), 619–653.
[37] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. 2009. Quincy: Fair scheduling for distributed computing

clusters. In ACM Symposium on Operating systems principles (SOSP). ACM, 261–

276.

[38] Paris C Kanellakis, Gabriel M Kuper, and Peter Z Revesz. 1990. Constraint

query languages (preliminary report). In Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. 299–313.

[39] Paris C Kanellakis, Gabriel M Kuper, and Peter Z Revesz. 1995. Constraint query

languages. J. Comput. System Sci. 51, 1 (1995), 26–52.
[40] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: optimizing neural network queries over video at scale. PVLDB 10, 11

(2017), 1586–1597.

[41] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli,

Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-order delta processing

for dynamic, frequently fresh views. VLDB J. 23, 2 (2014), 253–278. https:

//doi.org/10.1007/s00778-013-0348-4

[42] Kubernetes. 2018. Add a new predicate: max replicas limit per node. https:

//github.com/kubernetes/kubernetes/pull/71930. Last accessed: Feb 2023.

[43] Kubernetes. 2018. Addmax number of replicas per node/topology key to pod anti-

affinity. https://github.com/kubernetes/kubernetes/issues/40358. Last accessed:

Feb 2023.

[44] Kubernetes. 2018. Affinity/Anti-Affinity Optimization of Pod Being Scheduled

#67788. https://github.com/kubernetes/kubernetes/pull/67788. Last accessed:

Feb 2023.

[45] Kubernetes. 2018. Allow Minimum (or Maximum) Pods per failure zone. https:

//github.com/kubernetes/kubernetes/issues/66533. Last accessed: Jan 2019.

[46] Kubernetes. 2018. Assign Pods to Nodes using Node Affinity.

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-

nodes-using-node-affinity/. Last accessed: Feb 2023.

[47] Kubernetes. 2018. Maximum of N per topology value. https://github.com/

kubernetes/kubernetes/pull/41718. Last accessed: Feb 2023.

[48] Kubernetes. 2018. MaxPodsPerNode - be able to set hard and soft limits for

deployments / replicasets. https://github.com/kubernetes/kubernetes/issues/

63560. Last accessed: Feb 2023.

[49] Kubernetes. 2018. Pod priorities and preemption. https://kubernetes.io/docs/

concepts/scheduling-eviction/pod-priority-preemption/. Last accessed: June

2023.

[50] Kubernetes. 2018. Taints and Tolerations. https://kubernetes.io/docs/concepts/

scheduling-eviction/taint-and-toleration/. Last accessed: Feb 2023.

[51] Kubernetes mailing list. 2018. Let’s remove ServiceAffinity . https://groups.

google.com/forum/#!topic/kubernetes-sig-scheduling/ewz4TYJgL0M. Last ac-

cessed: Feb 2023.

[52] Gabriel Kuper, Leonid Libkin, and Jan Paredaens. 2013. Constraint databases.
Springer Science & Business Media.

[53] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,

Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, et al.

2021. Shard Manager: A Generic Shard Management Framework for Geo-

Distributed Applications. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP ’21). 553–569.

https://dbtoaster.github.io/docs_sql.html
https://www.openstack.org/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://github.com/h2database/h2database/
https://developers.google.com/optimization/
https://github.com/google/or-tools/blob/stable/ortools/sat/docs/README.md
https://github.com/google/or-tools/blob/stable/ortools/sat/docs/README.md
https://github.com/jOOQ/jOOQ
http://github.com/kubernetes/kubernetes
https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/differential-dataflow
github.com/vmware/differential-datalog
https://prestodb.io/
https://github.com/vmware/differential-datalog/tree/master/sql
https://github.com/vmware/differential-datalog/tree/master/sql
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://calcite.apache.org/
https://doi.org/10.1109/TSE.1985.232223
https://doi.org/10.48550/ARXIV.1808.06893
https://doi.org/10.1145/3190508.3190549
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://doi.org/10.1007/s00778-013-0348-4
https://doi.org/10.1007/s00778-013-0348-4
https://github.com/kubernetes/kubernetes/pull/71930
https://github.com/kubernetes/kubernetes/pull/71930
https://github.com/kubernetes/kubernetes/issues/40358
https://github.com/kubernetes/kubernetes/pull/67788
https://github.com/kubernetes/kubernetes/issues/66533
https://github.com/kubernetes/kubernetes/issues/66533
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://github.com/kubernetes/kubernetes/pull/41718
https://github.com/kubernetes/kubernetes/pull/41718
https://github.com/kubernetes/kubernetes/issues/63560
https://github.com/kubernetes/kubernetes/issues/63560
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://groups.google.com/forum/#!topic/kubernetes-sig-scheduling/ewz4TYJgL0M
https://groups.google.com/forum/#!topic/kubernetes-sig-scheduling/ewz4TYJgL0M

[54] Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. 1994. Query opti-

mization by predicate move-around. In VLDB. 96–107.
[55] Kubernetes Topology Manager Limitations. [n.d.]. https://kubernetes.io/docs/

tasks/administer-cluster/topology-manager/#known-limitations. Last accessed:

June 2023.

[56] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy

Roscoe, and Ion Stoica. 2005. Implementing Declarative Overlays. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05). 75–90.

[57] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating machine learning inference with probabilistic predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data. 1493–1508.

[58] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow. In CIDR.
[59] Microsoft. 2017. Azure Public Dataset. https://github.com/Azure/

AzurePublicDataset. Last accessed: June 2023.

[60] Hoshi Mistry, Prasan Roy, S Sudarshan, and Krithi Ramamritham. 2001. Ma-

terialized view selection and maintenance using multi-query optimization. In

Proceedings of the 2001 ACM SIGMOD international conference on Management of
data. 307–318.

[61] Inderpal SinghMumick and Hamid Pirahesh. 1994. Implementation of magic-sets

in a relational database system. ACM SIGMOD Record 23, 2 (1994), 103–114.

[62] Ben Pfaff and Bruce Davie. 2013. RFC 7047: The Open vSwitch Database Man-

agement Protocol. https://datatracker.ietf.org/doc/html/rfc7047. Last accessed:

June 2023.

[63] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. 2012. Generalized Resource

Allocation for the Cloud. In Proceedings of the Third ACM Symposium on Cloud
Computing (SoCC ’12). Article 15, 12 pages.

[64] Philippe Rigaux, Michel Scholl, Luc Segoufin, and Stéphane Grumbach. 2003.

Building a constraint-based spatial database system: model, languages, and

implementation. Information Systems 28, 6 (2003), 563–595.
[65] Kexin Rong, Mihai Budiu, Athinagoras Skiadopoulos, Lalith Suresh, and Amy Tai.

2022. Scaling a Declarative Cluster Manager Architecture with Query Optimiza-

tion Techniques (Technical Report). https://github.com/vmware/declarative-

cluster-management/blob/vldb23/docs/tr.pdf.

[66] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of constraint
programming. Elsevier.

[67] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog 2.0.
Philadelphia, PA. http://budiu.info/work/ddlog.pdf

[68] Praveen Seshadri, Joseph M Hellerstein, Hamid Pirahesh, TY Cliff Leung, Raghu

Ramakrishnan, Divesh Srivastava, Peter J Stuckey, and S Sudarshan. 1996. Cost-

based optimization for magic: Algebra and implementation. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data. 435–446.

[69] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong,

Shana Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe,

Jeremy Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith

Suresh, and Matei Zaharia. 2022. DBOS: A DBMS-Oriented Operating System.

PVLDB 15, 1 (2022), 21–30. https://doi.org/10.14778/3485450.3485454

[70] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. 2005. Operator

placement for in-network stream query processing. In Proceedings of the 24th
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
250–258.

[71] Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu. 2022. Full-Stack SDN.

In Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Austin,
Texas) (HotNets ’22). Association for Computing Machinery, New York, NY, USA,

130–137. https://doi.org/10.1145/3563766.3564101

[72] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina Narodytska,

Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, andMichael Gasch. 2020.

Building Scalable and Flexible Cluster Managers Using Declarative Programming.

In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 827–844.

[73] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott

Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew Clark, et al. 2020.

Twine: A Unified Cluster Management System for Shared Infrastructure. In

Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation (OSDI’20). 787–803.

[74] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene

Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: The next

Generation. In Proceedings of the 15th European Conference on Computer Systems
(EuroSys ’20). Article 30, 14 pages.

[75] David Toman and Jan Chomicki. 1998. Datalog with integer periodicity con-

straints. The Journal of Logic Programming 35, 3 (1998), 263–290.

[76] Alexey Tumanov, James Cipar, Gregory R. Ganger, and Michael A. Kozuch. 2012.

Alsched: Algebraic Scheduling of Mixed Workloads in Heterogeneous Clouds. In

Proceedings of the Third ACM Symposium on Cloud Computing (SoCC ’12). Article
25, 7 pages. https://doi.org/10.1145/2391229.2391254

[77] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-

Balter, and Gregory R. Ganger. 2016. TetriSched: Global Rescheduling with

Adaptive Plan-ahead in Dynamic Heterogeneous Clusters. In Proceedings of the
European Conference on Computer Systems (EuroSys) (London, United Kingdom)

(EuroSys ’16). ACM, New York, NY, USA, Article 35, 16 pages. https://doi.org/10.

1145/2901318.2901355

[78] Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems,
Volume II. Computer Science Press.

[79] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-scale cluster management at Google with

Borg. In Proceedings of the European Conference on Computer Systems (EuroSys)
(Bordeaux, France). 1–17. http://doi.acm.org/10.1145/2741948.2741964

[80] Brett Walenz, Sudeepa Roy, and Jun Yang. 2017. Optimizing iceberg queries

with complex joins. In Proceedings of the 2017 ACM International Conference on
Management of Data. 1243–1258.

[81] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Caesar, and Brighten Godfrey.

2016. Ravel: A Database-Defined Network. In Proceedings of the Symposium on
SDN Research (Santa Clara, CA, USA) (SOSR ’16). Association for Computing

Machinery, New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/

2890955.2890970

[82] Jingren Zhou, Per-Ake Larson, and Hicham G Elmongui. 2007. Lazy maintenance

of materialized views. In Proceedings of the 33rd international conference on Very
large data bases. 231–242.

[83] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. 1995.

View maintenance in a warehousing environment. In Proceedings of the 1995
ACM SIGMOD international conference on Management of data. 316–327.

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#known-limitations
https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#known-limitations
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://datatracker.ietf.org/doc/html/rfc7047
https://github.com/vmware/declarative-cluster-management/blob/vldb23/docs/tr.pdf
https://github.com/vmware/declarative-cluster-management/blob/vldb23/docs/tr.pdf
http://budiu.info/work/ddlog.pdf
https://doi.org/10.14778/3485450.3485454
https://doi.org/10.1145/3563766.3564101
https://doi.org/10.1145/2391229.2391254
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/2901318.2901355
http://doi.acm.org/10.1145/2741948.2741964
https://doi.org/10.1145/2890955.2890970
https://doi.org/10.1145/2890955.2890970

	Abstract
	1 Introduction
	2 Cluster Management Background
	2.1 Heuristic-based Cluster Management
	2.2 Declarative Cluster Managers with DCM

	3 C-SQL Design and Execution
	3.1 C-SQL Syntax and Semantics
	3.2 Evaluating C-SQL programs
	3.3 C-SQL by Example

	4 Challenges Scaling C-SQL
	4.1 Simulating IVM
	4.2 Handling Large Optimization Problems

	5 IVM for the Cluster State
	5.1 Simplified Programming Model
	5.2 SQL-to-DDlog Compiler Implementation

	6 Feasibility-preserving pushdown
	6.1 Problem Setup: Domain Restricting Views
	6.2 Inferring Domain Restricting Queries (DRQ)
	6.3 Efficient Implementation of DRQs

	7 Performance Evaluation
	7.1 Experiment Setup
	7.2 Performance with IVM
	7.3 Performance with IVM and FP-pushdown

	8 Related Work
	9 Conclusion and Future Work
	References

