
Scaling a Declarative Cluster Manager Architecture withQuery
Optimization Techniques (Technical Report)

Kexin Rong
1,2
, Mihai Budiu

1
, Athinagoras Skiadopoulos

3
, Lalith Suresh

1
, Amy Tai

4

VMware Research
1
, Georgia Institute of Technology

2
, Stanford University

3
, Google

4

ABSTRACT
Cluster managers play a crucial role in data centers by distribut-

ing workloads among infrastructure resources. Declarative Cluster

Managers (DCM) is a new cluster management architecture that

allows users to express placement policies declaratively using SQL-

like queries. In this paper, we share our experiences scaling up this

architecture from moderate-sized enterprise clusters (hundreds or

thousands of nodes) to hyperscale clusters (tens of thousands of

nodes) through the lens of query optimization. To do so, we first

formally specify DCM’s declarative language, C-SQL, which intro-

duces new semantics such as variable columns on top of standard

SQL to express constraint optimization problems. Given cluster

management logic specified as C-SQL programs, we explore and

adapt techniques from classic query optimization, namely incre-

mental view maintenance and predicate pushdown, to improve the

execution efficiency of the relation and constraint components of

C-SQL programs. We evaluate the effectiveness of our optimiza-

tions through a case study of building Kubernetes schedulers using

C-SQL. Our optimizations demonstrated an almost 3000× speed up

in database latency and reduced the size of optimization problems

by as much as 1/300 of the original without affecting feasibility.

PVLDB Reference Format:
Kexin Rong

1,2
, Mihai Budiu

1
, Athinagoras Skiadopoulos

3
, Lalith Suresh

1
,

Amy Tai
4
. Scaling a Declarative Cluster Manager Architecture with Query

Optimization Techniques (Technical Report) . PVLDB, 14(1): XXX-XXX,

2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/vmware/declarative-cluster-management.

1 INTRODUCTION
Cluster managers like Kubernetes [9], OpenStack [4], and Open-

Shift [3] are important building blocks of today’s data centers. They

dynamically assign workloads to the underlying infrastructure and

configure them according to a variety of policies. Some policies rep-

resent hard constraints (e.g., never assign two replicas of a storage

service to the same node), which must always hold in any cluster

management decision. Others are soft constraints (e.g., spread these

web servers across different geographies if possible), which repre-

sent preferences and decision quality. Cluster management logic is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Cluster
State

DCM
Model

Constraint
Solver

Pod Node

@Variable

?
?
?

?
?
?

Pod Node

@Variable

?
?
?

Encode state into
optimization

problem

Assign values to
variable columns

Scheduling decision

model.solve()

Tables
Views

Schema, constraints
in SQL

Specify
constraints

Maintain
cluster states

Relational
Database

C-SQL
Program

Constraint
Solver

Assign values to
variables

Encode states
into optimization

problems

Supply latest
cluster states

Cluster Management
Decision

Figure 1: DCM processing pipeline. On each cluster manage-
ment decision (e.g., assigning new pods to nodes in Kuber-
netes), DCM pulls in the latest state (tables and views) from
the cluster state representation, encodes the state and con-
straints into an optimization problem, solves the problem
using the constraint solver, and returns the tables with values
assigned to variable columns.

notoriously hard to develop [50], since it often involves NP-hard

combinatorial optimization tasks that cannot be efficiently solved

using best-effort heuristics, as is the norm today.

Declarative Cluster Managers (DCM) [50] is a radically differ-

ent architecture that allows developers to specify what the cluster
manager should achieve, not how it should do so. Using a declar-

ative language we formalize as C-SQL in this paper, developers

can specify constraints as queries over cluster states stored in a

relational database. The DCM runtime encodes the latest cluster

state from the database into an optimization problem as specified by

the C-SQL queries, and solves the problem using off-the-shelf con-

straint solvers (Figure 1). DCM’s declarative approach significantly

reduces the development and maintenance efforts for complex clus-

ter management logic, compared to existing, ad-hoc designs that

require developers to write large amounts of custom, imperative

code from scratch. DCM also improves performance by generating

efficient constraint solver encodings that scale to larger problem

sizes compared to brittle, handcrafted heuristics.

Driven by the needs of some hyperscale operators who are inter-

ested in DCM, we have since embarked on a journey to scale DCM

from moderate-sized enterprise clusters (hundreds or thousands of

nodes) to hyperscale clusters (tens of thousands of nodes). Our key

insight behind the scaling efforts is to leverage the incremental na-

ture of cluster management problems: changes in cluster states are

often a few magnitudes smaller than the size of the whole database,

so it makes sense to keep the amount of work done proportional to

the size of the changes instead of the size of the database. Achieving

https://doi.org/XX.XX/XXX.XX
https://github.com/vmware/declarative-cluster-management
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

this design goal is quite challenging and necessitates novel tech-

niques at the intersection of constraint optimization and classic

database query optimization, which we describe below.

First, we formally define DCM’s query language C-SQL, which

allows users to declaratively specify constraint queries against

relations. While C-SQL is closely related to SQL, it importantly

introduces new semantics such as variable columns to support con-

straint optimization problems. The DCM runtime evaluates C-SQL

programs in two phases: relation evaluation, wherein the runtime

queries the latest cluster state required for a given decision; and

constraint evaluation, wherein the runtime encodes the fetched re-

lations into constraint formulae that can be passed to a solver. This

new formalism allows us to reason about optimization opportuni-

ties through the lens of query optimization for C-SQL programs.

To facilitate relation evaluation, we integrate DCM with an in-

cremental engine, Differential Datalog (DDlog) [12, 45], to enable

incremental computation on the relations. Previously, DCM users

used traditional in-memory embedded databases (e.g., H2 [6]) for

managing cluster state and were forced to write less natural C-SQL

queries in pursuit of performance. For example, to manually simu-
late incremental view maintenance, users had to carefully design

the schema by splitting static and dynamic parts of the cluster states

into separate tables. Instead, we leverage an incremental engine

like DDlog to automatically incrementalize computations given

queries. With DDlog, users are able to express their constraints

using concise queries without worrying about performance, which

matches the promise of the declarative programming model. Inte-

grating developing systems like DDlog with DCM was a significant

undertaking of more than 11K lines of code; we elaborate on the

challenges faced and lessons learned in § 4.

To facilitate constraint evaluation, we introduce a new opti-

mization called Feasibility-Preserving Predicate Pushdown (FP-

pushdown) to automatically reduce the size of optimization prob-

lems generated from C-SQL programs without affecting the fea-

sibility. Constraint solvers already simplify a given optimization

problem in a “presolve" phase before they start searching for so-

lutions, by eliminating unnecessary variables and restricting the

domain of variables. Inspired by the predicate pushdown technique„

FP-pushdown pushes down relevant constraints from the solver’s

presolve phase to the relation-evaluation phase of the DCM pro-

cessing pipeline, to filter out irrelevant parts of the search space in

advance. This is done by statically analyzing C-SQL programs, sym-

bolically inferring variable domains, and generating predicates that

can be pushed down to the (now incremental) relation evaluation.

Although FP-pushdown can not access live, runtime data about

variable domains like the solver, there is still significant room for

optimization. In an example, FP-pushdown trims a placement prob-

lem of assigning pods to a 50K-node Kubernetes cluster into one

that only reasons about fewer than 1.4K nodes, reducing the 95th

percentile scheduling latency from 8 seconds to 80-800 milliseconds.

In summary, as an information system architectures paper, this

work makes the following contributions:

(1) We report on experiences scaling up a new architecture

for declarative cluster management. We discuss our central

design goal of making the architecture’s processing pipeline

incremental as well as the challenges of achieving this goal.

(2) We provide a formal specification of DCM’s declarative

constraint language C-SQL, highlighting its similarities and

differences with respect to standard SQL.

(3) We introduce two optimization techniques, based on in-

cremental view maintenance and predicate pushdown, to

improve the execution efficiency of C-SQL programs.

(4) Through a case study of building Kubernetes schedulers us-

ing C-SQL, we demonstrate that our optimizations enabled

a nearly 3000× improvement in latency for fetching and

updating the cluster state database, and reduced the size

of optimization problems down to 0.29-2.7% of the original

without affecting feasibility.

2 C-SQL BACKGROUND AND DESIGN
In this section, we explain the context in which DCM was designed

and formalize DCM’s declarative language C-SQL. We first present

the use case of a modern cluster scheduler in Kubernetes, and the

challenges with current designs based on hand-crafted heuristics

(§ 2.1). We then explain how DCM and its C-SQL programming

model significantly improve the programmability and scalability

compared to the status-quo (§ 2.2).

2.1 Background: heuristic-based cluster
management

We use the running example of building a Kubernetes scheduler [1]

throughout this paper to aid the reader. Note that neither the prob-

lems nor the solutions presented are unique to scheduling in Kuber-

netes. As shown in our earlier work [50], similar challenges recur

across several kinds of distributed systems, such as for policy-based

configuration, data replication, and load-balancing across machines,

all of which are combinatorial optimization problems.

Policies. The Kubernetes scheduler is tasked with assigning pods
to nodes. A pod is the smallest unit of scheduling in Kubernetes

and typically represents one or more containers each. Pods can be

tagged with a set of policies that constrain which nodes they can be

assigned to. The scheduler supports over 30 different hard and soft

constraints. These include various flavors of capacity constraints;

inter-pod/node affinities and anti-affinities that affect which nodes,

regions or data-centers pods can be placed in; taints and tolerations

that attract and repel pods from nodes based on operator goals; net-

working constraints like the availability of host ports; and myriad

soft constraints that encode opportunities for performance gains,

such as preferring nodes that already have the required container

images for a pod locally. In addition, the scheduler uses a plugin

framework that allows operators to add custom policies based on

their specific deployments, which users leverage heavily.

Cluster state representation. The scheduler typically maintains

a swathe of in-memory data structures that present a view of the

relevant cluster states. For example, in Kubernetes [9], a centralized,

persistent data store hosts all the cluster states, whereas services

like the Kubernetes scheduler maintain an in-memory cache of

that state, synchronized via a client library. The scheduler typically

caches a view of the set of pods, nodes, volumes, and application

abstractions such as groups of replicas. Policies often need to cross-

reference multiple types of state to make decisions (e.g., reason

2

about existing pod, node and volume arrangements all at once).

In addition, many policies require the scheduler to incrementally

materialize summaries of the cluster state that are not directly

exposed by the centralized data store. For example, the scheduler

has its own logic to maintain the total spare resource capacity

of each node in the cluster. The scheduler also maintains ad-hoc

auxiliary data structures to cache prior decisions [1, 25, 55] to make

coherent future decisions without having to scan the cluster state

repeatedly. These types of precomputing and caching optimizations

are necessary to keep scheduler performance tractable.

Current designs and challenges. Today’s cluster managers use

the "filter-score" [1, 25, 55] architecture to implement policy-based

optimization logic, such as scheduling, resource management, and

placement. In this design, policies are organized as a processing

pipeline that evaluates every node that is considered for scheduling

(usually all nodes or a sample of all nodes) to place a given pod. For

each pair of pod 𝑝 and node 𝑛, the pipeline first evaluates policies

with hard constraints, each of which is implemented as a single

function that decides whether or not 𝑝 can be placed on 𝑛. This is

the filter phase. If 𝑝 survives all filtering policies, it proceeds to the

scoring phase, where the pipeline evaluates each soft constraint

and outputs a score for a given node. After processing all candidate

nodes, the pod is assigned to the highest ranked node.

There are two key issues with existing designs:

• Over time, the sprawl of ad-hoc data structures in the cluster

state representation worsens maintainability. A common issue

is that the custom data structures used for precomputing and

caching optimizations tend to be brittle in the face of evolving

requirements. The result of this is that evolving the scheduler

with new features and policies is hard, and cannot be done in

isolation without significant refactoring effort.

• At scale, it becomes challenging to implement highly needed but

complex policies efficiently [50]. Sampling is often used to keep

scheduling performance tractable, where only a small subset

of nodes are considered for each scheduling decision. However,

given that each policy is self-contained imperative code with

opaque semantics, sampling cannot be easily implemented in a

policy-aware manner and can therefore miss feasible solutions.

2.2 Declarative Cluster Managers with C-SQL
To overcome the programmability and scalability challenges in exist-

ing designs, recent work introduced the idea of a declarative cluster
manager (DCM [50]). DCM replaces the imperative, filter-score

pipeline of a heuristic-based cluster manager with a declarative one

written in C-SQL, where developers specify what the cluster man-

ager should achieve, not how. On the high level, DCM users design

a cluster state representation using a relational model instead of

ad-hoc data structures. They then describe policies as constraint

queries (hard and soft) that the cluster manager should enforce on

the cluster state database, instead of writing hand-crafted heuristics.

We present details of C-SQL’s semantics and execution below.

2.2.1 C-SQL semantics. A constraint optimization problem de-

scribes a set of variables and constraints that restrict the values that
can be assigned to each variable. C-SQL extends standard SQL to

support specifying constraint optimization problems. We present

Program ::= (ConstraintQuery | IntermediateView)*
ConstraintQuery ::=

CREATE CONSTRAINT <identifier> AS
(CHECK (Expr | ConstraintStatement)) | (MAXIMIZE Expr)
FROM Relation

IntermediateView ::= CREATE VIEW <identifier> AS Relation
ConstraintStatement ::= AllDifferent(Expr)

| AllEqual(Expr)
| Increasing(Expr)
| CapacityConstraint(Expr, NonVarExpr,

NonVarExpr, NonVarExpr)
-- Expressions involving VarColumn cannot have nullable Columns.
-- Expressions not derived from VarColumns are denoted as NonVarExpr.
Expr ::= Expr Op Expr

| UnOp (Expr)
| Expr IN (SubQuery)
| EXISTS (SubQuery)
| NonVarExpr IS NULL
| NonVarExpr IS NOT NULL
| Aggregate // only valid in group-by context
| Column
| Literal
| VarColumn

Op ::= AND | OR | = | != | > | >= | < | <= | + | - | * | / | %
UnOp ::= - | NOT
Aggregate::= ANY(Expr)

| ALL(Expr)
| SUM(Expr)
| COUNT(Expr)
| MIN(Expr)
| MAX(Expr)

Relation ::= SELECT Expr (, Expr)*
FROM (Table | Join)
[Where NonVarExpr]
[GroupBy NonVarExpr (, NonVarExpr)*]
[HAVING NonVarExpr]

Join ::= Relation JOIN Relation ON NonVarExpr

Figure 2: Simplified constraint query grammar of C-SQL. Each
constraint query takes a relation and produces constraints from
every row of that relation. DCM enforces the conjunction of all CHECK
constraints and maximizes the sum of all MAXIMIZE expressions.

the simplified grammar of C-SQL in Figure 2, and defer the formal

specification to Appendix A of the technical report [43].

The key addition to C-SQL is the introduction of variable columns
in tables (colored in red in Figure 2). Each cell in a variable column

is a single named variable for the constraint solver, while tradi-

tional columns in the table represent constants in the optimization

problems. Each base table can contain a combination of variable

columns and constant columns.

A C-SQL program comprises a set of constraint queries that pose
constraints over variable columns. A constraint query is a query

with a CHECK or MAXIMIZE clause, which represents hard and soft

constraints respectively, as well as a relation against which the

clause should apply. CHECK clauses require a boolean expression

and MAXIMIZE clauses accept a numeric expression. The final pro-

gram enforces the conjunction of all CHECK clauses and maximizes

the sum of all MAXIMIZE expressions. These expressions (Expr) rep-
resent symbolic formulae, where the constants in the formula are

instantiated from the rows of the relation.

Relations are constructed via the rules of regular SQL using

selects, joins, where clauses, group-bys and aggregates. Crucially,

symbolic formulae can only appear in CHECK and MAXIMIZE clauses.
All relation-related clauses, such as join criteria, where clauses,

having clauses and group-bys, cannot contain variable columns, as

doing so makes the size of the output relation indeterminate.

3

-- @VARIABLE_COLUMNS (node_name)
CREATE TABLE pods
(
pod_uid CHAR(14) NOT NULL PRIMARY KEY,
status VARCHAR(10) NOT NULL,
namespace VARCHAR(100) NOT NULL,
node_name VARCHAR(100),
... -- more columns
FOREIGN KEY (node_name) REFERENCES nodes(name)

);

Figure 3: Schema node_name column should be treated as a
set of decision variables. Other columns are input variables,
whose values are supplied by the database.

CREATE CONSTRAINT constraint_node_predicates AS
CHECK (node_name IN (SELECT node_name FROM valid_nodes)) FROM
FROM pods_to_assign;

CREATE CONSTRAINT constraint_node_preferences AS
MAXIMIZE (node_name IN (SELECT node_name FROM least_loaded))
FROM pods_to_assign;

Figure 4: Example hard and soft constraints (CHECK and MAX-
IMIZE clauses) that constraints or prefers that the variable
column node_name is assigned to nodes described in some
views (valid_nodes and least_loaded).

2.2.2 C-SQL evaluation. To evaluate a C-SQL program, the DCM

runtime translates the database into an optimization problem and

solves it with a constraint solver. Concretely, the runtime generates

code, which when invoked, queries all tables and views referenced

in the C-SQL program, encodes the data into an optimization prob-

lem, and passes the encoding to an off-the-shelf constraint solver.

The DCM compiler’s primary code generation target produces Java

code and interfaces with Google’s CP/SAT solver [7]. The result

of the evaluation is that the runtime assigns values to variable

columns according to the constraints specified in C-SQL.

A C-SQL processing pipeline is therefore evaluated in two parts.

The relation-side of the pipeline evaluates all the relations, typ-
ically tables and views stored in a database, against which con-

straints have been defined. The constraint-side of the pipeline

encodes a given set of relations into an optimization problem and

solves the problem using a constraint solver. The full pipeline is

illustrated in Figure 1.

2.2.3 C-SQL by example. We now explain how DCM’s C-SQL-

based programming model works, using the Kubernetes example.

Cluster state database. A DCM-powered Kubernetes scheduler

represents the cluster state in a relational database. This database

is an embedded, in-memory database that is merely a cache of

the persistent cluster state exposed by Kubernetes’ API. Exam-

ple information represented in this state includes the set of pods,

nodes, volumes, replica sets, and myriad metadata associated with

all these objects. Importantly, by annotating some columns as vari-
able columns, the schema now serves as a declarative specification

of the cluster state. For Kubernetes schedulers, an example variable

columnwould be the node_name column in the pods table (Figure 3),
which represents the variables in a scheduling decision. For discrete

variables such as the node_name column, the variable domain can

also be specified in the schema via a foreign key constraint.

Operation Description
model = Model.compile(CSQLProgram) Invoke DCM compiler to generate a solving strategy

from the C-SQL program

model.solve(conn, timeout) Pull data from JDBC connection, solve constraints and

return solution as tables

Figure 5: DCM’s programming model.

Policies as constraints. Policies are expressed in DCM as con-

straint queries against relations using C-SQL. Figure 4 shows ex-

ample hard and soft constraints specified via a CHECK or MAXIMIZE
clause against a table (‘pods_to_assign‘). DCM users express poli-

cies using a range of standard SQL features, including joins, group

bys, aggregates, sub-queries, and correlated sub-queries.

Compiler and runtime processing pipeline. Figure 5 shows

DCM’s programming model. Model.compile() takes in a C-SQL

program, generates code, compiles and then loads the code into

memory, wrapped as a Model object. At runtime, Model.solve()
fetches the required input data from the database, solves the opti-

mization problem, and returns a solution as the same tables, but

with values assigned to variable columns. Model.solve() is in-

voked whenever a new cluster management decision needs to be

made (e.g., schedule all pods that are pending assignment).

3 CHALLENGES WITH SCALING THE C-SQL
PROCESSING PIPELINE

Cluster management logic is highly incremental in nature; the clus-

ter state database changes often but most changes are small relative

to the size of the overall database. For example, even in a datacen-

ter with O(100K) pods, a typical scheduling decision might only

involve O(100) pods at a time. These decisions often need to be

made at sub-second timescales (e.g. , at a cost of a few milliseconds

of scheduling latency per pod).

The frequent interaction with the cluster state database in DCM’s

C-SQL processing pipeline and the incremental nature of cluster

management lead to the following design goal:

Design goal. Keep the amount of work done in the pipeline propor-
tional to the size of the change, and not the size of the database.

In this section, we describe the opportunities and challenges

of achieving this design goal in the relation-evaluation (§3.1) and

constraint-evaluation (§3.2) parts of the C-SQL processing pipeline.

We then given an overview of our proposed optimizations, which

can be thought of as query optimization for C-SQL programs (§3.3).

3.1 Relation-side challenge: simulating
materialized views

We first discuss the challenges with efficient relation evaluation.

As explained in §2.2, the cluster state database hosts tables and

views representing all the inputs required to make cluster man-

agement decisions. It is non-trivial to compute these views effi-

ciently at scale, since some involve joining of large base relations.

For example, computing a view to filter out machines that do not

have any spare capacity requires a join between four tables, rep-

resenting the set of all pods, their resource demands, the set of all

nodes and the node resource capacities. Given views rarely change

significantly between successive invocations of model.solve(),
recomputing from scratch each time is highly inefficient. Top-down

query evaluation as with most databases is therefore a poor fit for

4

Nodes

Pods

Pod Labels

Match
Expressions

Pending
Pods View

Fixed
Pods View

Pod Affinity
Match Expressions

⋈,⋃
σ, 𝜋

σ, 𝜋

σ, 𝜋

σ, 𝜋

Matching
Pods View

Inter Pod
Affinity

Matches View
⋈

σ

σ, 𝜋

σ, 𝜋

σ

Legend
Baseline
split-view

Re-used
relation

Figure 6: Simplified computation graph for the “inter-pod
anti-affinity matches" view. Solid lines indicate input/output
relationships, dashed lines indicate foreign key relationships.
Without DDlog, many views would be split. The relations
in gray are re-used across several view calculations – with
DDlog, we re-use the effort to update these views.

such workloads. To improve efficiency, DCM users had to manu-

ally simulate materialized views in various ways. We describe two

common approaches below.

Split views. The first recurring pattern was to split the database

schema into tables or views representing changing and fixed por-

tions of the states. For example, we would maintain separate tables

for the placed pods and yet-to-be-placed pods, as opposed to a

single table that has to be scanned for the pending pods each time.

Views that use pods as input would then be written to specifically

refer to placed pods and/or pending pods, which further bifurcates

the schema. Worse, it becomes the DCM user’s responsibility to

maintain these separate views as the cluster state evolves , which

counteracts our goals of having a declarative programming model.

As an example of this challenge, consider the inter pod anti-

affinity matches view in Figure 6. This is a key view in the Ku-

bernetes scheduler we built using DCM, which shows groups of

pods that are mutually anti-affine, and are not to be placed on the

same nodes. Only a small subset of the final view changes when-

ever new pods arrive (or a few existing pods leave). However, to

keep performance tractable, several base tables and views in the

dataflow, including pods, pod labels, match expressions, as well

as intermediate views like matching pods had to be split accord-

ing to the pattern described above. Many tables and intermediate

views in Figure 6 (the gray boxes) are also consumed by multiple

downstream relations that relate to other policies. For example,

the match expressions and matching pods relations are used in

several scheduling policies that are configured using Kubernetes’

label-based matching DSL. Without result re-use and caching, these

relations would be evaluated multiple times per scheduling deci-

sion, which further worsens performance. The only way to avoid

redundant view evaluations is to maintain base tables that cache

results via imperative code; again, a burden on the DCM user.

Figure 7 shows what performance would be without split views.

The plot shows the cdf of latency for scheduling decisions in a

setting dominated by the inter pod anti-affinity matches view

shown in Figure 6. Even for small clusters of 50-100 nodes, the time

0 2 4 6 8
Time (s)

0

0.25

0.5

0.75

1

EC
DF

50 nodes

0 2 4 6 8
Time (s)

100 nodes

Database Latency Everything else

Figure 7: Without split views or an incremental engine, the
latency for each scheduling decision is bottlenecked by the
database’ view evaluation latency, even in small clusters.

per scheduling decision is dominated by the database’ latency to

evaluate all views; the database takes several seconds whereas the

rest of the pipeline contributes under 10-20 milliseconds in total.

Aggregates and triggers. The second pattern was to compute ex-

pensive aggregates by simulating materialized views with triggers,

which again requires user code. For example, consider the view

that maintains the spare capacity per node mentioned above: on

every update to a “pods” table that assigned a pod to a node, we set

up a trigger that in turn updates that node’s spare capacity. This

requires the developer to maintain even more imperative code that

needs to be evolved in tandem with the declarative specification of

the schema and constraints via C-SQL.

To see the maintenance effort required, we describe our own

experience extending a C-SQL specification to support custom re-

sources in Kubernetes. Custom resources are specified by operators

at runtime, typically used for configuring special hardware like

GPUs or FPGAs. Previously, we had a fixed set of resource types

and a column each for demands and capacities for CPU, memory,

disk and other known resource types. However, with custom re-

sources, the set of resource types itself is dynamic which prevents

us from embedding resource type into the schema. Therefore, we

need to split off information about resource demands and capac-

ities from the pods and nodes base tables into additional tables

called pod_resource_demands and node_resource_capacities,

each of which had a column each for resource types and resource

demands/capacities. In doing so, the spare capacity view computa-

tion becomes a four-way join instead of the original two-way join

between the pods and nodes base tables. The schema change also

immediately invalidates the previous trigger written using H2’s

imperative and non-portable Java APIs.

3.2 Constraint-side challenge: large
optimization problem sizes

We now move onto challenges with efficient constraint evaluation.

Once DCM pulls in the input data it needs from the database, it

encodes the data into an optimization problem to hand to the con-

straint solver. An optimization problem is represented as a graph

of variables linked to one another by constraints.

As cluster sizes increase, constraint solvers become the main

bottleneck for DCM’s scalability. This is expected as constraint

solvers such as Google’s CP-SAT do not scale well to large problem

sizes. To maintain good performance, it is therefore crucial to keep

5

the size of the optimization problem small. The solver attempts to

simplify the optimization problem prior to finding solutions by ap-

plying complex rules during a “presolve” phase, including removing

redundant variables and constraints and tightening variable bounds.

We have noticed in our prior work [50] that this presolve phase is

the primary contributor to increased latency at larger cluster sizes.

The fact that cluster management problems are highly incremen-

tal also leads to opportunities to improve the solver’s efficiency

Since changes are often much smaller than the size of the database,

only a subset of cluster states should be affected by these changes.

For example, consider placing a pod with well-defined affinity con-

straints in a 10K node cluster. If only 10 nodes can satisfy these

affinity constraints, it is highly inefficient to burden the solver with

reasoning about the remaining 9990 nodes in the optimization prob-

lem. Dealing with all nodes in the cluster requires larger tables to

flow through the C-SQL pipeline (Figure 1), which is more expen-

sive to encode and to solve. Ideally, we would filter out these 9990

nodes earlier in processing pipeline. However, this type of filtering

is non-trivial when a mix of complex constraints are involved, given

that each constraint is potentially a rich SQL-like query.

3.3 Overview of solutions
We introduce two query optimization-inspired techniques to im-

prove the execution efficiency of C-SQL programs: automatic in-

cremental view maintenance for the efficient relation evaluation

(§4) and feasibility-preserving predicate pushdown (FP-pushdown)

for efficient constraint evaluation (§5).

First, instead of requiring users to simulate incremental view

maintenance (IVM) through imperative code, we refactor the data-

base component of DCM to use an incremental engine that can

automatically incrementalize the computation. We use Differen-

tial Datalog (DDlog) [12, 45] as the IVM engine. To bridge the

differences in semantics and runtime between SQL and DDlog, we

develop a SQL-to-DDlog compiler and a SQL-frontend for DDlog.

Second, we automatically simplify optimization problem gen-

erated from C-SQL programs by pushing down predicates from

constraints to relations. Recall that in a C-SQL program, each con-

straint is associated with a relation that defines the context; the

more we can restrict the relation, the smaller the encoded opti-

mization problem will be. To do so, we statically analyze constraint

queries and extract filtering conditions from the constraint side

that can be moved to the relation side. The filtering conditions are

specified as additional views on the base relation, which can also

benefit from the incremental evaluation enabled by the IVM engine.

In the next sections, we describe both building blocks in detail.

4 RELATION EVALUATION VIA AUTOMATIC
INCREMENTAL VIEWMAINTENANCE

As discussed in § 3.1, incremental view maintenance is key to scal-

ing the relation evaluation component of the C-SQL pipeline. While

IVM has been a long and active research area, few robust, battle-

tested, and well-maintained IVM engines exist. We furthermore

needed one that was in-memory and could be embedded in a pro-

gram as described in § 2.2. For these reasons, we decided to build

upon Differential Datalog (DDlog), given that it is developed in-

house and already used in production.

DDlog [12, 45] is a programming language for expressing incre-

mental computations. DDlog’s core incremental engine is based on

Differential Dataflow [10, 37] and Timely Dataflow [40]. DDlog pro-

grams are written in a datalog-based language, but with extensions

for rich types, arithmetic, strings, functions and procedural exten-

sions with support for loops and variables, among other things.

A DDlog program instance represents a set of input relations and

queries on those relations that result in output relations. DDlog pro-

grams operate on changes to inputs relations; the program accepts

batches of changes (inserts, deletes, updates) to input relations and

outputs a corresponding batch of changes to output relations.

A DDlog program is compiled down to a rust program that im-

plements the dataflow expressed using Differential Dataflow [10].

The generated rust program can then be compiled, linked to and

interacted with a range of programming languages, like C, C++,

Rust, Java and Go. These client bindings allow programs to instan-

tiate DDlog programs, update input relations and receive changes

to output relations. All states in a DDlog program are maintained

in memory, which makes it a good fit for representing a scheduler’s

view of cluster state as with DCM.

Integrating DDlog was challenging due to differences in seman-

tics and runtime between SQL and DDlog, which we describe below.

4.1 Bridging SQL and DDlog semantics
SQL and DDlog have important semantic differences that make

it non-trivial to translate SQL schemas and views into the corre-

sponding DDlog programs. For example, DDlog operates on sets,

whereas SQL operates on bags. SQL also uses ternary logic when

evaluating predicates (𝑛𝑢𝑙𝑙, 𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒), which have implications

on whether tuples from different relations being joined appear in

output relations. DDlog can generate incremental view mainte-

nance plans for any query, but some operators do not offer efficient

incremental evaluation. For example, some aggregates in SQL do

not have efficient incremental implementations in space/time (e.g.,

array_agg(), where the ordinals matter).

We took on a significant undertaking to build a SQL-to-DDlog

compiler in roughly 7K lines of code and 4K lines of tests in Java,

using the Presto [13] parser as its frontend. The compiler supports

standard SQL: select, project, join, windowing, groupby, aggrega-

tions, set operations, and most SQL expressions using SQL’s ternary

logic semantics. Due to the challenges described above, the compiler

is only able to support a subset of SQL. For example, all SELECT
queries need to be SELECT DISTINCT queries, to preserve set se-

mantics. Neither the SQL-to-DDlog compiler nor DDlog optimizes

query plans; we therefore organize views such that filtering hap-

pens earlier in the dataflow, whereas aggregates that are difficult

to incrementalize appear later in the pipeline on smaller inputs.

This structure also allows us to easily handle some unsupported

operations (like LIMIT and ORDER BY) outside DDLog in user code,

between the database side and DCM.

4.2 Bridging different runtime interfaces
DCM’s programmingmodel is based on SQL and interacts with stan-

dard interfaces like JDBC that are designed for ad-hoc queries. In a

typical relational database, the schema can be freely manipulated at

runtime via DDL queries. DDlog, however, only supports standing

6

queries, which means all tables have to be created at initialization

and then compiled and dynamically loaded at runtime.

To bridge this gap, we implemented a SQL-frontend to DDlog,

using frameworks like JOOQ [8] that DCM already uses heavily. Our

frontend allows code to interact with a DDlog program over a JDBC

interface as if it were an embedded database without persistence.

The frontend requires the entire schema (DDL) to be specified

upfront at initialization. It then translates the SQL schema to a

corresponding DDlog program using the SQL-to-DDlog compiler,

invokes the DDlog compilation toolchain, and loads the resulting

DDlog program into memory.

As a result, our existing corpus of DCM-based projects could use

DDlog and its incremental computation capabilities with minimal

disruption. The JDBC code worked as it used to before, whereas

some of the SQL schema and views had to be tweaked to support

the slight change in SQL dialect (e.g., the requirement to use SELECT
DISTINCT as mentioned above). We have open sourced the SQL-

frontend and the SQL-to-DDlog compiler for future users who are

interested in experimenting with DDlog [14].

4.3 Simplified programming model
With the compiler and the runtime in place, our C-SQL programs

significantly simplified. Avoiding split views (§3.1) was a significant

quality of life improvement, both in terms of keeping views simple

and focused on their intent, and in terms of the performance en-

gineering needed. For example, previously, when a single logical

view was decomposed into several views, it was difficult to identify

which queries were performance bottlenecks. It was also tedious to

rewrite queries as requirements evolved. With incremental view

maintenance however, we were able to write straightforward SQL

that stayed true to our design goal of declarative programming: the

developer should focus on the what, not the how.
We explain this simplification by revisiting the inter pod anti-

affinity matches view in Figure 6. Without DDlog, we would have

to split all input views into fixed and changing parts, and perform

the resulting bookkeeping in imperative user code, which also

impairs maintainability. In addition, all the gray views in Figure 6

would be either evaluated multiple times per scheduling decision,

or simulated manually using triggers. With DDlog, all base tables

and views are incrementally updated and materialized, eliminating

the need for imperative user code for split views and triggers.

In terms of development effort, for the view in Figure 6, our

earlier version had to split off and specialize the matching_pods
logic for each policy (like the inter-pod anti affinity matches view).

For the anti-affinity logic, the split viewwas carefully scoped to only

consider matching rules specified for anti-affinity requirements,

and was only partially incremental with respect to the pods table.
And yet, this bloated the overall anti-affinity code to about 70

lines of SQL. Fully incrementalizing the computation by hand for

all the views involved would have compounded the code size for

each additional split view and worsened maintainability. In stark

contrast, with DDlog, we wrote matching_pods once, in a reusable

and policy-agnostic way, making it possible to write the anti-affinity

view with only 20 lines of SQL. We highlight these differences with

detailed code examples in Appendix B of the technical report [43].

5 CONSTRAINT EVALUATION VIA
FEASIBILITY-PRESERVING PREDICATE
PUSHDOWN

In this section, we present the design and implementation of the

FP-pushdown optimization, which improves the efficiency of con-

straint evaluation in the C-SQL pipeline by automatically reducing

the size of the optimization problem passed to the solvers. This

optimization is directly inspired by the predicate pushdown tech-

nique, which moves filtering operators close to data sources to

remove irrelevant records early in the processing. Similarly, our

idea is to push down predicates from the constraint side of a C-SQL

program to the relation side, therefore filtering out irrelevant inputs

to the constraint solver early in the pipeline. The net effect of the

optimization is similar to the solver’s presolve phase (explained in

§ 3.2), during which variable domains are tightened.

FP-pushdown is different from classic query optimization in that

it pushes down filtering conditions from constraint queries (CHECK
and MAXIMIZE clauses) to the relations against which the constraints
apply. This is done by inferring domain restricting conditions from

constraints and expressing them as additional filtering predicates on

the relations. Since there is less information about variable domains

during the problem definition phase (at initialization, based on the

schema alone) compared to the presolve phase (which uses live

data at runtime), we statically analyze the constraints to infer such

domain restricting conditions. Once these conditions are pushed to

the relations, we can leverage classic query optimization techniques,

including incremental computation enabled by DDlog, to efficiently

execute the domain restricting queries at runtime.

5.1 Problem setup: domain restricting views
Many cluster management problems involve combinatorial opti-

mization tasks (e.g., assigning application to machines), where the

solution set is discrete. We therefore focus the discussion of FP-

pushdown on discrete decision variables, whose domain can be

defined via foreign key constraints as shown in Figure 3.

Suppose that 𝑣𝑎𝑟 is a variable column in the base table. and

that 𝑣𝑎𝑟 is a foreign key that references column 𝑢𝑖𝑑 in the domain

table 𝐷 . Our goal is to automatically generate one or more views 𝑅,

hereinafter referred to as domain restricting views, that tighten the

domain of 𝑣𝑎𝑟 without affecting the feasibility of the optimization

problem. Each view 𝑅 has the same schema as the domain table 𝐷 ,

but only contains a subset of its records. The views are computed

by identifying domain restricting conditions in constraint queries.

Hard and soft constraints may contain a domain restricting con-

dition of the form (var op Q). Here,𝑄 is a query or an expression

that determines the variable domain, and 𝑜𝑝 is a SQL operator (e.g.,

IN, NOT IN, =, ≠). For each 𝑄 , we compute a domain restricting

query 𝑄 ′
which specifies a variable domain inferred from 𝑄 . 𝑄 ′

might be a superset of 𝑄 that omits predicates; 𝑄 ′
could also be

computed as the top K entries from 𝑄 , using a custom sort order

on 𝑄 that encodes domain knowledge. Overall, the smaller the size

of 𝑄 ′
, the more we can tighten the domain of 𝑣𝑎𝑟 based on 𝑄 .

Given a set of domain restricting queries 𝑄 ′
s, a domain restrict-

ing view 𝑅 is computed as the union/difference of 𝑄 ′
s, depending

on whether the 𝑄 ′
defines parts of the domain to include or to

exclude. 𝑅 now represents a tightened domain of 𝑣𝑎𝑟 that we can

7

CREATE CONSTRAINT exclusion_constraint AS
CHECK ((NonVarExpr) OR (var NOT IN Qc))
FROM Relation

CREATE CONSTRAINT exclusion_rewrite_constraint AS
CHECK (var NOT IN Qc)
FROM Relation WHERE NonVarExpr == false

Figure 8: Example of an exclusion condition that can not be
safely pushed into the relations due to a NonVarExpr in the
OR predicate of the constraint query.

incorporate into the DCM model definition. Let tables/views being

accessed in𝑄 be 𝑅𝐸𝐿(𝑄). For each table/view𝑇 in 𝑅𝐸𝐿(𝑄), we can
compute an augmented table 𝑇 ′ ≡ (𝑇 ⊲⊳𝑇 .𝑢𝑖𝑑=𝑅.𝑢𝑖𝑑 𝑅). At runtime,

the DCM model reads from 𝑇 ′
instead of 𝑇 .

The above problem formulation generates a single domain re-

stricting view 𝑅 for the entire variable column 𝑣𝑎𝑟 , which we refer

to as column-level views. Alternatively, we can treat each cell in the

variable column as an independent decision variable with poten-

tially different domains and generate a separate domain restricting

view for each cell. The column-level view is then the union of the

domains of variables in each cell. For the purpose of reducing opti-

mization problem sizes, the two options are comparable, since the

number of variables in the optimization problem is determined by

the size of the unioned domains. Therefore, the discussions in this

section assume column-level views and we discuss extensions of

our technique to generating multiple domain restricting views per

variable column in Appendix C of the technical report [43].

5.2 Inferring domain restricting queries (DRQ)
Domain restricting queries (DRQs) are SQL queries that define

filtering conditions relevant to the variable’s domain. We consider

three types of DRQs:

(1) 𝑄𝑖𝑛𝑐 : DRQs from hard constraints defining parts of the

domain that contain feasible solutions.

(2) 𝑄𝑒𝑥𝑐 : DRQs from hard constraints defining parts of the

domain that do not contain feasible solutions.

(3) 𝑄𝑠 : DRQs based on domain knowledge defining parts of

the domain that are likely to contain feasible solutions.

Given a set of DRQs, we can compute a single domain restricting

view 𝑅 for the variable column via 𝑅 ≡ 𝑄𝑖𝑛𝑐 ∪𝑄𝑠 \𝑄𝑒𝑥𝑐 .

Hard constraints. Predicates and subqueries that only involve con-
stants are a common type of domain restricting conditions found in

hard constraints. For example, the constraint_node_predicates
in Figure 4 is a hard constraint that contains a domain restricting

condition of the form (var IN/NOT IN Qc), where𝑄𝑐 is a subquery

that does not involve variables. Because these conditions do not

depend on values of other variables, we can extract and precompute

such predicates and subqueries directly as DRQs.

Inclusion DRQs can be pushed down to relations regardless of

whether there are additional predicates in the constraint query,

since adding additional values to the domain does not affect the

correctness of the solution. In comparison, exclusion DRQs (𝑄𝑒𝑥𝑐 s)

can not be pushed down safely if there exist any OR predicates in

the same constraint that involve non-variable columns. For example,

consider the exclusion_constraint in Figure 8. This constraint

(SELECT DISTINCT name,resource,capacity
FROM spare_capacity_per_node AS t1
JOIN pod_node_selector_matches AS t2
ON ARRAY_CONTAINS(t2.node_matches, t1.name))
UNION
(SELECT DISTINCT name, resource,capacity
FROM spare_capacity_per_node AS t1
JOIN pods_that_tolerate_node_taints AS t2
ON t1.name = t2.node_name)

Figure 9: Example inclusion domain restricting queries in
which spare_capacity_per_node is the domain table.

can be rearranged as exclusion_rewrite_constraint by moving

the non-variable expression into the relation. In the rewritten form,

it is clear that the constraint (var NOT IN Qc) only applies to a

subset of the relation that satisfies the where clause. Therefore,

𝑄𝑐 can not be excluded from the shared domain of all variables.

Appendix C of the extended report [43] discusses how to deal with

such constraints that only apply to a subset of the relations.

Top k with domain knowledge. In addition to explicitly defined

hard constraints, users often apply heuristics and implicit prefer-

ences to cluster management problems based on domain knowledge.

We encode such knowledge via a custom sort order on the domain

table 𝐷 . The sort order implies that, all else equal, records that are

ranked high are more likely to contain feasible solutions compared

to ones that are ranked low. For example, one common heuristic for

placing pods is to prioritize nodes with more available resources.

This can be expressed via a sort order based on the spare capacity

column in the nodes table. Another heuristic could be to prioritize

nodes without any anti-affinity constraints or topology constraints

to those that have many. This can be encoded into the custom sort

order by “discounting" the available resources of a node based on

constraints. For example, we decrease the spare capacity of a node

by a factor of 0 < 𝛾 < 1 each time the node appears in such con-

straints. Finally, the domain restricted query (𝑄𝑠) is computed by

taking the top 𝑘 entries from the sorted table.

Unlike hard constraints which do not affect correctness, over-

restricting the variable domain with small values of 𝑘 could incor-

rectly lead to infeasible solutions. Unfortunately, the solver can not

distinguish whether infeasible solutions are because 𝑘 is set too

small or because the original optimization problem is indeed infea-

sible. Therefore, in case of infeasible solutions, we simply fall back

to the default DCM solver logic which considers the entire variable

domain. This avoids the worst-case scenario in which the solver

repeatedly evaluates the feasibility of the optimization problem

with increasing values of 𝑘s, only to find the problem itself to be

infeasible at the very end. By default, we set 𝑘 to be 𝛼 times the size

of the variable column. Empirically, we observed that setting 𝛼 = 2

effectively reduces the problem size without affecting correctness

in the workloads that we have experimented with (§6.4).

5.3 Efficient Implementation of DRQs
Finally, we describe the implementation details of extracting

DRQs from constraints and using DDlog to enforce them.

To identify constraints that affect the domain of a variable col-

umn 𝑣𝑎𝑟 , we implement an additional pass in DCM’s compiler that

statically inspects the schema and constraints, and applies the rules

8

0 500 1000

4

8

12

#p
od

s (
Th

ou
sa

nd
s) DCM (10x)

0 500 1000
Time (sec)

 +ivm (10x)

0 500 1000

 +ivm (40x)
inserted scheduled

Figure 10: Insert and scheduling rate in a 500-node cluster
with and without IVM (DDlog). The trace’s arrival rates are
sped up by 10×/40×.

in §5.2 to extract DRQs. After the schema is analyzed, we then

construct for each variable column 𝑣𝑎𝑟 , a single domain restricting

view 𝑅 = 𝑄𝑖𝑛𝑐 ∪𝑄𝑠 \𝑄𝑒𝑥𝑐 .

For each table or view 𝑇 referenced by a constraint, the com-

piler outputs DDL queries for the augmented tables 𝑇 ′
. 𝑇 ′

only

contains rows from 𝑇 that match the domain specified in 𝑅 (§5.1).

Figure 9 shows an example of an inclusion DRQ inferred from our

test workloads, which extracted filtering conditions from two hard

constraints. The DRQs are expressed as joins since DDlog does not

currently support subqueries. We include a detailed analyses of the

contribution of different types of DRQs in § 6.4.

The initially supplied schema along with the generated domain

restricting views and augmented tables give us the augmented

schema. This augmented schema is provided to DDlog at initializa-

tion time. In doing so, the FP-pushdown capability is transparent

to our Kubernetes scheduler: the core user code that translates the

decisions made by the DCM model back to the Kubernetes API is

oblivious to FP-pushdown being used. Using DDlog, the additional

views imposed by the augmented schema are also evaluated incre-

mentally on every modification to the cluster state. We evaluate

the end-to-end implications of the scheme in §6.3.

6 PERFORMANCE EVALUATION
Our evaluation seeks to answer the following questions:

• How does IVM improve relation evaluation in DCM (§6.2)?

• How does IVM and FP-pushdown combine to help DCM

scale to 50K node sized clusters (§6.3)?

• Can FP-pushdown effectively reduce optimization problem

sizes and offer robust performances (§6.4)?

Overall, we find that IVM is essential to both scheduling latency

and throughput, allowing the system to efficiently compute and

query summaries over the entire cluster state. Furthermore, com-

bining IVM and FP-pushdown decreases scheduling latencies by

two to three orders of magnitude, thereby enabling a DCM-based

scheduler to scale to a cluster of 50K nodes. Lastly, FP-pushdown re-

duces optimization problem sizes by over 300× in the 50K node case

and its performance is stable across a range of top-k parameters.

6.1 Experiment Setup
We model the evaluation after the original DCM paper to enable a

direct comparison [50].

100 101 102 103 104

Database Latency (ms)
0.0
0.2
0.4
0.6
0.8
1.0

EC
DF

 DCM (10x)
 +ivm (10x)
 +ivm (40x)

Figure 11: Distribution of database latency (fetch and update
records) before and after incremental viewmaintenance. The
trace’s arrival rates are sped up by 10×/40×.

Environment. Given the focus on scalability, we use DCM’s bench-

marking harness to evaluate our Kubernetes scheduler in a setting

where the Kubernetes API is mocked (i.e., the nodes themselves are

simulated). We have tested with simulated cluster sizes of 500, 5000

and 50000 nodes. We report results from 5 runs for each configu-

ration. The experiments were conducted on a server with 8 Intel

Xeon Platinum 8259CL CPUs and 32GB memory.

Workload. We use the 2019 Azure public traces [38] to generate

workloads. The workload comprises groups of pods that are cre-

ated with CPU and memory resource reservations. We replay three

variants of the workload, each with a different fraction 𝐹 of replica

groups configured with inter-pod anti-affinities and node affinities

within the group. Both policy types are commonly used in practice

— configuring inter pod anti-affinities is a recommended Kubernetes

best practice, for example [50] — and a challenging constraint to

solve as it involves reasoning across groups of pods. Node affini-

ties are used to match pods to nodes that have workload-specific

requirements such as custom hardware or to run workloads in

pre-defined availability zones. The workload also uses a variety of

hard and soft constraints found in Kubernetes scheduler, including

capacity constraints and load balancing requirements.

Baseline. Our prior work has already shown that DCM outper-

forms the default Kubernetes scheduler by 2× in scalability [50].

Our experiments therefore focus on comparing against DCM di-

rectly. Specifically, we evaluate the following variants of DCM:

• DCM: The original implementation of DCM as described

in prior work [50].

• +ivm: DCM with DDlog as the backend for incremental

view maintenance.

• +ivm+pushdown: DCM with the DDlog backend and FP-

pushdown optimization.

6.2 Performance with IVM
We first compare DCM with and without IVM in a 500-node setting,

with both systems using the same cluster state schema. We do not

consider simulating materialized views, given that this is not a

maintainable trajectory for our codebase (§3.1).

Figure 10 reports the insert and scheduling throughput of DCM

before and after adoptingDDlog as the IVM backend. The number in

the parenthesis indicates the factor by which the arrival rate of pods

is scaled up.We find that while DCMwithout IVM can quickly insert

new records into the database in response to the newly created

pods (red dotted line), its scheduling rate (blue solid line) struggles

9

500 5000 50000
1

10

102

103

104

La
te

nc
y

(m
s)

F=0%

500 5000 50000
nodes

F=50%

500 5000 50000

F=100%

+ivm +ivm+pushdown

Figure 12: Scheduling latency for a batch of pods (max 50) at 10× trace speed up (log-scale) and different cluster sizes.

0.00
0.25
0.50
0.75
1.00

+ivm

N=500

+ivm+pushdown

0.00
0.25
0.50
0.75
1.00

EC
DF

N=5000

1 10 102 103 104

Latency (ms)
0.00
0.25
0.50
0.75
1.00

1 10 102 103 104

Latency (ms)

N=50000

database modelCreation presolve orToolsTotal

Figure 13: Scheduling latency breakdown per batch of pods (max 50). Breakdown includes time spent fetching the latest data
from the database (database), creating an optimization model from generated code (modelCreation), the presolve phase in
or-tools (presolve), and the total solve time in or-tools (orToolsTotal) at 𝐹 = 100% and different cluster sizes.

to keep up. This is because, in each scheduling iteration, DCM’s

queries to fetch the latest states are bottlenecked by top-down

query evaluation, which performs redundant work even when only

small changes happen to the cluster state between iterations. This

cluster state database bottleneck is apparent in Figure 11, which

reports the distribution of database latency, or the total time to

fetch and update records from the database. Concretely, the 95

percentile database latency at 10× trace speed up decreases from

over 5 seconds without IVM to 1.7ms with IVM, which is a near

3000× speed up.

In comparision, with DDlog, scheduling throughput can keep

up with the request arrival rate. Note that with IVM, the database

latencies remain tractable (95 percentile latency around 3.5ms) even

at 40× and higher trace speedups. Without additional optimizations

like FP-pushdown, factors like the solver’s performance become a

bottleneck at a roughly 40x speedup of the overall trace (Figure 10).

Figure 13 shows the relative contribution of the database to the

overall scheduling latency compared to other steps with IVM. In the

500 node case, the p95 latency of fetching all the required cluster

states from the database is under 2ms. The low database latency

shows that cluster state management via IVM using DDlog is not a

bottleneck even with high arrival rates.

6.3 Performance with IVM and FP-pushdown
Given IVM is indispensable for DCM’s performance, we conduct

all remaining experiments using the DDlog backend.

Impact of FP-pushdown optimization. Figure 12 reports the

scheduling latencies for DCM with and without the FP-pushdown

optimization. The presented latencies are for a batch of pods, as the

scheduler batches up to 50 decisions at a time.

As the cluster sizes increase, without FP-pushdown, schedul-

ing latency increases significantly from a median of hundreds of

milliseconds to a few seconds. In comparison, latency with FP-

pushdown grows more slowly, staying within the hundreds of

milliseconds median latency even at 50K node scale. This is be-

cause, with FP-pushdown, the size of the optimization problem is

no longer a function of the size of the entire cluster, but a function

of the size of changes (i.e., the number of new pods that need to be

placed in the system and the nodes being updated as a result). DCM

with FP-pushdown consistently improves performance over rea-

soning about all nodes, where even the p95 latency with 50K nodes

is faster than the 5th percentile latency without FP-pushdown.

With 𝐹 = 0%, FP-pushdown only reasons about the top-K nodes

in the cluster, making performance constant relative to cluster sizes,

given that the batch size of pods per decision is a constant capped

10

nodes = 500 # nodes = 5000 # nodes = 50000

F=0% F=50% F=100% F=0% F=50% F=100% F=0% F=50% F=100%

DCM 2000.00 2000.00 2000.00 20000.00 20000.00 20000.00 200000.00 200000.00 200000.00

+ FP-pushdown 599.90 1451.01 1693.32 596.92 2720.88 4640.93 583.86 2761.16 5573.45

𝑄𝑖𝑛𝑐 0 1426.97 1678.65 0 2626.61 4601.21 0 2360.24 5308.06

𝑄𝑒𝑥𝑐 0 .0037 0 0 .0092 .0061 0 .0060 .0081

𝑄𝑠 599.90 24.05 14.67 596.92 94.27 39.71 583.86 400.92 265.39

Table 1: The top half of the table shows the average number of rows in variable columns with and without the FP-pushdown
optimization; the bottom half of the table shows the detailed breakdown of the row counts in the variable column contributed
from inclusion (𝑄𝑖𝑛𝑐), exclusion (𝑄𝑒𝑥𝑐) and topk (𝑄𝑠) DRQs.

1 2 4 8 16 321

10

102

103

La
te

nc
y

(m
s)

5000 nodes
F=0% F=50% F=100%

Figure 14: Impact of increasing 𝑘 to the overall batch schedul-
ing latency for 5000 nodes (𝛼 = 𝑘/#𝑁𝑒𝑤𝑃𝑜𝑑𝑠). Performance is
stable for low values of 𝛼 . At higher values of 𝛼 , performance
approaches the baseline version that considers all nodes per
scheduling decision, thereby increasing scheduling latencies.

at 50. With 𝐹 = 50% and 𝐹 = 100%, given the complex mix of

constraints configured, we find that scheduling performance varies

with the cluster size. With node affinities, a scheduling problem

sometimes becomes straightforwardwith a small search spacewhen

the number of pods per decision is small. At the higher percentiles,

we see larger problem sizes in cases with larger batches of pods per

decision, each with a different group of nodes it is affine to.

Finally, as was our design goal, FP-pushdown did not affect the

feasibility of the solver in any of the above test cases.

Latency breakdown. Figure 13 reports the detailed breakdown

of scheduling latency at 𝐹 = 100% and cluster sizes of 500, 5000

and 50000 nodes with and without the FP-pushdown optimiza-

tion. Specifically, the breakdown includes the time to fetch data

from the database (database), to encode the fetched data into an

optimization problem (modelCreation), and the total time spent

in the or-tools solver (orToolsTotal). We also highlight the time

spent in the presolve phase in or-tools (presolve), where the solver
simplifies the optimization problem using complex heuristics.

In baseline DCM, as the cluster size increases, the gap between

the relative contributions of the database and the constraint solver

to the overall latency widens. Specifically, the p95 latency of the

database increases from 2.0ms at 500 nodes to 87ms at 50000 nodes,

the p95 latency of orToolsTotal increases from 333ms to 706ms,

and the p95 latency of modelCreation increases from 68ms to

7056ms. As explained earlier, constraint solvers are notoriously

hard to scale to large problem sizes, which makes the solver increas-

ingly a bottleneck at larger cluster sizes. Given the larger number of

records involved, all phases in the pipeline, from database fetches,

to model creation, presolving and the overall solution search expe-

rience significant latency increases. Model creation in particular

experiences the worst latency degradation of all the phases, given

that that phase involves several passes over the fetched input data

to produce the optimization problem encoding.

In comparison, with FP-pushdown, the scheduling latency is

relatively unaffected by the increasing cluster sizes. This is because

we efficiently and automatically scope the problem so that the

fetched data in each placement decision remains small even at large

cluster sizes. This in turn leads to all subsequent phases involving

the DCM runtime and solver use to speed up as well.

6.4 Detailed Analysis of FP-pushdown

Effect on optimization problem size. Table 1 reports the average
domain size of key decision variables in the optimization problem.

Recall that domain size directly affects the search space for the

optimization problem. In our case, the decision variables’ domain

size is a function of the number of nodes considered per scheduling

decision. Without FP-pushdown, DCM reasons over decision vari-

ables that are proportional to the size of the cluster regardless of the

value of 𝐹 . With FP-pushdown, however, DCM reduces the number

of decision variables to 30−84% of the original in a 500-node cluster,

2.9 − 23% in a 5000-node cluster and 0.29 − 2.7% in a 50000-node

cluster. Table 1 also breaks down the contribution from inclusion

(𝑄𝑖𝑛𝑐), exclusion (𝑄𝑒𝑥𝑐) and topk (𝑄𝑠) DRQs. For our test workloads,

𝑄𝑖𝑛𝑐 extracts nodes with affinity constraints and taint toleration,

and 𝑄𝑒𝑥𝑐 extracts nodes with anti-affinity constraints. At 𝐹 = 0%,

all contribution comes from the topk DRQ (𝑄𝑠). At 𝐹 = 50% and

𝐹 = 100%, the contribution from 𝑄𝑠 shrinks, since variables in the

top-k view overlap with those in the inclusion view. The exclusion

view is small since we only exclude a particular node if it appears

in the anti-affinity constraints of all pods in the scheduling batch.

Nevertheless, we adjust the ranking of nodes (an average between

5 to 30) that appear in the anti-affinity constraints in the topk view

according to the discounting mechanism described in § 5.2.

11

Impact of topk. We now measure the impact of 𝑘 from our top-k

mechanism on scheduling latency. In addition to the nodes selected

by DRQs, 𝑘 determines the number of nodes based on user-provided

scheduling preferences. 𝑘 is typically selected based on the number

of new pods considered per scheduling decision. We represent the

ratio of 𝑘 to the max number of new pods as 𝛼 , and plot the effect

of increasing 𝛼 in Figure 14. We find that performance is consistent

(low milliseconds to tens of milliseconds per batch) across all values

of F for low values of 𝛼 (1-8). This represents a judicious band in the

number of extra nodes considered per scheduling decision (50-800

nodes), thereby making 𝑘 convenient to pick. At higher values of

𝛼 (>=16), latencies inflate for 𝐹 = 50% and 𝐹 = 100%, as the model

creation, presolve and solving times increase as per the trends

shown in Figure 13.

7 RELATEDWORK

Data-center management. Several works have tackled the in-

flexibility of modern cluster manager designs. DCM [50] tackles

the recurring problem of combinatorial optimization tasks in data-

centers via a SQL-based programming model which we formalize as

C-SQL in this paper. DBOS [47] proposes a multi-node datacenter

operating system, built around a distributed database to manage

state, encouraging a programming model based on traditional SQL

and stored procedures. C-SQL can be used to add constraint opti-

mization based decision-making to a DBOS deployment.

A long body of works have explored the use of solvers to aid

various facets of datacenter resource management [16, 19, 20, 22–

24, 27, 29, 52, 53]. These systems are not based on a relational

programming model like C-SQL, and instead use hand-crafted con-

straint solver encodings, which are comparatively difficult to extend

and evolve over time.

Using custom solvers for specific problem domains can also

yield significant rewards. For example, Shard Manager [34] uses

domain knowledge to partition the problem and use local search

to assign shards in distributed applications. Wrasse [41] uses a

balls-and-bins based abstraction to model allocation problems and

uses a GPU-based solver to find assignments. DCM and C-SQL

allows different constraint solver backends to be plugged in for

constraint evaluation, which allows such approaches to benefit from

the simpler and more expressive relational programming model.

Lastly, DeltaPath [17] builds a network routing controller that is

capable of incremental updates built on top of differential dataflow.

Full-stack SDN [49] demonstrates the use of an incremental engine

to build a software-defined networking stack. Similar to DCM and

C-SQL, these papers highlight the opportunity of using incremental

computation to build key control plane functionality.

Constraint query language. The idea of combining declarative

database programming with constraint solving has been previously

explored in the context of constraint databases [30, 31, 33, 44],

albeit with a different focus on the representation and querying

of spatial temporal data [18, 42, 51]. The main idea is that a tuple

in the relational database model can be generalized to represent

a conjunct of constraints over a small number of variables. These

generalized tuples can therefore provide a finite representation of

infinite sets, such as a spatial object which is an infinite point set.

In comparison, C-SQL targets combinatorial optimization problems

in cluster management applications. In terms of semantics, C-SQL

supports additional forms of constraints in addition to conjunctions,

such as objective functions defined via MAXIMIZE clauses.

Predicate pushdown. Predicate pushdown [54] is a well-known

query optimization technique for pushing filtering and projection

operators down a query plan tree as far as possible, to reduce subse-

quent query processing costs. As a generalization of the pushdown

technique, the idea of moving predicates around (e.g., up, down

and sideways) in the query plan for performance reasons has been

explored in the 90s [15, 26, 35]. Most query optimization techniques

can not push down predicates below a join operator, unless the

predicates are on columns used in the join condition [21, 39, 46, 56].

Predicate pushdown has been implemented in data analytics sys-

tems and data warehouses such as Apache Spark [11], Snowflake [2]

and BigQuery [5] as a crucial performance feature to eliminate un-

needed data partitions. More broadly, predicate pushdown style

optimization has shown performance benefits in applications such

as sensor networks [48], dataflow operators [28], video analyt-

ics systems [32] and machine learning inference queries [36]. FP-

pushdown is another example of applying the predicate pushdown

technique in a new domain of constraint solving. In particular, the

optimization extracts predicates from the constraint side of C-SQL

programs to push down to the relation side.

8 CONCLUSION AND OPEN QUESTIONS
In this paper, we report on our experience improving the scalability

and programmability of a Declarative Cluster Manager architecture.

Our experience highlights the power of the declarative program-

ming model, which in our case, centers around DCM’s constraint

language C-SQL. C-SQL extends SQL with novel semantics for

expressing optimization problems. C-SQL allows programmers to

specify what the cluster management should achieve and leaves

the optimization and execution plans to the runtime – something

that today’s heuristic-based cluster managers cannot do. In addi-

tion, C-SQL’s similarity to SQL allowed us to adapt decades of

query optimization research to optimize the execution of C-SQL

programs. Our query optimization inspired techniques, incremental

view maintenance and FP-pushdown, significantly speed up the

relation and constraint evaluation components of a C-SQL program.

As a result, we are able to scale a DCM-powered Kubernetes sched-

uler past its original limits to hyperscale-sized cluster and do so

with simpler schema and less imperative user code.

The inherently incremental nature of cluster management makes

it an ideal setting for leveraging incremental computation within

C-SQL. Incremental computation itself is an active area of work,

with open questions around the classes of programs that can be

automatically and efficiently incrementalized. In the context of

C-SQL, extending the pipeline to also incrementally prepare and

solve constraint programs is a clear avenue for future work. In addi-

tion, FP-pushdown simplifies optimization problems automatically,

speeding up constraint evaluation latencies by one to two orders

of magnitude. However, whether more solver optimizations per-

formed by a constraint solver could be pushed down to the database

layer is an open question. Part of the challenge is that the full set

of solver optimizations remain highly domain- and input-specific,

given an optimization problem with a mix of constraints.

12

REFERENCES
[1] [n.d.]. Kubernetes. https://kubernetes.io/docs/concepts/scheduling-eviction/

kube-scheduler/. Last accessed: Nov 30, 2022.

[2] [n.d.]. Micro-partitions andData Clustering. https://docs.snowflake.com/en/user-

guide/tables-clustering-micropartitions.html. Last accessed: September 28, 2022.

[3] [n.d.]. OpenShift. https://www.openshift.com/. Last accessed: April 2019.

[4] [n.d.]. OpenStack. https://www.openstack.org/. Last accessed: May 2016.

[5] [n.d.]. Query partitioned tables. https://cloud.google.com/bigquery/docs/

querying-partitioned-tables. Last accessed: September 28, 2022.

[6] 2007. H2 Database. https://github.com/h2database/h2database/. Last accessed:

Apr 30, 2020.

[7] 2010. Google OR-Tools. https://developers.google.com/optimization/. Last

accessed: Apr 23, 2019.

[8] 2011. JOOQ. https://github.com/jOOQ/jOOQ. Last accessed: Apr 23, 2019.

[9] 2014. Kubernetes. http://github.com/kubernetes/kubernetes. Last accessed: Apr

5, 2016.

[10] 2015. Differential Dataflow. https://github.com/TimelyDataflow/differential-

dataflow.

[11] 2019. Dynamic Partition Pruning in Apache Spark. https://www.databricks.

com/session_eu19/dynamic-partition-pruning-in-apache-spark. Last accessed:

September 28, 2022.

[12] 2021. Differential Datalog. github.com/vmware/differential-datalog.

[13] 2021. PresoDB. https://prestodb.io/.

[14] 2022. DDlog’s SQL frontend and SQL-to-DDlog compiler. https://github.com/

vmware/differential-datalog/tree/master/sql.

[15] Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of queries with user-

defined predicates. ACM Transactions on Database Systems (TODS) 24, 2 (1999),
177–228.

[16] Emilie Danna, Subhasree Mandal, and Arjun Singh. 2012. A practical algo-

rithm for balancing the max-min fairness and throughput objectives in traffic

engineering. In 2012 Proceedings IEEE INFOCOM. IEEE, 846–854.

[17] Desislava Dimitrova, John Liagouris, Sebastian Wicki, Moritz Hoffmann, Vasiliki

Kalavri, and Timothy Roscoe. 2018. DeltaPath: dataflow-based high-performance

incremental routing. https://doi.org/10.48550/ARXIV.1808.06893

[18] Martin Erwig, Markus Schneider, Michalis Vazirgiannis, et al. 1999. Spatio-

temporal data types: An approach to modeling and querying moving objects in

databases. GeoInformatica 3, 3 (1999), 269–296.
[19] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh,

and Sriram Rao. 2018. Medea: Scheduling of Long Running Applications in

Shared Production Clusters. In Proceedings of the Thirteenth EuroSys Conference
(Porto, Portugal) (EuroSys ’18). Association for Computing Machinery, New York,

NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3190508.3190549

[20] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven

Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling at Scale. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, Savannah, GA, 99–115. https://www.usenix.org/

conference/osdi16/technical-sessions/presentation/gog

[21] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29.

[22] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (Chicago, Illinois, USA) (SIG-
COMM ’14). Association for Computing Machinery, New York, NY, USA, 455–466.

https://doi.org/10.1145/2619239.2626334

[23] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-

narayanan. 2016. Altruistic Scheduling in Multi-Resource Clusters. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation
(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 65–80.

[24] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. Graphene: Packing and Dependency-Aware Scheduling for Data-

Parallel Clusters. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX
Association, USA, 81–97.

[25] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David

Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas

Moscibroda. 2020. Protean: VM Allocation Service at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 845–861. https://www.usenix.org/conference/osdi20/presentation/

hadary

[26] Joseph M Hellerstein and Michael Stonebraker. 1993. Predicate migration: Op-

timizing queries with expensive predicates. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of data. 267–276.

[27] Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia

Lawall. 2009. Entropy: A consolidation manager for clusters. In Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 41–50.

[28] Fabian Hueske, Mathias Peters, Matthias J Sax, Astrid Rheinländer, Rico

Bergmann, Aljoscha Krettek, and Kostas Tzoumas. 2012. Opening the Black

Boxes in Data Flow Optimization. Proceedings of the VLDB Endowment 5, 11
(2012).

[29] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and

Andrew Goldberg. 2009. Quincy: Fair scheduling for distributed computing

clusters. In ACM Symposium on Operating systems principles (SOSP). ACM, 261–

276.

[30] Paris C Kanellakis, Gabriel M Kuper, and Peter Z Revesz. 1990. Constraint

query languages (preliminary report). In Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. 299–313.

[31] Paris C Kanellakis, Gabriel M Kuper, and Peter Z Revesz. 1995. Constraint query

languages. J. Comput. System Sci. 51, 1 (1995), 26–52.
[32] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: optimizing neural network queries over video at scale. Proceedings of
the VLDB Endowment 10, 11 (2017), 1586–1597.

[33] Gabriel Kuper, Leonid Libkin, and Jan Paredaens. 2013. Constraint databases.
Springer Science & Business Media.

[34] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,

Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, Kaushik

Veeraraghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta, and Chunqiang

Tang. 2021. Shard Manager: A Generic Shard Management Framework for

Geo-Distributed Applications. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 553–569. https:

//doi.org/10.1145/3477132.3483546

[35] Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. 1994. Query opti-

mization by predicate move-around. In VLDB. 96–107.
[36] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating machine learning inference with probabilistic predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data. 1493–1508.

[37] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow.. In CIDR.
[38] Microsoft. 2017. Azure Public Dataset. https://github.com/Azure/

AzurePublicDataset.

[39] Inderpal SinghMumick and Hamid Pirahesh. 1994. Implementation of magic-sets

in a relational database system. ACM SIGMOD Record 23, 2 (1994), 103–114.

[40] Derek G. Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham,

and Martin Abadi. 2016. Incremental, Iterative Data Processing with Timely

Dataflow. Commun. ACM 59, 10 (sep 2016), 75–83. https://doi.org/10.1145/

2983551

[41] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. 2012. Generalized Resource

Allocation for the Cloud. In Proceedings of the Third ACM Symposium on Cloud
Computing (San Jose, California) (SoCC ’12). ACM, New York, NY, USA, Article

15, 12 pages. https://doi.org/10.1145/2391229.2391244

[42] Philippe Rigaux, Michel Scholl, Luc Segoufin, and Stéphane Grumbach. 2003.

Building a constraint-based spatial database system: model, languages, and

implementation. Information Systems 28, 6 (2003), 563–595.
[43] Kexin Rong, Mihai Budiu, Athinagoras Skiadopoulos, Lalith Suresh, and Amy Tai.

2022. Scaling a Declarative Cluster Manager Architecture with Query Optimiza-

tion Techniques (Technical Report). https://github.com/vmware/declarative-

cluster-management/blob/vldb23/docs/tr.pdf.

[44] Francesca Rossi, Peter Van Beek, and Toby Walsh. 2006. Handbook of constraint
programming. Elsevier.

[45] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. In Datalog 2.0.
Philadelphia, PA. http://budiu.info/work/ddlog.pdf

[46] Praveen Seshadri, Joseph M Hellerstein, Hamid Pirahesh, TY Cliff Leung, Raghu

Ramakrishnan, Divesh Srivastava, Peter J Stuckey, and S Sudarshan. 1996. Cost-

based optimization for magic: Algebra and implementation. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data. 435–446.

[47] Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong, Shana

Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz Graefe, Jeremy

Kepner, Christos Kozyrakis, Tim Kraska, Michael Stonebraker, Lalith Suresh, and

Matei Zaharia. 2022. DBOS: A DBMS-Oriented Operating System. Proc. VLDB
Endow. 15, 1 (jan 2022), 21–30. https://doi.org/10.14778/3485450.3485454

[48] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. 2005. Operator

placement for in-network stream query processing. In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. 250–258.

[49] Debnil Sur, Ben Pfaff, Leonid Ryzhyk, and Mihai Budiu. 2022. Full-Stack SDN.

In Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Austin,
Texas) (HotNets ’22). Association for Computing Machinery, New York, NY, USA,

130–137. https://doi.org/10.1145/3563766.3564101

[50] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina Narodytska,

Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, andMichael Gasch. 2020.

Building Scalable and Flexible Cluster Managers Using Declarative Programming.

In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 827–844.

13

https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions.html
https://docs.snowflake.com/en/user-guide/tables-clustering-micropartitions.html
https://www.openshift.com/
https://www.openstack.org/
https://cloud.google.com/bigquery/docs/querying-partitioned-tables
https://cloud.google.com/bigquery/docs/querying-partitioned-tables
https://github.com/h2database/h2database/
https://developers.google.com/optimization/
https://github.com/jOOQ/jOOQ
http://github.com/kubernetes/kubernetes
https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/differential-dataflow
https://www.databricks.com/session_eu19/dynamic-partition-pruning-in-apache-spark
https://www.databricks.com/session_eu19/dynamic-partition-pruning-in-apache-spark
github.com/vmware/differential-datalog
https://prestodb.io/
https://github.com/vmware/differential-datalog/tree/master/sql
https://github.com/vmware/differential-datalog/tree/master/sql
https://doi.org/10.48550/ARXIV.1808.06893
https://doi.org/10.1145/3190508.3190549
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://doi.org/10.1145/2619239.2626334
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://doi.org/10.1145/3477132.3483546
https://doi.org/10.1145/3477132.3483546
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://doi.org/10.1145/2983551
https://doi.org/10.1145/2983551
https://doi.org/10.1145/2391229.2391244
https://github.com/vmware/declarative-cluster-management/blob/vldb23/docs/tr.pdf
https://github.com/vmware/declarative-cluster-management/blob/vldb23/docs/tr.pdf
http://budiu.info/work/ddlog.pdf
https://doi.org/10.14778/3485450.3485454
https://doi.org/10.1145/3563766.3564101

[51] David Toman and Jan Chomicki. 1998. Datalog with integer periodicity con-

straints. The Journal of Logic Programming 35, 3 (1998), 263–290.

[52] Alexey Tumanov, James Cipar, Gregory R. Ganger, and Michael A. Kozuch. 2012.

Alsched: Algebraic Scheduling of Mixed Workloads in Heterogeneous Clouds.

In Proceedings of the Third ACM Symposium on Cloud Computing (San Jose,

California) (SoCC ’12). Association for Computing Machinery, New York, NY,

USA, Article 25, 7 pages. https://doi.org/10.1145/2391229.2391254

[53] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-

Balter, and Gregory R. Ganger. 2016. TetriSched: Global Rescheduling with

Adaptive Plan-ahead in Dynamic Heterogeneous Clusters. In Proceedings of the
European Conference on Computer Systems (EuroSys) (London, United Kingdom)

(EuroSys ’16). ACM, New York, NY, USA, Article 35, 16 pages. https://doi.org/10.

1145/2901318.2901355

[54] Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems,
Volume II. Computer Science Press.

[55] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-scale cluster management at Google with

Borg. In Proceedings of the European Conference on Computer Systems (EuroSys)
(Bordeaux, France). ACM, Bordeaux, France, Article 18, 17 pages. https://doi.

org/10.1145/2741948.2741964

[56] Brett Walenz, Sudeepa Roy, and Jun Yang. 2017. Optimizing iceberg queries

with complex joins. In Proceedings of the 2017 ACM International Conference on
Management of Data. 1243–1258.

Appendices

A A FORMAL SEMANTICS OF THE
CONSTRAINT LANGUAGE

A.1 Types
We assume some base types𝐵𝑇 , includingN (integers),B (Booleans),
R (reals), and 𝑆 (strings).

A.2 Formulas
For each base type 𝑇 we introduce a new type, 𝐹 (𝑇), which is the

type of symbolic formulas with type𝑇 . These formulas are syntactic

objects, defined by the following grammar:

<formula> ::= Constant
| VariableName
| <formula> <binaryOperation> <formula>
| <unaryOperation> <formula>
| <aggregate> (<formulaList>)

<formulaList> ::= <formula>
| <formula> , <formulaList>

<binaryOperation> ::= AND | OR | = | != | >
| >= | < | <= | + | - | * | / | %
<unaryOperation> ::= - | NOT
<aggregate> ::= ANY | ALL | SUM | COUNT | MIN | MAX

<formula>s are typed, with typing rules following standard

mathematical expressions (we omit them from this presentation). A

Constantwith a base type𝑇 , when used in a formula has type 𝐹 (𝑇).
For example, 5 has type N, but when used within a formula has

type 𝐹 (N). Each VariableName also has a type 𝐹 (𝑇) for some base

type, which is derived from the context, as we explain below. Each

binary or unary operation requires arguments of some appropriate

types, e.g., addition requires operands of type 𝐹 (N) or 𝐹 (R) and
produces a result of the same type as both operands.

A.3 Relations
We use the term “relation” to refer to database tables, views, and

results produced by queries. As in SQL, all relations are statically

typed, with types that can be inferred using a simple directed anal-

ysis. All values in a column have the same type, which is either

specified (statically) by the database schema or inferred from the

query or view structure. A row (of a relation) is a function that

maps a column name to a value of the corresponding type. We use

{col0 ↦→ 5, col1 ↦→ 2} to denote a row with value 5 in column

col0 and value 2 in column col1. A relation is a set (or multiset)

of rows.

The type of a column can be a base type 𝑇 or a formula type

𝐹 (𝑇). For tables, all values in a column of type 𝐹 (𝑇) are required
to be VariableName. More general formulas of type 𝐹 (𝑇) can only

appear in queries or views.

As in SQL, the semantics of a query or view is a function of a

database instance𝐷𝐵, which stores the contents of all base tables. In

constrast to SQL, where the semantics of a relation is a (multi)set of

tuples, in our model the semantics of a relation is a set of constraints
involving symbolic variables. We define this semantics bottom-up.

We start by defining the semantics of an expression. Expressions can

in general appear in SELECT, WHERE, GROUP BY, JOIN, and HAVING
statements.

A.4 Semantics of expressions
The grammar of expressions is given by:

<expr> ::= <expr> <binaryOperation> <expr>
| <unaryOperation> (<expr>)
| ColumnName
| Constant

An expression is always evaluated in the context of a row. The
type of an expression depends on the types of its arguments: when

all arguments have base types, the expression itself evaluates to a

base type, as in standard SQL. However, if any of the arguments is a

symbolic formula, then the expression also evaluates to a symbolic

formula. We show the semantics of an expression 𝑒 when applied

to a row 𝑟 as ⟦𝑒⟧(𝑟).

⟦Const⟧(𝑟) = Const

⟦ColName⟧(𝑟) = 𝑟 (ColName)
⟦𝑒𝑥𝑝𝑟1𝑏𝑖𝑛𝑂𝑝 𝑒𝑥𝑝𝑟2⟧(𝑟) = ⟦𝑒𝑥𝑝𝑟1⟧(𝑟) 𝑏𝑖𝑛𝑂𝑝 ⟦𝑒𝑥𝑝𝑟2⟧(𝑟)
⟦𝑢𝑛𝑂𝑝 𝑒𝑥𝑝𝑟⟧(𝑟) = 𝑢𝑛𝑂𝑝 ⟦𝑒𝑥𝑝𝑟⟧(𝑟)

For example, consider the expression 𝑒 = 1 + Age, where Age is
a column name. Let us evaluate it in two contexts:

• When 𝑟 = {Age ↦→ 10}, we have that ⟦𝑒⟧(𝑟) evaluates to
an integer with value 11.

• When 𝑟 = {Age ↦→ “x + 2
′′}, where 𝑟 (Age) ∈ 𝐹 (N) is an

integer formula, we have that ⟦𝑒⟧(𝑟) evaluates to an integer
formula, which is 1 + (x + 2).

A.5 Semantics of row expressions
Consider a SELECT statement such as SELECT e1 AS col1, e2
AS COL2 FROM T. This statement evaluates two expressions and

specifies a column name for each of them (the column names must

14

https://doi.org/10.1145/2391229.2391254
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964

be distinct). This statement evaluates a row expression. The grammar

of a row expression is given by:

<simpleRowExpr> ::= <expr> AS colName
<rowExpr> ::= <simpleRowExpr>

| <rowExpr>, <simpleRowExpr>

The semantics of a <simpleRowExpr> is a row with a single

column: ⟦𝑒 AS colName⟧(𝑟) = {colName ↦→ ⟦𝑒⟧(𝑟)}.
The semantics of a row expression is the disjoint union of all the

components:

⟦rowExpr⟧(𝑟) = ⊎𝑒∈rowExpr⟦𝑒⟧(𝑟).

A.6 Semantics of relations
Now that we understand the semantics of expressions, we can

define the semantics of relations. First, we define the meaning of

an expression in the context of a relation, the result is a (multi)set.

Evaluating an expression in the context of a relation 𝑅 produces

a set composed of the evaluation of the expression for each row of

the relation:

⟦𝑒⟧(𝑅) = ∪𝑟 ∈𝑅{⟦𝑒⟧(𝑟)}.
Aggregate expressions can only be evaluated in the context of a

collection of values; these values can be the values in a table, query,

view or in a group produced by a group-by clause:

<aggregateExpr> ::= <aggregate> (<expr>)

An aggregate expression over a set of base type values produces,

as in SQL, a result with a base type. An aggregate expression eval-

uated over a set of formulas produces a (single) corresponding

formula involving the aggregate:

⟦𝑎𝑔𝑔(𝑒)⟧(𝑅) = 𝑎𝑔𝑔(⟦𝑒⟧(𝑅)) .

For example, consider the expression SUM(col) evaluated over

a relation where col is a column of type 𝐹 (N) with the following

rows: {col ↦→ 1 + var1, col ↦→ var2 + var1}. This expression
evaluates to a formula with type 𝐹 (N), which is SUM(1 + var1,
var1 + var2). (Recall that the grammar of symbolic formulas

includes aggregation functions.)

Similarly, evaluating a row expression in the context of a relation

𝑅 produces another relation, which is composed of the union of the

results of the evaluation of the expression for all the rows:

⟦rowExp⟧(𝑅) = ∪𝑟 ∈𝑅⟦rowExp⟧(𝑟).

We now define the semantics of a relation inductively on its

structure. For relations that operate on relations with only base

types, we allow the full SQL language with no restrictions. The

following simplified grammar show the operations available for

relations that have at least one column that is a symbolic formula.

<relation> ::= SELECT <rowExpr>
FROM (<tableRef> | <join>)
[WHERE <baseExpr>]
[GROUP BY baseColumnList]
[HAVING <baseExpr>]

<join> ::= <relation> JOIN <relation> ON <baseExpr>

In this grammar, we denote any <expr> that evaluates to a base

type by <baseExpr> , and a list of columns that all have base types

by <baseColumnList> 1
. Notice that we do not allow filtering, join-

ing, or grouping by expressions that evaluate to symbolic formulas.

This restriction ensures that the constraints generated are tractable.

The semantics of a <relation> is always evaluated in the con-

text of a concrete database 𝐷𝐵. We now give a semantics for each

of the possible productions in the grammar.

The semantics of a table is simply a (multi)set composed of

the semantics of all its rows, each evaluated on itself: ⟦𝑇⟧(𝐷𝐵) =
∪𝑟 ∈𝑇 {⟦𝑟⟧(𝑟)}. Recall that a table can only contain base type values

or variable names. Consider the following table with schema (col0 :

N, col1 : 𝐹 (N)):
{{col0 ↦→ 0, col1 ↦→ 𝑣𝑎𝑟1},
{col0 ↦→ 2, col1 ↦→ 𝑣𝑎𝑟2}}

The semantics of this table is a relation with two columns: col0
of type N, and col1 of symbolic formulas with type 𝐹 (N).

The semantics of a view defined by a query is the semantics of

the query itself.

⟦CREATE VIEW V AS 𝑄⟧(𝐷𝐵) = ⟦𝑄⟧(𝐷𝐵) .
The semantics of filtering a relation 𝑅 by a predicate 𝑒𝑥𝑝𝑟 (as

occurring in WHERE and HAVING) is defined as in SQL; the fact that

filtering expressions need to evaluate to B (and cannot have type

𝐹 (B)) ensures that filtering can be evaluated immediately, and does

not need to produce constraints that are evaluated by the solver:

⟦𝜎𝑒𝑥𝑝𝑟⟧(𝑅) = {𝑟 | ⟦𝑒𝑥𝑝𝑟⟧(𝑟) = true, 𝑟 ∈ 𝑅}.
Similarly, GROUP BY, requires that the columns grouped-on have

base type values; its semantics is defined as in SQL: the result of a

GROUP BY is a set of nested relations, where each column name is

mapped to a relation containing all rows belonging to the group:

⟦GROUP BY 𝑐𝑜𝑙⟧(𝑅) =
∪𝑔∈𝑅 {𝑔[𝑐𝑜𝑙] ↦→ {𝑟 | 𝑟 ∈ 𝑅 ∧ 𝑔[𝑐𝑜𝑙] = 𝑟 [𝑐𝑜𝑙]}}

As in SQL, we require the result of each GROUP BY to be imme-

diately used in an aggregation.

Finally, the JOIN is semantically equivalent to a Cartesian prod-

uct followed by a filter and a selection; since the join condition is

constrained to use only base types, the join filter is implemented

as described above. So we only need to define the semantics of a

Cartesian product, which is the same as in SQL, assuming that the

column names of the joined relations are distinct:

⟦𝑅1 × 𝑅2⟧(𝐷𝐵) = {𝑟1 ⊎ 𝑟2 | 𝑟1 ∈ ⟦𝑅1⟧(𝑅1), 𝑟2 ∈ ⟦𝑅2⟧(𝑅2)}.

A.7 Generating constraints
Finally, our goal is to have a language that generates constraints

that are solved automatically. So far we have reused SQL to create

a language that can generate symbolic formulas. We now add one

extra statement to SQL that creates constraints from formulas, as

follows:

<problem> ::= <constraint> [, <constraint>]*
<constraint> ::= CREATE CONSTRAINT <identifier> AS
<checkOrOptimize> FROM <relation>

1
These are, in fact, semantic checks enforced by the type-checker, and not by the

grammar.

15

<checkOrOptimize> ::= CHECK <expr>
| CHECK <setConstraint>
| MAXIMIZE <expr>

<setConstraint> ::= AllDifferent (<expr>)
| AllEqual (<expr>)
| Increasing (<expr>)

A CHECK statement generates a set of constraints. A MAXIMIZE
statement generates an optimization function. An optimization

<problem> can contain multiple CREATE CONSTRAINT statements.

We now specify the semantics of these statements.

A CHECK statement must be followed by an expression of type

𝐹 (B). Applying the statement to a row evaluates the expression

for the specified row and generates a Boolean symbolic formula,

which is then interpreted as a constraint.

⟦CHECK 𝑒𝑥𝑝𝑟⟧(𝑟) = ⟦𝑒𝑥𝑝𝑟⟧(𝑟) .
For example, the formula var3 + 2 = 5 generates the constraint
var3 + 2 = 5, which has a unique solution of 3 for var3. Ap-
plying the statement to a relation generates the conjunction of the

constraints for all rows:

⟦CHECK 𝑒𝑥𝑝𝑟⟧(𝑅) = ∧𝑟 ∈𝑅⟦CHECK 𝑒𝑥𝑝𝑟⟧(𝑟).
⟦CHECK AllEqual(𝑒𝑥𝑝𝑟)⟧(𝑅) = AllEqual{⟦𝑒𝑥𝑝𝑟⟧(𝑟) |𝑟 ∈ 𝑅},

where AllEqual(𝑆) = {𝑠𝑖 = 𝑠 𝑗 |𝑠𝑖 ∈ 𝑆, 𝑠 𝑗 ∈ 𝑆}.
Similarly, AllDifferent requires all formulas to evaluate to

different values.

A MAXIMIZE statement takes an arbitrary expression of type

𝐹 (N) or 𝐹 (R) and generates an optimization function. This is a
symbolic formula of a numeric type that depends on the symbolic

variables.

In the end, each CREATE CONSTRAINT statement generates

either a set of constraints to satisfy or an optimization function.

We can model that as a pair containing a set of constraints and an

optimization function:

⟦𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟧(𝐷𝐵) ∈ (2𝐹 (B) , 𝐹 (N))
, where the set of constraints is empty for a MAXIMIZE statement,

or the formula to maximize is a constant for a CHECK statement.

The semantics of a <problem>, which is a sequence of CREATE
CONSTRAINT statements, is then given by the following: the union

of all sets and the sum of all functions:

⟦problem⟧(𝐷𝐵) = combine (𝑐 ∈ problem⟦𝑐⟧(𝐷𝐵))
where the combine function is defined as:

𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ({(𝑐𝑖 , 𝑜𝑖)}) = (∪𝑖𝑐𝑖 ,
∑︁
𝑖

𝑜𝑖)

i.e., form the union all constraints and add up all optimization

functions.

B VIEW SIMPLIFICATIONWITH DDLOG
We provide an example of the kind of simplification that emerges

in our views when using DDlog.

Kubernetes’ design extensively leverages a mechanism to tag

cluster entities (like pods, nodes, volumes etc.) with key-value labels.

Control plane code can then use a DSL to specify search queries

for entities based on these labels. For Kubernetes schedulers, the

CREATE VIEW inter_pod_aa_matching_pods AS
(SELECT * FROM pods_to_assign
JOIN pod_aa_match_expressions on pods_to_assign.pod_name =

pod_aa_match_expressions.pod_name
JOIN pod_labels
ON pod_aa_match_expressions.label_operator = 'Exists'
AND pod_aa_match_expressions.label_key = pod_labels.label_key

JOIN pod_info on pod_labels.pod_name = pod_info.pod_name
WHERE pods_to_assign.has_pod_aa_requirements = true)

UNION
(SELECT * FROM pods_to_assign
JOIN pod_aa_match_expressions

ON pods_to_assign.pod_name = pod_aa_match_expressions.pod_name
JOIN pod_labels
ON pod_aa_match_expressions.label_operator = 'IN'

AND pod_aa_match_expressions.label_key = pod_labels.label_key
AND pod_labels.label_value = pod_aa_match_expressions.label_value

JOIN pod_info on pod_labels.pod_name = pod_info.pod_name
WHERE pods_to_assign.has_pod_aa_requirements = true)

Figure 15: Evaluating anti-affinity matches without DDlog.
This matching logic has to be repeated for every policy that
uses Kubernetes’ label-based matching rules, preventing
reuse. It is also not fully incremental as tables such as pod_la-
bels and pod_info gets scanned depending on their contents,
even with carefully designed indexes.

CREATE VIEW matching_pods AS
(SELECT DISTINCT expr_id, pod_uid
FROM (SELECT DISTINCT * FROM match_expressions

WHERE match_expressions.label_operator = 'In') me
JOIN pod_labels

ON me.label_key = pod_labels.label_key
AND me.label_value = pod_labels.label_value)

UNION
(SELECT DISTINCT expr_id, pod_uid
FROM (SELECT DISTINCT * FROM match_expressions

WHERE match_expressions.label_operator = 'Exists') me
JOIN pod_labels

ON me.label_key = pod_labels.label_key)

Figure 16: Generic pod label matching view with DDlog, used
by several views such as the anti-affinity matches view. Note
the absence of joins specific to the anti-affinity logic or the
set of pods to assign.

labeling mechanism is used to support policies like inter-pod anti-

affinity. For example, an anti-affinity requirement can be configured

for a pod 𝐴 with a match expression (app In [web-server]);
doing so specifies that the pod 𝐴 must avoid nodes where a pod

has the label app with value web-server.
Figure 15 shows a simplified version of the SQL we first wrote

(without DDlog) to identify the set of pods that match an anti-

affinity requirement. We have two types of label operators, In
and Exists, which are similar except that Exists only checks if

a label’s key matches and ignores the value of the label. Without

DDlog, it was a challenge to keep performance tractable by having

as few records be scanned per query. We had to carefully design the

schema to have a table that only has match expressions specified as

part of an anti-affinity requirement and scope the matching_pods
view to only consider those pods that are yet to be assigned. With

the databases we evaluated like H2, even with carefully designed

indexes, doing so still does not guarantee that the pod_info and

16

-- @VARIABLE_COLUMNS (node_name)
uid | has_port_req | qos_class | node_name
pod1 | false | BestEffort | ?
pod2 | true | Guaranteed | ?
pod3 | false | Burstable | ?

Figure 17: Base table pods_to_assign with one variable col-
umn node_name and two non-variable columns has_port_req
and qos_class.

CREATE CONSTRAINT qos_constraint AS
SELECT * FROM pods_to_assign
CHECK (qos_class = "BestEffort" OR

node_name IN (SELECT node_name FROM valid_nodes));

CREATE CONSTRAINT port_constraint AS
SELECT * FROM pods_to_assign JOIN

pods_with_port_requests_scheduled
ON pods_to_assign.uid = pods_with_port_requests_scheduled.uid
CHECK (has_port_req = false OR NOT(CONTAINS(

pods_with_port_requests_scheduled.node_matches,
pods_to_assign.node_name));

Figure 18: Example constraints.

pod_labels tables will not be scanned by the query planner, and

the query is therefore not fully incremental. Worse, the same match

expression logic has to be repeated for each type of scheduling

policy that needs it, such as pod and node affinities, taints and tol-

erations, and more. Doing so bloats the schema artificially, making

schema evolution a challenge.

Figure 16 instead shows what incremental view maintenance

enables. With DDlog, we instead have a single, concise, and general

query to evaluate all match expressions, that are shared by different

views. Note the absence of any joins specific to the anti-affinity

policy or the set of pods under consideration. Instead, these joins

appear in a single corresponding downstream view per scheduling

policy (like the inter-pod affinity matches view in Figure 6). Be-

ing incrementally updated and shared across multiple downstream

views thereby not only improves performance but also maintain-

ability.

C GENERATING MULTIPLE DRQS
Depending on whether different cells in a variable column are

treated as a single decision variable with a shared domain or in-

dependent decision variables with different constraints, we can

generate one or more domain restricting views for each variable

column. Specifically, there are three levels of granularity at which

we can compute domain restricting views to restrict variable do-

mains:

(1) Column-level: generating a single domain restricting view

𝑅 for the variable column 𝑣𝑎𝑟 .

(2) Group-level: generate a domain restricting view 𝑅𝑖 for each

group 𝑔𝑖 = 𝛾𝑐1,...,𝑐𝑘 (𝑇) of cells, where 𝑐1, 𝑐2, ..., 𝑐𝑘 are a

subset of input (non-variable) columns on the same table.

(3) Cell-level: generating one domain restricting for each cell

in the variable column.

Here, we discuss how to extend column-level domain restricting

views to the group-level. Note that cell-level views are a degenerate

case of group-level views, where each group contains one cell.

View generation at the group level is similar to the column-

level except it requires an additional preprocessing step that par-

titions the variable column and the constraint set by the input

(non-variable) columns 𝑐1, 𝑐2, ..., 𝑐𝑘 . For the purpose of refining

DRQs, only the subset of non-variable columns that appear in the

constraints and group-by clauses need to be considered as grouping

columns. Given each partition of the variable column and constraint

set, one can use the process described in Section 5.2 to generate

the corresponding domain restricting views for the partition/group.

Compared to column-level view generation, the additional infor-

mation introduced by the input columns can be used to eliminate

or to extract additional DRQs for each group.

We illustrate this idea using the example constraint in Figure 17

and Figure 18. Here, both non-variable columns qos_class and

has_port_req are referenced in the constraints, so we have a total

of 6 row groups defined by their Cartesian product ℎ𝑎𝑠_𝑝𝑜𝑟𝑡_𝑟𝑒𝑞 =

{𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒} × 𝑞𝑜𝑠_𝑐𝑙𝑎𝑠𝑠 = {𝐵𝑒𝑠𝑡𝐸𝑓 𝑓 𝑜𝑟𝑡,𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑, 𝐵𝑢𝑟𝑠𝑡𝑎𝑏𝑙𝑒}.
For constraints of the form predicate(non_var) AND/OR DRQ, we
can refine the DRQs by explicitly evaluating predicates involving

the non variable columns using the grouping information. For exam-

ple, in port_constraint, the 3 groupswith (has_port_req=false)
can ignore the DRQ, since the constraint is already satisfied; the

3 groups with (has_port_req=true) can safely push down the

DRQ (both inclusion and exclusion), since the domain restricting

condition must be satisfied by all members of the group. Similarly,

the two groups with (qos_class!="BestEffort") can ignore the

qos_constraint. As a result, we are able to refine the domain re-

stricting conditions for different row groups compared to using a

single domain restricting view for the entire variable column.

17

	Abstract
	1 Introduction
	2 C-SQL Background and Design
	2.1 Background: heuristic-based cluster management
	2.2 Declarative Cluster Managers with C-SQL

	3 Challenges with scaling the C-SQL processing pipeline
	3.1 Relation-side challenge: simulating materialized views
	3.2 Constraint-side challenge: large optimization problem sizes
	3.3 Overview of solutions

	4 Relation Evaluation via Automatic Incremental View Maintenance
	4.1 Bridging SQL and DDlog semantics
	4.2 Bridging different runtime interfaces
	4.3 Simplified programming model

	5 Constraint evaluation via feasibility-preserving predicate pushdown
	5.1 Problem setup: domain restricting views
	5.2 Inferring domain restricting queries (DRQ)
	5.3 Efficient Implementation of DRQs

	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Performance with IVM
	6.3 Performance with IVM and FP-pushdown
	6.4 Detailed Analysis of FP-pushdown

	7 Related Work
	8 Conclusion and Open Questions
	References
	Appendices
	A A Formal Semantics of the Constraint Language
	A.1 Types
	A.2 Formulas
	A.3 Relations
	A.4 Semantics of expressions
	A.5 Semantics of row expressions
	A.6 Semantics of relations
	A.7 Generating constraints

	B View simplification with DDlog
	C Generating Multiple DRQS

