
CS 6400 A

Database Systems Concepts
and Design

Lecture 8

09/15/25

Announcements

● Assignment 1 due today!

● In-class midterm next Monday (Sep 22)

○ Format: open book and notes, no internet

○ Review lecture this Wednesday

○ Practice exam on canvas: Files->Past Exams

○ Contents covered: lec 2 (SQL I) – lec 7 (Design Theory II)

2

Next Part: Database System Internals

● Hardware and file system
structure

● Indexing and hashing
● Query optimization
● Transactions
● Crash recovery
● Concurrency control

3

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Schema design

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 13: Secondary Storage Management

4

Acknowledgement: The following slides have been adapted from EE477 (Database and

Big Data Systems) taught by Steven Whang and CS245 (Principles of Data-Intensive

Systems) taught by Matei Zaharia.

Agenda

1. Storage hardware

2. Arranging records on disks

3. Collection Storage

5

1. Storage Hardware

6

Typical computer system (Von Neumann architecture)

7

CPU

Main

Memory
Controller ...

Memory - I/O Bus

Secondary Storage

High-level: Disk vs. Main Memory

8

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable

• ~10x faster for sequential access

• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs,
power goes out, etc!

• Expensive: For $100, get 16GB of RAM vs.
 2TB of disk!

Disk:

• Fast: sequential block access

• Read a blocks (not byte) at a time, so
sequential access is cheaper than random

• Disk read / writes are expensive

• Durable: We will assume that once on
disk, data is safe!

• Cheap

Storage Hierarchies

Typically cache frequently accessed data on
faster storage to improve performance

● Main memory stores current data
● Secondary storage stores main database

9

Numbers everyone should know

10

by Jeff Dean

Jim Gray’s storage latency analogy:
how far is the data?

11

1

2

10

100

106

109

Disk

Memory

Registers

On chip cache

L3 cache

Tape

2 years

1 min

10 min

1.5 hours

2,000 years

My head

This room

This building

Columbus, GA

Pluto

Andromeda
Turing Award,

1998

(ns)

Sizing Storage Tiers

When should we cache data in DRAM vs storing it on disks?

Can determine based on workload & cost

12

“The 5 Minute Rule for Trading Memory

Accesses for Disc Accesses”

Jim Gray & Franco Putzolu

May 1985

The five minute rule

“Pages referenced every 5 minutes should be memory resident (1987)”

13

Technology ratio Economic ratio

The five minute rule

“Pages referenced every 5 minutes should be memory resident (1987)”

14

Most Common Permanent Storage: Hard Disks

● We will focus on the typical
magnetic disk

● One or more circular platters
rotate around a spindle

● Tracks of the same radius form
a cylinder

15

Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector

Top view of disk surface

● The disk is organized into tracks
● Tracks are organized into sectors, which are indivisible units
● Blocks (unit of transfer to memory) consist of one or more sectors
● Gaps are used to identify the beginnings of sectors

16

Track

Sector

Gap

Disk access time

Latency = seek time + rotational
delay + transfer time + other

○ Transfer time: time to read/write data in
sectors

17
Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/

Seek time
● The seek time depends on the distance the head has to

travel to the desired cylinder

18

N1

Cylinders traveled

Time

x

3x-20x

Arm

movement

Rotational delay

● The time can range from 0 to the time to rotate the disk once

19

Head here

Block I want

In-class Exercise

● Consider a 500GB hard disk with the following performance
characteristics
○ 5000 revolution-per-minute (RPM) rotation rate
○ 200 cylinders
○ Takes 1 + (t / 20) milliseconds to move heads t cylinders
○ 100MB/s transfer rate

● What is the average time to read a 1MB block from the hard disk?
● Assumes that the head travels 100 cylinders on average
● On average the disk rotates half a circle

20

I/O model of computation

● Time to read a block from disk >> time to search a record
within that block

● Algorithm time ≈ Number of disk I/Os

21

Memory

Disk ...

t1
t2

t3
t4

t5t1
t2

Speeding up disk access

The previous analysis was on random accesses

In general, sequential access is much faster than random accesses

There are several techniques for decreasing average disk access time

● RAID

● Prefetching

22

RAID: Combining storage devices

● RAID: redundant array of inexpensive disks
● Many flavors of “RAID”: striping, mirroring, etc to increase

performance and reliability

23

Common RAID Levels

24

Striping across 2

disks: adds

performance but

not reliability

Mirroring across 2

disks: adds reliability

but not performance

(except for reads)

Striping + 1 parity disk: adds

performance and reliability at

lower storage cost

Image source: Wikipedia

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

25

Disk: A B C D

Memory:

Prefetching

A

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

26

Disk: B C D

Memory:

Processing Prefetching

A B

Prefetching/Double buffering

● Predict block request order and load into memory before needed
● Reduces average block access time

27

Disk: C D

Memory:

Prefetching Processing

C B

In-class Exercise

Suppose
○ P = processing time / block
○ R = I/O time / block
○ N = number of blocks

If P ≥ R, what is the processing time of
○ Single buffering
○ Double buffering

28

2. Arranging Records on Disks

29

File system structure

● Next let’s look at how disks are used to store
databases

● A tuple is represented by a record,
which consists of consecutive bytes in a disk block

30

Data items

Records

Blocks

Files

Physical Representation of Data Items

Example data items that we want to store:

○ Date

○ Salary

○ Name

○ Picture

What we have available: bytes

31

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Fixed length items

Integer: fixed # of bytes (e.g., 2 bytes)

Floating-point: n-bit mantissa, m-bit exponent

Character: encode as integer (e.g. ASCII)

32

Adapted from Stanford CS245 from Matei Zaharia

Variable length items

String of characters:

○ Null-terminated

○ Length + data

○ Fixed-length

Bag of bits:

33

Adapted from Stanford CS245 from Matei Zaharia

Storing Records

Record (tuple): consecutive bytes in disk blocks

○ e.g. employee record:

■ name field

■ salary field

■ date-of-hire field

Design choices:

○ Fixed vs variable length

○ Fixed vs variable format

34

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Fixed-format records

A schema for all records in table specifies:

○ # of fields

○ type of each field

○ order in record

○ meaning of each field

35

Adapted from Stanford CS245 from Matei Zaharia

Fixed-length records

● header + fixed-length region of record’s information

● It is common for field addresses to be multiples of 4 or 8 to align
data for efficient reading/writing of main memory (a CPU
accesses memory one word at a time)

36

CREATE TABLE MovieStar (
 name CHAR(30),
 address CHAR(255),
 gender CHAR(1),
 birthdate DATE
);

name address

gender

birthdate

header

0

pointer to schema for finding

fields of the record

length

timestamp when

record was modified

12 44 300 304 316

Variable-length records

Some records may not have a fixed schema with a list of fixed-

length fields

● e.g., VARCHAR

● other data models (e.g., semi-structured)

37

Records with variable-length fields

● Put all fixed-length fields ahead of the variable-length fields

● Header stores pointers to be beginning of all variable-length fields

other than the first

38

birthdate address

gender

name

header

other header info

record length

pointer to address

fixed-length fields variable-length fields

CREATE TABLE MovieStar (
 name VARCHAR(30),
 address VARCHAR(100),
 gender CHAR(1),
 birthdate DATE
);

Why is this design a

good idea?

Variable-format records

● Records may not have a fixed schema (e.g., JSON)
● Use tagged fields to make record “self-describing”

39

2 A NI S JOHN20 4

Discussion

What are pros and cons of variable format vs fixed format?

40

Evolving formats

“Sparse” records

Repeating fields

But many waste space…

3. Collection Storage

41

Collection Storage Questions

How do we place data items and records for efficient access?
● Locality
● Searchability

How do we physical encode records in blocks and files?

42

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Place Data for Efficient Access

Locality: which items are accessed together
● When you read one field of a record, you’re likely to read other fields

of the same record
● When you read one field of record 1, you’re likely to read the same

field of record 2

Searchability: quickly find relevant records
● E.g. sorting the file lets you do binary search

43

Adapted from Stanford CS245 from Matei Zaharia

Locality Example: Row Stores vs Column Stores

44

Adapted from Stanford CS245 from Matei Zaharia

Locality Example: Row Stores vs Column Stores

45

Accessing all fields of one record: 1 random I/O for row, 3 for column

Adapted from Stanford CS245 from Matei Zaharia

Locality Example: Row Stores vs Column Stores

46

Accessing one field of all records: 3x less I/O for column store

Adapted from Stanford CS245 from Matei Zaharia

Can We Have Hybrids Between Row & Column?

47

Helpful if age & state are frequently co-accessed

Yes! For example, colocated column groups: What query workloads

work better for row store

vs column store?

Adapted from Stanford CS245 from Matei Zaharia

Improving Searchability: Ordering

48

Ordering the data by a field will give:

• Smaller I/Os if queries tend to read data with nearby values of the field

(e.g. time ranges)

• Option to accelerate search via an ordered index (e.g., B+-tree), binary

search, etc

What’s the downside of having an ordering?

Adapted from Stanford CS245 from Matei Zaharia

Improving Searchability: Partitions

49

Easy to add, remove, list any files in a directory

Place data into buckets based on a field

(but not necessarily fine-grained order)

E.g. Hive table storage over a filesystem:

Adapted from Stanford CS245 from Matei Zaharia

Can We Have Searchability on Multiple
Fields at Once?

50

Yes! Many possible ways:

1) Multiple partition or sort keys (e.g.,

partition by date, then sort by userID)

2) Interleaved orderings such as Z-ordering

Adapted from Stanford CS245 from Matei Zaharia

How Do We Encode Records into Blocks & Files?

51

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Storing records into blocks

Records are stored in blocks, which are moved into main memory.

Several design choices:

(1) how to separate records

(2) spanned vs. unspanned

(3) indirection

52

Adapted from Stanford CS245 from Matei Zaharia

(1) Separating Records

(a) no need to separate - fixed size records.

(b) special marker

(c) give record lengths (or offsets)

○ within each record

○ in block header

53

Adapted from Stanford CS245 from Matei Zaharia

Block

(2) Spanned vs Unspanned

Unspanned: records must be within one block

Spanned:

54

Adapted from Stanford CS245 from Matei Zaharia

(3) Indirection

How does one refer to other records?

Many options: physical vs indirect

55

Adapted from Stanford CS245 from Matei Zaharia

(3) Indirection

56

Purely Physical Fully Indirect

Tradeoff:

Flexibility to move records <> cost of indirection

Adapted from Stanford CS245 from Matei Zaharia

Inserting Records

Easy case: records not ordered
● Insert record at end of file or in a free space
● Harder if records are variable-length

Hard case: records are ordered
● If free space close by, not too bad...
● Otherwise, use an overflow area and reorganize the file periodically

57

Adapted from Stanford CS245 from Matei Zaharia

Deleting Records

Immediately reclaim space

OR

Mark deleted
- And keep track of freed spaces for later use

58

Adapted from Stanford CS245 from Matei Zaharia

Interesting Problems

How much free space to leave in each block,
track, cylinder, etc?

How often to reorganize file + merge
overflow?

59

Adapted from Stanford CS245 from Matei Zaharia

Summary

Many ways to store data on disk!

Key tradeoffs:

60

Flexibility

Complexity

Space Utilization

Performance

To Evaluate a Strategy, Compare:

Space used for expected data

Expected time to

○ fetch record given key

○ read whole file

○ insert record

○ delete record

○ update record

○ reorganize file

○ ...

61

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Next Part: Database System Internals
	Slide 4: Reading Materials
	Slide 5: Agenda
	Slide 6: 1. Storage Hardware
	Slide 7: Typical computer system (Von Neumann architecture)
	Slide 8: High-level: Disk vs. Main Memory
	Slide 9: Storage Hierarchies
	Slide 10: Numbers everyone should know
	Slide 11: Jim Gray’s storage latency analogy: how far is the data?
	Slide 12: Sizing Storage Tiers
	Slide 13: The five minute rule
	Slide 14: The five minute rule

	hardware
	Slide 15: Most Common Permanent Storage: Hard Disks
	Slide 16: Top view of disk surface
	Slide 17: Disk access time
	Slide 18: Seek time
	Slide 19: Rotational delay
	Slide 20: In-class Exercise
	Slide 21: I/O model of computation
	Slide 22: Speeding up disk access
	Slide 23: RAID: Combining storage devices
	Slide 24: Common RAID Levels
	Slide 25: Prefetching/Double buffering
	Slide 26: Prefetching/Double buffering
	Slide 27: Prefetching/Double buffering
	Slide 28: In-class Exercise

	Arranging Data on Disk
	Slide 29: 2. Arranging Records on Disks
	Slide 30: File system structure
	Slide 31: Physical Representation of Data Items
	Slide 32: Fixed length items
	Slide 33: Variable length items
	Slide 34: Storing Records
	Slide 35: Fixed-format records
	Slide 36: Fixed-length records
	Slide 37: Variable-length records
	Slide 38: Records with variable-length fields
	Slide 39: Variable-format records
	Slide 40: Discussion
	Slide 41: 3. Collection Storage
	Slide 42: Collection Storage Questions
	Slide 43: Place Data for Efficient Access
	Slide 44: Locality Example: Row Stores vs Column Stores
	Slide 45: Locality Example: Row Stores vs Column Stores
	Slide 46: Locality Example: Row Stores vs Column Stores
	Slide 47: Can We Have Hybrids Between Row & Column?
	Slide 48: Improving Searchability: Ordering
	Slide 49: Improving Searchability: Partitions
	Slide 50: Can We Have Searchability on Multiple Fields at Once?
	Slide 51: How Do We Encode Records into Blocks & Files?
	Slide 52: Storing records into blocks
	Slide 53: (1) Separating Records
	Slide 54: (2) Spanned vs Unspanned
	Slide 55: (3) Indirection
	Slide 56: (3) Indirection
	Slide 57: Inserting Records
	Slide 58: Deleting Records
	Slide 59: Interesting Problems
	Slide 60: Summary
	Slide 61: To Evaluate a Strategy, Compare:

