
CS 6400 A

Database Systems
Concepts and Design

Lecture 3

08/25/25

Logistics

Assignment 0 due today @11:59PM

Assignment 1 released today @11:59PM

due Sep 15 @ 11:59PM

OH starting this week:
• Instructor (KACB 3322): Wednesdays 3-4PM
• TAs (common area near KACB 3322) :

• Monday 1:30-2:30

• Thursday: 2-3

• Friday: 3-4

Agenda

1. Set operators & nested queries

2. Aggregation & GROUP BY

3. Advanced SQL-izing

3

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 6: The Database Language SQL (6.2-6.4)

4

Acknowledgement: The following slides have been adapted from
CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. Set Operators & Nested
Queries

5

6

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

What does it compute?

S T

R

7

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes R  (S  T)

But what if S = ?

S T

R

Go back to the semantics!

8

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Recall the semantics!
1. Take cross-product

2. Apply selections / conditions

3. Apply projection

If S = {}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.

Are there more explicit way to do set operations like this?

Set Operations in SQL

9

Explicit Set Operators: INTERSECT

10

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴 𝑟. 𝐴 = 𝑠. 𝐴 ∩ 𝑟. 𝐴 𝑟. 𝐴 = 𝑡. 𝐴}

UNION

11

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

𝑟. 𝐴 𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴 𝑟. 𝐴 = 𝑡. 𝐴}

By default:

SQL uses set

semantics!

What if we want

duplicates?

UNION ALL

12

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴 𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴 𝑟. 𝐴 = 𝑡. 𝐴}

ALL indicates

Multiset

operations

EXCEPT

13

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴 𝑟. 𝐴 = 𝑠. 𝐴 \{𝑟. 𝐴|𝑟. 𝐴 = 𝑡. 𝐴}

INTERSECT: Still some subtle problems…

14

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT hq_city
FROM Company, Product
WHERE maker = name
 AND factory_loc = ‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
 AND factory_loc = ‘China’

What can go wrong here?

“Headquarters of

companies which

make products in

US AND China”

INTERSECT: Remember the semantics!

15

Company(name, hq_city) AS C
Product(pname, maker, factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name
 AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Example: C JOIN P on maker = name

C.name C.hq_city P.pname P.maker P.factory_loc

X Co. Seattle X X Co. U.S.

Y Inc. Seattle X Y Inc. China

X Co has a factory in the US (but not China)

Y Inc. has a factory in China (but not US)

But Seattle is returned by the query!

One Solution: Nested Queries

16

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT DISTINCT hq_city
FROM Company
WHERE name IN (

 SELECT maker
 FROM Product
 WHERE factory_loc = ‘US’
 INTERSECT
 SELECT maker
 FROM Product
 WHERE factory_loc = ‘China’)

“Headquarters of

companies which

make products in

US AND China”

One Solution: Nested Queries

17

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT DISTINCT hq_city
FROM Company
WHERE name IN (
 SELECT maker
 FROM Product
 WHERE factory_loc = ‘US’)
 AND name IN (
 SELECT maker
 FROM Product
 WHERE factory_loc = ‘China’)

“Headquarters of

companies which

make products in

US AND China”

High-level note on nested queries

We can do nested queries because SQL is compositional:

• Everything (inputs / outputs) is represented as multisets- the output of one
query can thus be used as the input to another (nesting)!

This is extremely powerful!

19

Nested queries: Sub-queries Return Relations

SELECT c.city
FROM Company c
WHERE c.name IN (
 SELECT pr.maker
 FROM Purchase p, Product pr
 WHERE p.product = pr.name
 AND p.buyer = ‘Joe Blow‘)

“Cities where

one can find

companies that

manufacture

products bought

by Joe Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Another

example:

20

Nested Queries

SELECT c.city
 FROM Company c,
 Product pr,
 Purchase p
 WHERE c.name = pr.maker
 AND pr.name = p.product
 AND p.buyer = ‘Joe Blow’

Are these queries equivalent?

Beware of duplicates!

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product
 AND p.buyer = ‘Joe Blow‘)

21

Nested Queries

SELECT DISTINCT c.city
 FROM Company c,
 Product pr,
 Purchase p
 WHERE c.name = pr.maker
 AND pr.name = p.product
 AND p.buyer = ‘Joe Blow’

Now they are equivalent (both use set semantics)

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
 SELECT pr.maker
 FROM Purchase p, Product pr
 WHERE p.product = pr.name
 AND p.buyer = ‘Joe Blow‘)

22

Subqueries Return Relations

SELECT name
FROM Product
WHERE price > ALL(
 SELECT price
 FROM Product
 WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You can also use operations of the form:

• s > ALL R

• s < ANY R

• EXISTS R

Find products that

are more

expensive than all

those produced by

“Gizmo-Works”

Ex:

23

Subqueries Return Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’
 AND EXISTS(
 SELECT p2.name
 FROM Product p2
 WHERE p2.maker <> ‘Gizmo-Works’
 AND p1.name = p2.name)

Product(name, price, category, maker)

You can also use operations of the form:

• s > ALL R

• s < ANY R

• EXISTS R

Find ‘copycat’

products, i.e.

products made by

competitors with

the same names

as products made

by “Gizmo-Works”

Ex:

<> means !=

Exists: not empty => true

24

Correlated Queries Using External Vars in Internal Subquery

SELECT DISTINCT title
FROM Movie AS m
WHERE year < ANY(
 SELECT year
 FROM Movie
 WHERE title = m.title)

Movie(title, year, director, length)

Find movies whose

title appears more

than once.

Note the

scoping of the

variables!

Subquery that refers to columns from the outer query.

25

Complex Correlated Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(
 SELECT y.price
 FROM Product AS y
 WHERE x.maker = y.maker
 AND y.year < 1972)

Find products (and
their manufacturers)
that are more
expensive than all
products made by the
same manufacturer
before 1972

Product(name, price, category, maker, year)

Can be very powerful (also much harder to optimize)

Correlated vs Regular Subqueries

In terms of execution
• Regular: executed once for the entire outer query

• Correlated: executed once for each row processed by the outer query
(due to the dependence between inner and outer queries)

This means that correlated subqueries are usually very slow
• When possible, rewrite using JOINs for better performance

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(
 SELECT year
 FROM Movie
 WHERE title = m.title)

SELECT DISTINCT m1.title
FROM Movie m1 JOIN Movie m2
 ON m1.title = m2.title
WHERE m1.year <> m2.year

Basic SQL Summary

• SQL provides a high-level declarative language for manipulating
data (DML)

• The workhorse is the SFW block

• Set operators are powerful but have some subtleties

• Powerful, nested queries also allowed.

27

2. Aggregation & GROUP BY

28

29

Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except COUNT, all aggregations

apply to a single attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL supports several aggregation operations:

• SUM, COUNT, MIN, MAX, AVG

30

COUNT applies to duplicates, unless otherwise stated

SELECT COUNT(category)
FROM Product
WHERE year > 1995

We probably want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: COUNT

31

Purchase(product, date, price, quantity)

More Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do these mean?

32

Simple Aggregations

Purchase

Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 1*20 + 1.50*20)

33

Grouping and Aggregation

SELECT product,
 SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales

after 10/1/2005

per product.

Purchase(product, date, price, quantity)

34

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

35

1. Compute the FROM and WHERE clauses

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

36

2. Group by the attributes in the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

37

3. Compute the SELECT clause: grouped
attributes and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECT
Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

38

HAVING Clause

Same query as

before, except that

we consider only

products that have

more than

100 buyers
HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

39

General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates over other attributes

• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

40

General form of Grouping and Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the
attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

41

Group-by v.s. Nested Query

Find authors who wrote >= 10 documents:
• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE COUNT(
 SELECT Wrote.url
 FROM Wrote
 WHERE Author.login = Wrote.login) > 10

Author(login, name)

Wrote(login, url)

This is

SQL by

a novice

42

Group-by v.s. Nested Query

Find all authors who wrote at least 10 documents:
• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING COUNT(Wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY

This is

SQL by

an expert

Group-by vs. Nested Query

Which way is more efficient?

• Attempt #1- With nested: How many times do we do a SFW query
over all of the Wrote relations?

• Attempt #2- With group-by: How about when written this way?

With GROUP BY can be much more efficient!

3. Advanced SQL-izing

44

45

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:
• Value does not exists
• Value exists but is unknown
• Value not applicable

• Etc.

• The schema specifies for each attribute if can be null
(nullable attribute) or not

• How does SQL cope with tables that have NULLs?

46

Null Values

• For numerical operations, NULL -> NULL:
• If x = NULL then 4*(3-x)/7 is still NULL

• For boolean operations, in SQL there are three values:

FALSE = 0

UNKNOWN = 0.5

TRUE = 1

• If x= NULL then x=“Joe” is UNKNOWN

Comparisons with NULL
result in UNKNOWN

47

Null Values

• C1 AND C2 = min(C1, C2)

• C1 OR C2 = max(C1, C2)

• NOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25)
 AND (height > 6 AND weight > 190)

Won’t return e.g.

(age=20

height=NULL

weight=200)!

Rule in SQL: include only tuples that yield TRUE (1.0)

48

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Does this query include all rows in the table?

49

Null Values

Can test for NULL explicitly:
• x IS NULL

• x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25
 OR age IS NULL

Now it includes all Persons!

50

Inner Joins

By default, joins in SQL are “inner joins”:

SELECT Product.name, Purchase.store

FROM Product

 JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both equivalent:

Both INNER JOINS!

51

Inner Joins + NULLS = Lost data?

However: Products that never sold (with no Purchase tuple) will be lost!

SELECT Product.name, Purchase.store

FROM Product

 JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

By default, joins in SQL are “inner joins”:

52

Outer Joins

• An outer join returns tuples from the joined relations that don’t have a
corresponding tuple in the other relations
• I.e. If we join relations A and B on a.X = b.X, and there is an entry in A with X=5,

but none in B with X=5…
• A LEFT OUTER JOIN will return a tuple (a, NULL)!

• Left outer joins in SQL: SELECT Product.name, Purchase.store

FROM Product

 LEFT OUTER JOIN Purchase ON

 Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sell

53

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

INNER JOIN:

SELECT Product.name, Purchase.store

FROM Product

 INNER JOIN Purchase

 ON Product.name = Purchase.prodName

54

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

LEFT OUTER JOIN:

SELECT Product.name, Purchase.store

FROM Product

 LEFT OUTER JOIN Purchase

 ON Product.name = Purchase.prodName

55

Other Outer Joins

Left outer join:
• Include the left tuple even if there’s no match

Right outer join:
• Include the right tuple even if there’s no match

Full outer join:
• Include the both left and right tuples even if there’s no match

Summary

SQL is a rich programming language
that handles the way data is

processed declaratively

62

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Logistics
	Slide 3: Agenda
	Slide 4: Reading Materials
	Slide 5: 1. Set Operators & Nested Queries
	Slide 6: An Unintuitive Query
	Slide 7: An Unintuitive Query
	Slide 8: An Unintuitive Query
	Slide 9: Set Operations in SQL
	Slide 10: Explicit Set Operators: INTERSECT
	Slide 11: UNION
	Slide 12: UNION ALL
	Slide 13: EXCEPT
	Slide 14: INTERSECT: Still some subtle problems…
	Slide 15: INTERSECT: Remember the semantics!
	Slide 16: One Solution: Nested Queries
	Slide 17: One Solution: Nested Queries
	Slide 18: High-level note on nested queries
	Slide 19: Nested queries: Sub-queries Return Relations
	Slide 20: Nested Queries
	Slide 21: Nested Queries
	Slide 22: Subqueries Return Relations
	Slide 23: Subqueries Return Relations
	Slide 24: Correlated Queries Using External Vars in Internal Subquery
	Slide 25: Complex Correlated Query
	Slide 26: Correlated vs Regular Subqueries
	Slide 27: Basic SQL Summary
	Slide 28: 2. Aggregation & GROUP BY
	Slide 29: Aggregation
	Slide 30: Aggregation: COUNT
	Slide 31: More Examples
	Slide 32: Simple Aggregations
	Slide 33: Grouping and Aggregation
	Slide 34: Grouping and Aggregation
	Slide 35: 1. Compute the FROM and WHERE clauses
	Slide 36: 2. Group by the attributes in the GROUP BY
	Slide 37: 3. Compute the SELECT clause: grouped attributes and aggregates
	Slide 38: HAVING Clause
	Slide 39: General form of Grouping and Aggregation
	Slide 40: General form of Grouping and Aggregation
	Slide 41: Group-by v.s. Nested Query
	Slide 42: Group-by v.s. Nested Query
	Slide 43: Group-by vs. Nested Query
	Slide 44: 3. Advanced SQL-izing
	Slide 45: NULLS in SQL
	Slide 46: Null Values
	Slide 47: Null Values
	Slide 48: Null Values
	Slide 49: Null Values
	Slide 50: Inner Joins
	Slide 51: Inner Joins + NULLS = Lost data?
	Slide 52: Outer Joins
	Slide 53: INNER JOIN:
	Slide 54: LEFT OUTER JOIN:
	Slide 55: Other Outer Joins
	Slide 62: Summary

