
CS 6400 A

Database Systems
Concepts and Design

Lecture 2

08/20/25

Agenda

1. SQL introduction & schema definitions

2. Basic single-table queries
• ACTIVITY: Single-table queries

3. Multi-table queries
• ACTIVITY: Multi-table queries

2

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 2: The Relation Model of Data (2.2- 2.3)

• Chapter 6: The Database Language SQL (6.1-6.2)

3

Acknowledgement: The following slides have been adapted from
CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. SQL Introduction &
Definitions

4

SQL

• SQL is a standard language for querying and manipulating data

• SQL is a very high-level programming language

• This works because it is optimized well!

• Many standards out there:

• ANSI SQL, SQL92 (a.k.a. SQL2), SQL99 (a.k.a. SQL3), ….

• Vendors support various subsets

SQL stands for

Structured Query Language

6

SQL is a…

• Data Definition Language (DDL)

• Define relational schemata

• Create/alter/delete tables and their attributes

• Data Manipulation Language (DML)

• Insert/delete/modify tuples in tables

• Query one or more tables

7

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A relation or table is a
multiset of tuples
having the attributes
specified by the schema

Let’s break this
definition down

8

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A multiset is an
unordered list (or: a set
with multiple duplicate
instances allowed)

List: [1, 1, 2, 3]
Set: {1, 2, 3}
Multiset: {1, 1, 2, 3}

i.e. no next(), etc. methods!

9

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product An attribute (or column)
is a typed data entry
present in each tuple in
the relation

Attributes must have an atomic
type in standard SQL, i.e. not a
list, set, etc.

10

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A tuple or row is a
single entry in the table
having the attributes
specified by the schemaAlso referred to sometimes as a record

11

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

The number of tuples is
the cardinality of the
relation

The number of
attributes is the arity of
the relation

12

Tables in SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

Q: How many ways are there to

represent this relation?

• A relation is a set of tuples (not a list)

• A schema is a set of attributes (not a list)

• Hence, the order of tuples or attributes of a relation is immaterial

13

Data Types in SQL

• Atomic types:
• Characters: CHAR(20), VARCHAR(50)

• Numbers: INT, BIGINT, SMALLINT, FLOAT

• Others: DATE, TIME, …

• Every attribute must have an atomic type
• Hence tables are flat

If CHAR(n) string has fewer than n

characters, padded with spaces

14

Table Schemas

• The schema of a table is the table name, its attributes, and their types:

• A key is an attribute whose values are unique; we underline a key

Product(Pname: string, Price: float, Category: string, Manufacturer:
string)

Product(Pname: string, Price: float, Category: string, Manufacturer:
string)

Key constraints

• A key is an implicit constraint on which tuples can be in the relation

• i.e. if two tuples agree on the values of the key, then they must
be the same tuple!

1. Which would you select as a key?

2. Is a key always guaranteed to exist?

3. Can we have more than one key?

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

Students(sid:string, name:string, gpa: float)

NULL and NOT NULL

• To say “don’t know the value” we use NULL
• NULL has (sometimes painful) semantics, more detail later

sid name gpa

123 Bob 3.9

143 Jim NULL Say, Jim just enrolled in his first class.

In SQL, we may constrain a column to be NOT NULL, e.g., “name” in this table

Students(sid:string, name:string, gpa: float)

General Constraints

• We can actually specify arbitrary assertions

• E.g. “There cannot be 90 people in the DB class”

• In practice, we don’t specify many such constraints. Why?

• Performance!

Whenever we do something ugly (or avoid doing something
convenient), it’s for the sake of performance

Summary of Schema Information

• Schema and Constraints are how databases understand the semantics
(meaning) of data

• They are also useful for optimization

• SQL supports general constraints:

• Keys and foreign keys are most important (more details later)

Creating a Table in SQL

● To create a table, use CREATE TABLE

19

CREATE TABLE Movies (
 title CHAR(100),
 year INT,
 length INT,
 genre CHAR(10),
 studioName CHAR(30),
 producer INT
);

CREATE TABLE MovieStar (
 name CHAR(30),
 address VARCHAR(30),
 gender CHAR(1),
 birthdate DATE
);

DROP TABLE R;

ALTER TABLE MovieStar ADD phone CHAR(16);

ALTER TABLE MovieStar DROP birthdate;

Modifying relation schemas

● To modify a table, use ALTER TABLE and DROP TABLE

20

Existing tuples

will have NULL

values for

attribute phone

● Declare one attribute to be a key
● Add separate declaration which attributes form a key

○ Need to use this method for multiple-attribute keys

Declaring keys

21

CREATE TABLE MovieStar (
 name CHAR(30) PRIMARY KEY,
 address VARCHAR(30),
 gender CHAR(1),
 birthdate DATE
);

CREATE TABLE MovieStar (
 name CHAR(30),
 address VARCHAR(30),
 gender CHAR(1),
 birthdate DATE,
 PRIMARY KEY (name, address)
);

Inserting tuples

A new tuple can be inserted into the relation R using an insertion
statement.

○ For any missing attributes of R, the tuple has default values
○ If we provide values for all attributes, the list of attributes can be omitted

22

producer will have a NULL default value

INSERT INTO Movies(title, year, length, genre, studio)
 VALUES (‘Ponyo’, 2008, 103, ‘anime’, ‘Ghibli’);

Movies(title: string, year: int, length: int, genre: string, studio:
string, producer: int)

Deleting tuples

● Use a delete statement to delete every tuple satisfying a condition
○ The tuple must be described by a WHERE clause
○ Be careful: omitting the WHERE clause removes all tuples from table

23

DELETE FROM Movies
WHERE year >= 2008
 AND length > 100
 AND genre = ‘anime’;

Updating tuples

● Change the components of existing tuples in the database
○ Multiple assignments are separated by commas

24

UPDATE Movies
SET length = 110, Producer = 123
WHERE title = ‘Ponyo’
 AND year = 2008;

2. Basic SQL

25

26

Simple SQL Query

• Basic form (there are many many more bells and whistles)

Call this a SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Simple SQL Query

● Simplest form: ask for tuples in a relation that satisfy a condition

27

Movies(title, year, length, genre, studioName)

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

SELECT *

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

title year length genre studioName

Ponyo 2008 103 anime Ghibli

Simple SQL Query: Projection

● We can replace the * of the SELECT clause with attributes of the relation

28

title length

Ponyo 103

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

SELECT title, length

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

Simple SQL Query: Projection

● Use the keyword AS and alias to change an attribute’s name

29

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

title year length genre studioName

Ponyo 2008 103 anime Ghibli

name length

Ponyo 103

SELECT title AS name, length

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

title year length genre studioName

Ponyo 2008 103 anime Ghibli

Simple SQL Query: Projection

● Use an expression in place of an attribute

30

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

title lengthHrs

Ponyo 1.716

SELECT title, length/60 AS lengthHrs

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

Simple SQL Query: Projection

● Can even allow a constant as an expression

31

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

title year length genre studioName

Ponyo 2008 103 anime Ghibli

title isMovie

Ponyo yes

SELECT title, ‘yes’ AS isMovie

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

32

Notation

SELECT title, ‘yes’ AS isMovie

FROM Movies

WHERE studioName = ‘Ghibli’

AND year = 2008;

Movies(title, year, length, genre, studioName)

Answer(title, isMovie)

Input schema

Output schema

Simple SQL Query: Selection

In the WHERE clause, we may build expressions using:
○ Comparison: =, <>, < , >, <=, and >=
○ Arithmetic: +, -, *, /, %
○ Strings: surrounded by single quotes
○ Boolean operators: AND, OR, NOT

33

SELECT title

FROM Movies

WHERE studioName = ‘Ghibli’

AND (year > 2000 OR length <= 100);

Selection is the operation of
filtering a relation’s tuples on some
condition

Comparison of strings

● Two strings are equal if they have the same sequence of
characters
○ Ignore pad characters in fixed-length CHAR(n) strings

● <, >, <=, >= comparisons are based on lexicographic order
○ ‘fodder’ < ‘foo’
○ ‘bar’ < ‘bargain’

34

35

A Few Details

• SQL commands are case insensitive:

• Same: SELECT, Select, select

• Same: Product, product

• Values are not:

• Different: ‘Seattle’, ‘seattle’

• Use single quotes for constants:

• ‘abc’ - yes

• “abc” - no

36

LIKE: Simple String Pattern Matching

• s LIKE p: pattern matching on strings

• p may contain two special symbols:

• % = any sequence of characters

• _ = any single character

SELECT title

FROM Movies

WHERE title LIKE ‘Star ____’;

SELECT title

FROM Movies

WHERE title LIKE ‘Star%’;

37

DISTINCT: Eliminating Duplicates

SELECT DISTINCT Category
FROM Product

Versus

SELECT Category
FROM Product

Category

Gadgets

Gadgets

Photography

Household

Category

Gadgets

Photography

Household

38

ORDER BY: Sorting the Results

SELECT title

FROM Movies

WHERE studioName = ‘Ghibli’

ORDER BY length, title DESC;

Ties are broken by the
second attribute on the
ORDER BY list, etc.

Ordering is ascending,
unless you specify the
DESC keyword.

In-class Activity

● MAKE A COPY of the Notebook

● Complete the ”Set Up” section for
single-table queries

● Complete Q1 and Q2

39

https://tinyurl.com/37x85w2j

https://tinyurl.com/37x85w2j

3. Multi-table Queries

40

Queries involving multiple relations

● Until now, we studied queries for a single relation
● We can also combine multiple relations

○ joins, products, unions, intersections, and differences

● Why store data in multiple relations?
○ Single table

■ Data exchange is easier
■ Avoids cost of joining

○ Multiple tables
■ Data updates are easier
■ Querying a table is faster

41

Foreign Key constraints

student_id alone is not a key
- what is?sid name gpa

101 Bob 3.2

123 Mary 3.8

student_id cid grade

123 564 A

123 537 A+

Students Enrolled

We say that student_id is a foreign key that refers to Students

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

Suppose we have the following schema:

And we want to impose the following constraint:

• ‘Only bona fide students may enroll in courses’ i.e. a student
must appear in the Students table to enroll in a class

Declaring Foreign Keys

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled(
 student_id CHAR(20),
 cid CHAR(20),
 grade CHAR(10),
 PRIMARY KEY (student_id, cid),
 FOREIGN KEY (student_id) REFERENCES Students(sid)
)

What if we insert a tuple into Enrolled, but no corresponding student?

• INSERT is rejected (foreign keys are constraints)!

What if we delete a student?

1. Disallow the delete

2. Remove all of the courses for that student

3. Set the foreign key columns to NULL (if the column is nullable)

Foreign Keys and update operations

DBA chooses (syntax in the book)

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

45

Exercise

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Company

CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Q: What is a foreign key vs.

a key here?

46

Joins

Ex: Find all products under $200 manufactured in

Japan; return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 AND Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

47

Ex: Find all products under $200 manufactured in

Japan; return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 AND Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

A join between tables
returns all unique
combinations of their
tuples which meet some
specified join condition

Joins

48

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

Several equivalent ways to write a basic join in SQL:

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 AND Price <= 200

SELECT PName, Price
FROM Product
JOIN Company ON Manufacturer = CName
 AND Country=‘Japan’
WHERE Price <= 200

Joins

49

PName Price Category Manuf

Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country

GWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 AND Price <= 200

Joins

50

Tuple Variable Ambiguity in Multi-Table

SELECT DISTINCT name, address
FROM Person, Company
WHERE worksfor = name

Person(name, address, worksfor)

Company(name, address)

Which “address” does
this refer to?

Which “name”s??

51

Person(name, address, worksfor)

Company(name, address)

SELECT DISTINCT Person.name, Person.address
FROM Person, Company
WHERE Person.worksfor = Company.name

SELECT DISTINCT p.name, p.address
FROM Person p, Company c
WHERE p.worksfor = c.name

Both

equivalent

ways to

resolve

variable

ambiguity

Tuple Variable Ambiguity in Multi-Table

52

Meaning (Semantics) of SQL Queries

SELECT x1.a1, x1.a2, …, xn.ak

FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer = {}
for x1 in R1 do
 for x2 in R2 do
 …..
 for xn in Rn do
 if Conditions(x1,…, xn)
 then Answer = Answer  {(x1.a1, x1.a2, …, xn.ak)}
return Answer

Almost never the fastest way
to compute it!

Note: this is a multiset union

An example of SQL semantics

53

SELECT R.A
FROM R, S
WHERE R.A = S.B

A

1

3

B C

2 3

3 4

3 5

A B C

1 2 3

1 3 4

1 3 5

3 2 3

3 3 4

3 3 5

Cross

Product

A B C

3 3 4

3 3 5

A

3

3

Apply

ProjectionApply

Selections /

Conditions

Output

Note the semantics of a join

54

SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall: Cross product (A X B) is the set of all
unique tuples in A,B

Ex: {a,b,c} X {1,2}
 = {(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)}

= Filtering!

= Returning only some
attributes

Remembering this order is critical to understanding the
output of certain queries

1. Take cross product:
X = R × S

2. Apply selections / conditions:
Y = r, s ∈ X r. A == r. B}

3. Apply projections to get final output:
Z = (y. A,) for y ∈ Y

Note: we say “semantics” not “execution order”

The previous slides show what a join means

Not actually how the DBMS executes it under the covers

• We will discuss the execution in a later lecture

In-class Activity Continued

● Make a copy of the Collab Notebook

● Complete the Setup for multi-table
queries and Q3

56

https://tinyurl.com/37x85w2j

https://tinyurl.com/37x85w2j

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Agenda
	Slide 3: Reading Materials

	relational model
	Slide 4: 1. SQL Introduction & Definitions
	Slide 5: SQL
	Slide 6: SQL is a…
	Slide 7: Tables in SQL
	Slide 8: Tables in SQL
	Slide 9: Tables in SQL
	Slide 10: Tables in SQL
	Slide 11: Tables in SQL
	Slide 12: Tables in SQL
	Slide 13: Data Types in SQL
	Slide 14: Table Schemas
	Slide 15: Key constraints
	Slide 16: NULL and NOT NULL
	Slide 17: General Constraints
	Slide 18: Summary of Schema Information
	Slide 19: Creating a Table in SQL
	Slide 20: Modifying relation schemas
	Slide 21: Declaring keys
	Slide 22: Inserting tuples
	Slide 23: Deleting tuples
	Slide 24: Updating tuples

	SQL basics
	Slide 25: 2. Basic SQL
	Slide 26: Simple SQL Query
	Slide 27: Simple SQL Query
	Slide 28: Simple SQL Query: Projection
	Slide 29: Simple SQL Query: Projection
	Slide 30: Simple SQL Query: Projection
	Slide 31: Simple SQL Query: Projection
	Slide 32: Notation
	Slide 33: Simple SQL Query: Selection
	Slide 34: Comparison of strings
	Slide 35: A Few Details
	Slide 36: LIKE: Simple String Pattern Matching
	Slide 37: DISTINCT: Eliminating Duplicates
	Slide 38: ORDER BY: Sorting the Results
	Slide 39: In-class Activity

	multi
	Slide 40: 3. Multi-table Queries
	Slide 41: Queries involving multiple relations
	Slide 42: Foreign Key constraints
	Slide 43: Declaring Foreign Keys
	Slide 44: Foreign Keys and update operations
	Slide 45: Exercise
	Slide 46: Joins
	Slide 47
	Slide 48
	Slide 49: Joins
	Slide 50: Tuple Variable Ambiguity in Multi-Table
	Slide 51: Tuple Variable Ambiguity in Multi-Table
	Slide 52: Meaning (Semantics) of SQL Queries
	Slide 53: An example of SQL semantics
	Slide 54: Note the semantics of a join
	Slide 55: Note: we say “semantics” not “execution order”
	Slide 56: In-class Activity Continued

