Database Systems
Concepts and Design

Lecture 15
10/15/25

Reading Materials

Database Systems: The Complete Book (2nd edition)
» Chapter 15: Query Execution

BOOK

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

Agenda

RECAP: Joins
1. Nested Loop Join (NLJ)
2. Sort-Merge Join (SMJ)

3. Hash Join (HJ)

RDBMS Architecture

How does a SQL engine work 7

Query optimization
(next two lectures)

—_—

—

~——

SQL query
!

[Parse Query]

[Select logical query plan]

[Select physical plan]

[Query execution] —

Query execution (this
lecture): algorithms
that manipulate the

data of the database

We will use JOIN algorithms as an example

* Arguable one of the most computational expensive operations in
relational databases

* As we will see, different implementations of JOINs can make a
huge difference in performance.

Joins: Example

RixS |[SELECTR.A,B,CD Example: Returns all pairs of
FROM R, S tuples r € R, s € S such that
WHERE R.A=S.A r.A = s.A
S
1 0 1 3 7 3 4 2

2 3 4| |2 2 »

5 2 2 3

1 1

w N

Joins: Example

RS |SELECTR.A,B,CD Example: Returns all pairs of
FROM R, S tuples r € R, s € S such that
WHERE RA=S.A r.A = s.A
S
1 0 1 3 7 2 3 4 2
2 3 4| 2 2 > 3 4 3
5 2 2 3
1 1

w N

Joins: Example

RixS |[SELECTR.A,B,CD Example: Returns all pairs of
FROM R, S tuples r € R, s € S such that
WHERE RA=S.A r.A = s.A
S
1T 0 1 3 7 2 3 4 2
2 3 4 Ele » 2 3 4 3
2 5 2] |2 3 > 5 5 5
3 1 1

Joins: Example

RS |SELECTR.A,B,CD Example: Returns all pairs of
FROM R, S tuples r € R, s € S such that

WHERE R.A=S.A r.Ad = s.A

S

1 0 1 3 7 2 3 4 2

2 3 4 2 2 » 5 3 4 3

(2 5 2] |2 3 > 5 5 5

3 1 1
2 5 2 3

Joins: Example

RS |SELECTR.A,B,CD Example: Returns all pairs of
FROM R, S tuples r € R, s € S such that

WHERE R.A=S.A r.A = s.A

S
1T 0 1 3 7 2 3 4 2
2 3 4 2 2 » 5 3 4 3
2 5 2 2 3

[3 1 1] 2 5 2 2

2 5 2 3

3 1 1 7

Semantically: A Subset of the Cross Product

RxS R.A,B,C,D Example: Returns all pairs of
R, S tuples r € R, s € S such that
RA=S.A r.A = s.A
S
1 0 1 3 7 2 3 42
s a4 X,) ... > 2 3 4 3 Can we actually
5 5 o > 3 | > 5 2 implement a join
3 1 Cross Fitterby 5 ¢ 5 5 in this way?
Product conditions

(rA =s.A)

1. Nested Loop Joins

Notes

* We write R > § to mean join R and S by returning all tuple pairs
where all shared attributes are equal (natural join)

* We write R @ S on A to mean join R and S by returning all tuple
pairs where attribute(s) A are equal

 For simplicity, we'll consider joins on two tables and with equality
constraints (“equijoins™)
Join can involve > 2 tables, and

some algorithms do support non-
equality constraints!

Notes

« \We are considering “lO aware” algorithms: care about disk 10

» Given a relation R, let: Recall that we read /
* T(R) = # of tuples in R write entire pages with
* P(R) = # of pages in R disk 10

* Note also that we omit ceilings in calculations... good exercise to
put back in!

Nested Loop Join (NLJ)

Compute R @ S on A:
forrinR:
forsinS:
if r[A] == s[A]:
vield (r,s)

Nested Loop Join (NLJ)

Compute R @ S on A:

chEr rin R: }
forsinS:
if r[A] == s[A]:
vield (r,s)

Cost:

P(R)

1. Loop over the tuples in R

Note that our 1O cost is
based on the number of
pages loaded, not the
number of tuples!

Nested Loop Join (NLJ)

Cost:
Compute R @ S on A: P(R) + T(R)*P(S)
forrinR:
: 1. Loop over the tuples in R
forsinS:

if r[A] == s[A]: 2. For every tuple in R, loop

. over all the tuples in S

vield (r,s)

Have to read all of S from disk for every tuple in R!

Nested Loop Join (NLJ)

Cost:
Compute R @ S on A: P(R) + T(R)*P(S)
forrinR:
. 1. Loop over the tuples in R
forsinS:
if r[A] == s[A]: 2. For every tuple in R, loop
o over all the tuples in S
vield (r,s)

3. Check against join
conditions

Note that NLJ can handle things other than
equality constraints... just check in the if
statement!

Nested Loop Join (NLJ)

Cost:
Compute R @ S on A: P(R) + T(R)*P(S) + OUT
forrinR:
. 1. Loop over the tuples in R
forsinS:
if r[A] == s[A]: 2. For every tuple in R, loop
. over all the tuples in S
vield (r,s)

3. Check against join

What would OUT ~ OUT could be conditions

be if our join P(R)*P(S)... but
condition is trivial usually not that bad
(if TRUE)?

4. Write out (to page, then
when page full, to disk)

Nested Loop Join (NLJ)

Cost:
Compute R @ S on A: P(R) + T(R)*P(S) + OUT
forrinR:
: inS. What if R (“outer™) and S
orsin > (“Inner”) switched?
if r[A] == s[A]:

vield (r,s) @

P(S) + T(S)*P(R) + OUT

Quter vs. inner selection makes a huge difference-
DBMS needs to know which relation is smaller!

Block Nested Loop Join
(I0-Aware Approach)

Block Nested Loop Join (BNLJ) ~ Given B+1 pages of memory

Cost:
Compute R @ S on A: P(R)
for each B-1 pages pr of R:
for page ps of S: 1. Load in B-1 pages of R at a
: . time (leaving 1 page free for
for each tuple rin pr: S & output)
for each tuple s in ps:
if r[A] == s[A]: Note: There could be some
. speedup here due to the fact
yield (r,s) that we're reading in multiple
pages sequentially however we'll

ignore this here!

Block Nested Loop Join (BNLJ) ~ Given B+1 pages of memory

Cost:
Compute R ™ § on A: P(R) P(R) Do
for each B-1 pages pr of R: T B — (5)
for page ps of S: 1. Load in B-1 pages of R at a
. . time (leaving 1 page each free
for each tuple rin pr: for S & output)
for each tuple s in ps:
: L . 2. For each (B-1)-page segment
itr[A] == s[A]: of R, load each page of S
vield (r,s)

Note: Faster to iterate over
the smaller relation first!

Block Nested Loop Join (BNLJ) ~ Given B+1 pages of memory

Cost:
Compute R ™ S on A: bR P(R) .
for each B-1 pages pr of R: (R) + B — (5)
for page ps of S: 1. Loadin B-1 pages of R at a
_ time (leaving 1 page each free
for each tuple r in pr: for S & output)

for each tuple s in ps:
2. For each (B-1)-page segment

if r[A] == S[A]: of R, load each page of S
yield (r,s)

3. Check against the join

conditions

BNLJ can also handle non-equality constraints

Block Nested Loop Join (BNLJ) ~ Given B+1 pages of memory

Cost:

Compute R @@ S on A: P(R) + P(R)P(S) L OUT

for each B-1 pages pr of R:
1. Load in B-1 pages of R at a
time (leaving 1 page each free

for each tuple rin pr: for S & output)

for page ps of S:

for each tuple s in ps: 2. For each (B-1)-page segment
if r[A] == s[A]: of R, load each page of S

yield (r,s) 3. Check against the join

conditions

4. Write out

BNLJ vs. NLJ: Benefits of |O Aware

In BNLJ, by loading larger chunks of R, we minimize the number
of full disk reads of S

« We only read all of S from disk for every (B-1)-page segment of R!

o Still the full cross-product, but more done only in memory

NLJ BNLJ
P(R) + T(R)*P(S) + OUT mm) P(R) ’;(_Rl) P(S) + OUT
B-1T(R)

BNLJ is faster by roughly (

P(R)

BNLJ vs. NLJ: Benefits of |O Aware

Example:
* R: 500 pages
« S: 1000 pages
* 100 tuples / page
« We have 12 pages of memory (B = 11) Ignoring OUT here...

NLJ: Cost = 500 + 50,000*1000 = 50 Million 10s ~= 140 hours

500%x1000

BNLJ: Cost =500 + = 50 Thousand 10s ~= 0.14 hours

A real difference from a small change in the
algorithm!

Discussion: Buffer Management for BNLJ

Buffer: 3 pages

R > S using BNLJ

Relation R: 3 pages (R1,
R2, R3)

Relation S: 3 pages (ST,
S2, S3)

for each B-1 pages pr of R:
for page ps of S:
for each tuplerin pr:

for each tuple s in ps:

Main Memory

Buffer

Buffer 3 pages

Discussion: Buffer Management for BNLJ

Action Buffer
Read R1 R1]

Read R2 R1, R2]
Read S1 R1, R2, S1]
Join S1 with R1,R2

Read S2 ?7?

for each B-1 pages pr of R:
for page ps of S:
for each tuplerin pr:

for each tuple s in ps:

Does LRU work well here?

Can you think of a better policy?

Index Nested Loop Join

(Smar

‘er than Cross-

Products)

Smarter than Cross-Products: From Quadratic
to Nearly Linear

All joins that compute the full cross-product have some quadratic

term
- For example we saw: ~ NLJ P(R) + T(R)P(S) + OUT

BNLJ P(R) + %P(S) + OUT

Now we'll see some (nearly) linear joins:
« ~O(P(R) + P(S) + OUT), where again OUT could be quadratic but is
usually better

We get this gain by taking advantage of structure -
equality constraints (“equijoin™) only!

Index Nested Loop Join (INLJ)

Compute R @ S on A:
Given index idx on S.A:
forrinR:
if s inidx(r[A]):
yield r,s

Cost:

P(R) + T(R)*L + OUT

where L is the |O cost to
access all the distinct values
in the index; L ~ 3 is good
estimate

- We can use an index (e.q., B+ Tree) to avoid
doing the full cross-product!

2. Sort-Merge Join (SMJ)

Sort Merge Join (SMJ): Basic Procedure

To compute R < S on A: Note that we are only
considering equality

1. Sort R, S on A using external merge sort join conditions here

2. Scan sorted files and “merge”

3. [May need to “backup’- see next subsection]

Note that if R, S are already sorted on
A, SMJ will be awesome!

SMJ Example: R @ S on A with 3 page bufter

 For simplicity: Let each page be one tuple, and let the first value be A

Disk

Main Memory

Buffer

Ll

—

We show the file
HEAD, which is the
next value to be read!

SMJ Example: R @ S on A with 3 page bufter

1. Sort the relations R, S on the join key (first value)
Disk

Main Memory

Buffer

Ll

—

SMJ Example: R @ S on A with 3 page bufter

2. Scan and “merge” on join key!
Disk

Main Memory

Buffer

Ll

—

SMJ Example: R @ S on A with 3 page bufter

2. Scan and “merge” on join key!
Disk

Main Memory

Buffer

[(0,a)][(0,j)][

—

SMJ Example: R @ S on A with 3 page bufter

2. Scan and “merge” on join key!
Disk

—

Main Memory

Buffer

Ll

][(3,),8)

SMJ Example: R @ S on A with 3 page bufter

2. Done!

Main Memory

Buffer

Ll

—

What happens with duplicate
join keys”?

Multiple tuples with Same Join Key: “"Backup”

1. Start with sorted relations, and begin scan / merge...

Disk

Main Memory

Buffer

Ll

—

Multiple tuples with Same Join Key: “"Backup”

1. Start with sorted relations, and begin scan / merge...

Disk

Main Memory

Buffer

CCJC

—

Multiple tuples with Same Join Key: “"Backup”

1. Start with sorted re
DIS

ations, and begin scan / merge...

R R

Main Memory

Buffer

Ll

o

Multiple tuples with Same Join Key: “"Backup”

1. Start with sorted relations, and begin scan / merge...
Disk

Y

(00)

(0.i) (0.g)

(0,3,))

(0,a,8)

(7.f)

A

—

Main Memory

Buffer

Co)

Have to “backup” in the scan of S and
read tuple we've already read!

BSackup

At best, no backup = scan takes P(R) + P(S) reads

« For ex: if no duplicate values in join attribute

At worst (e.g. full backup each time), scan could take P(R) * P(S) reads!

« For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the
same value for the join attribute

« Roughly: For each page of R, we'll have to back up and read each page of S...

Often not that bad however, plus we can:
« Leave more data in buffer (for larger buffers)

SMJ: Total cost

Cost of SMJ is cost of sorting R and S...

Plus the cost of scanning: ~P(R)+P(S)

« Because of backup: in worst case P(R)*P(S); but this would be very
unlikely

Plus the cost of writing out

~ Sort(P(R)) + Sort(P(S)) Recall: Sort(N) ~ 2N ([logB A } + 1)

2(B+1)
+ P(R) + P(S) + OUT Note: this is using repacking, where we estimate
that we can create initial runs of length ~2(B+1)

SMJ vs. BNLJ

If we have 100 buffer pages, P(R) = 1000 pages and P(S)
 Sort both in two passes: 2 * 2 * (1000 + 500) = 6,000 IOs
« Scan sorted files and merge 1000 + 500 = 1,500 10s
« = 7,500 10s + OUT

What is BNLJ?
. 500 + 1000*[

500

} 6.500 I0s + OUT

But, if we have 35 buffer pages?
« Sort Merge has same behavior (still 2 passes)

« BNLJ? 15,500 /10s + OUT!

SMJ is ~ linear vs. BNLJ is quadratic...
But it's all about the memory.

= 500 pages:

A Simple Optimization: Merges Merged!
Given B+1 buffer pages
« SMJ is composed of a sort phase and a merge phase

 During the sort phase, run passes of external merge sort on R and
S

« Suppose at some point, R and S have <= B (sorted) runs in total

 \We could do two merges (for each of R & S) at this point, complete the
sort phase, and start the merge phase...

* OR, we could combine them: do one B-way merge and complete the join!

So far: Un-Optimized SMJ

Unsorted input relations

Given B+1 buffer pages

Sort Phase [i) [>)
(Ext. Merge Sort) Split & sort b \ Split & sort
LJCJCJC] cJCJCJC]
Merge Merge
[J (] [J (]
Sorted file for R Merge Merge
and S created [] [)

Merge / Join Phase [)

Joined output
file created!

Simple SMJ Optimization Given B+1 buffer pages

Unsorted input relations

Sort Phase [;] [S)
(Ext. Merge Sort) Split & sort <G \ 4 Split & sort

CJCJCJC CJCJCJC

Merge N/ \/ N/ \/ Mermge
<= B total sorted files (

-Way Merge / Join

Merge / Join Phase [)

Joined output
file created!

Simple SMJ Optimization Given B+1 buffer pages

On this last pass, we only do P(R) + P(S) |Os to complete the join!

If we can initially split R and S into B total runs each of length approx
then we only need 3(P(R) + P(S)) + OUT for SMJ!

« 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

How much memory for this to happen?

. P(R)+P(S) - 2
m— <B=~P(R)+P(S) <2B

- max{P(R), P(S)} < B? is an approximate sufficient condition

If the larger of R,S has <= B? pages, then SM] costs
3(P(R)+P(S)) + OUT!

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
« SMJ is basically linear.
* Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
If max { P(R), P(S) } < B then cost is 3(P(R)+P(S)) + OUT

3. Hash Join (HJ)

Recall: Hashing

 Magic of hashing:
A hash function hg maps into [0, B-1]
« And maps nearly uniformly

A hash collision is when x =y but hg(x) = hg(y)
* Note however that it will never occur that x =y but hg(x) = hg(y)

* We hash on an attribute A, so our hash function is hg(t) has the
form hg(t.A).

* Collisions may be more frequent.

lash Join: High-level procedure

Given B+1 buffer pages
To compute R < S on A:

1. Partition Phase: Using one (shared) hash function hg per pass
partition R and S into B buckets.

« Each phase creates B more buckets that are a factor of B smaller.
* Repeatedly partition with a new hash function
« Stop when all buckets for one relation are smaller than B-1 pages

Each pass takes 2(P(R) + P(S))

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for h, and join these

» Use BNLJ here for each matching pair. P(R) + P(S) + OUT

We decompose the problem using hg, then complete the join

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hg, partition R
and S into B buckets
Disk

Disk Suppose each
pages has two
tuples (one per
row)

Hash Join: High-level procedure

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for hg, and join these
Disk

Disk

Join

Hash Join: High-level procedure

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for hg, and join these
Disk

Disk

Don't have
>to join the
others!

E.g. (S1and
R,)!

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if
hg(t.A) = hg(t'.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
* \We use B buffer pages for output (one for each bucket), and 1 for input

Buffer
.
EX)
Input 0 1

\ }
f
Output (bucket) pages

How big do we want the resulting buckets?
Given B+1 buffer pages

Ideally, our buckets would be of size < B — 1 pages

Recall: If we want to join a bucket from R and one from

S, we can do BNLJ in linear time if for one of them Recall for BNLJ:
(wlog say R), P(R) < B —1! P(R) + P(R)P(S)
« And more generally, being able to fit bucket in memory is B—-1
advantageous

* We can keep partitioning buckets until they are
< B — 1 pages
* Using a new hash key which will split them... We'll call each of these 3
“pass” again...

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

We partition into B = 2 buckets using hash function h, so that we
can have one buffer page for each partition (and one for input)

For simplicity, we'll look at partitioning
one of the two relations- we just do the
same for the other relation!

Recall: our goal will be to get B =2
buckets of size <= B-1 - 1 page each

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages
1. We read pages from R into the “input” page of the bufter...

Main Memory

Buffer

— L

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

2. Then we use hash function h, to sort into the buckets, which
each have one page in the buffer

Main Memory -

Buffer

= |-

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

2. Then we use hash function h, to sort into the buckets, which
each have one page in the buffer

Main Memory -
Buffer
|
> (0,a) E¥:)
|
Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

3. We repeat until the buffer bucket pages are full...

Main Memory
Buffer
|
Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

3. We repeat until the buffer bucket pages are full...

Main Memory -

Buffer

|
> (3,) (0,a) (3,2)
< | (0,J) (3,)

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

3. We repeat until the buffer bucket pages are full...

Main Memory -

Buffer

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

3. We repeat until the buffer bucket pages are full... then flush to
disk

Main Memory
Buffer
|
> (0,a) (3,a)
< ‘ [}[(0,) }[(3,) 1
Input 0 1
page | Y J

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

3. We repeat until the buffer bucket pages are full... then flush to
disk

Main Memory

Buffer

— L

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

Note that collisions can occur! ! l

Main Memor
Buffer
|
— (= |
(0,j)
Input 0 1
page | Y J

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

Finish this pass...

Main Memory -
Buffer
|
— =
(0,j)
Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

Finish this pass...

Main Memory
Buffer
|
Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

Finish this pass... ! l

Main Memor

Buffer
]
(5,b)

Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

Finish this pass...

Main Memory
Buffer
|
> (0,) (5,
Input 0 1
page | Y)

Output (bucket) pages

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

We wanted buckets of size B-1 = 1...
however we got larger ones due to:

(1) Duplicate join
keys

(2) Hash collisions

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!

Do another pass with a
different hash function, h’,
Ideally such that:

N'5(3) 1= h5(5)

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

To take care of larger
buckets caused by (2) hash
collisions, we can just do
another pass!

Do another pass with a
different hash function, h’,
Ideally such that:

N'5(3) 1= h5(5)

Hash Join Phase 1: Partitioning Given B+1 =3 buffer pages

What about duplicate join keys?
Unfortunately this is a problem...
but usually not a huge one.

We call this
unevenness In the
bucket size skew

—

Now that we have partitioned R and S...

Hash Join Phase 2: Matching

* Now, we just join pairs of buckets from R and S that have the same
hash value to complete the join!

Disk

Disk

\ Join
matching
/ buckets

Hash Join Phase 2: Matching

* Note that since x =y = h(x) = h(y), we only need to consider pairs of
bulckets (one from R, one from S) that have the same hash function
value

* |f our buckets are ~B — 1 pages, can join each such pair using BNLJ in
linear time; recall (with P(R) = B-1):

BNLJ Cost: P(R) + P(R)P(S) (B-DP(S) _

DPE) = p(R) + P(S)

= P(R) -

Joining the pairs of buckets is linear!
(As long as smaller bucket <= B-1 pages)

Hash Join Phase 2: Matching

RxSonA

R.A
hashed Y
values

Hash Join Phase 2: Matching

h(1)= . RxSonA

0

8(1)= / \ Lo pﬁrfprr? theéotin, we

) ideally just need to

RA 8(2)_ explore the dark blue
hashed regions
values "

h(3)= = the tuples with same

1 values of the join key A

h(4)=

1

h(5)= S]Ahashea

2 values

h(6)=

Hash Join Phase 2: Matching

R.A
hashed
values

p

N

RxSonA

With a join algorithm like
BNLJ that doesn't take
advantage of equijoin
structure, we'd have to
explore this whole grid!

Hash Join Phase 2: Matching

p-

8(1): RxSonA
h(1)= With HJ, we only
ﬁ o explore the blue

RA - hEF regions

hashed)

values | = the tuples with same
?(3)= values of h(A)!
()= /
1 We can apply BNLJ to
2(5>= each of these regions
h(6)=

How much memory do we need for HJ?

* Given B+1 buffer pages + WLOG: Assume P(R) <= P(S)

* Suppose (reasonably) that we can partition into B buckets in 2
passes:
* For R, we get B buckets of size ~P(R)/B

* To join these buckets in linear time, we need these buckets to fit in B-1
pages, so we have:

P(R)) Quadratic relationship
B—-—12= B = ~B“ = P(R) petween smaller relation’s
size & memory!

Hash Join Summary

* Given enough buffer pages as on previous slide...

« Partitioning requires reading + writing each page of R,S
« > 2(P(R)+P(S)) 10s

« Matching (with BNLJ) requires reading each page of R,S
+ > P(R) + P(S) IOs

 Writing out results could be as bad as P(R)*P(S)... but probably closer to
P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT [Os!

Sort-Merge v. Hash Join

Given enough memory, both SMJ and HJ have performance:

~3(P(R)+P(S)) + OUT

“Enough” memory =
« SMJ: B2 > max{P(R), P(S)}

+ HJ: B2 > min{P(R), P(S)}

Hash Join superior if relation sizes differ greatly. Why?

Other considerations of Hash and Sort Joins

- Hash Joins are highly parallelizable.

.- Sort-Merge less sensitive to data skew and result is sorted

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Reading Materials
	Slide 3: Agenda
	Slide 4: RDBMS Architecture
	Slide 5: We will use JOIN algorithms as an example
	Slide 6: Joins: Example
	Slide 7: Joins: Example
	Slide 8: Joins: Example
	Slide 9: Joins: Example
	Slide 10: Joins: Example
	Slide 11: Semantically: A Subset of the Cross Product
	Slide 12: 1. Nested Loop Joins
	Slide 13: Notes
	Slide 14: Notes
	Slide 15: Nested Loop Join (NLJ)
	Slide 16: Nested Loop Join (NLJ)
	Slide 17: Nested Loop Join (NLJ)
	Slide 18: Nested Loop Join (NLJ)
	Slide 19: Nested Loop Join (NLJ)
	Slide 20: Nested Loop Join (NLJ)
	Slide 21
	Slide 22: Block Nested Loop Join (BNLJ)
	Slide 23: Block Nested Loop Join (BNLJ)
	Slide 24: Block Nested Loop Join (BNLJ)
	Slide 25: Block Nested Loop Join (BNLJ)
	Slide 26: BNLJ vs. NLJ: Benefits of IO Aware
	Slide 27: BNLJ vs. NLJ: Benefits of IO Aware
	Slide 28: Discussion: Buffer Management for BNLJ
	Slide 29: Discussion: Buffer Management for BNLJ
	Slide 30
	Slide 31: Smarter than Cross-Products: From Quadratic to Nearly Linear
	Slide 32: Index Nested Loop Join (INLJ)
	Slide 33: 2. Sort-Merge Join (SMJ)
	Slide 34: Sort Merge Join (SMJ): Basic Procedure
	Slide 35: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 36: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 37: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 38: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 39: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 40: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 41: What happens with duplicate join keys?
	Slide 42: Multiple tuples with Same Join Key: “Backup”
	Slide 43: Multiple tuples with Same Join Key: “Backup”
	Slide 44: Multiple tuples with Same Join Key: “Backup”
	Slide 45: Multiple tuples with Same Join Key: “Backup”
	Slide 46: Backup
	Slide 47: SMJ: Total cost
	Slide 48: SMJ vs. BNLJ
	Slide 49: A Simple Optimization: Merges Merged!
	Slide 50: So far: Un-Optimized SMJ
	Slide 51: Simple SMJ Optimization
	Slide 52: Simple SMJ Optimization
	Slide 53: Takeaway points from SMJ
	Slide 54: 3. Hash Join (HJ)
	Slide 55: Recall: Hashing
	Slide 56: Hash Join: High-level procedure
	Slide 57: Hash Join: High-level procedure
	Slide 58: Hash Join: High-level procedure
	Slide 59: Hash Join: High-level procedure
	Slide 60: Hash Join Phase 1: Partitioning
	Slide 61: How big do we want the resulting buckets?
	Slide 62: Hash Join Phase 1: Partitioning
	Slide 63: Hash Join Phase 1: Partitioning
	Slide 64: Hash Join Phase 1: Partitioning
	Slide 65: Hash Join Phase 1: Partitioning
	Slide 66: Hash Join Phase 1: Partitioning
	Slide 67: Hash Join Phase 1: Partitioning
	Slide 68: Hash Join Phase 1: Partitioning
	Slide 69: Hash Join Phase 1: Partitioning
	Slide 70: Hash Join Phase 1: Partitioning
	Slide 71: Hash Join Phase 1: Partitioning
	Slide 72: Hash Join Phase 1: Partitioning
	Slide 73: Hash Join Phase 1: Partitioning
	Slide 74: Hash Join Phase 1: Partitioning
	Slide 75: Hash Join Phase 1: Partitioning
	Slide 76: Hash Join Phase 1: Partitioning
	Slide 77: Hash Join Phase 1: Partitioning
	Slide 78: Hash Join Phase 1: Partitioning
	Slide 79: Hash Join Phase 1: Partitioning
	Slide 80: Now that we have partitioned R and S…
	Slide 81: Hash Join Phase 2: Matching
	Slide 82: Hash Join Phase 2: Matching
	Slide 83: Hash Join Phase 2: Matching
	Slide 84: Hash Join Phase 2: Matching
	Slide 85: Hash Join Phase 2: Matching
	Slide 86: Hash Join Phase 2: Matching
	Slide 87: How much memory do we need for HJ?
	Slide 88: Hash Join Summary
	Slide 89: Sort-Merge v. Hash Join
	Slide 90: Other considerations of Hash and Sort Joins

