
CS 6400 A

Database Systems
Concepts and Design

Lecture 15

10/15/25

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 15: Query Execution

2

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

Agenda

RECAP: Joins

1. Nested Loop Join (NLJ)

2. Sort-Merge Join (SMJ)

3. Hash Join (HJ)

3

RDBMS Architecture

4

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

How does a SQL engine work ?

Query execution (this

lecture): algorithms

that manipulate the

data of the database

Query optimization

(next two lectures)

We will use JOIN algorithms as an example

• Arguable one of the most computational expensive operations in
relational databases

• As we will see, different implementations of JOINs can make a
huge difference in performance.

6

Joins: Example

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

7

Joins: Example

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

8

Joins: Example

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

9

Joins: Example

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

10

Joins: Example

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S

A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

11

Semantically: A Subset of the Cross Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of

tuples r ∈ 𝑅, 𝑠 ∈ 𝑆 such that

𝑟. 𝐴 = 𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×

Cross

Product
Filter by

conditions

(r.A = s.A)

… Can we actually

implement a join

in this way?

𝐑 ⋈ 𝑺

1. Nested Loop Joins

12

Notes

• We write 𝐑 ⋈ 𝑺 to mean join R and S by returning all tuple pairs
where all shared attributes are equal (natural join)

• We write 𝐑 ⋈ 𝑺 on A to mean join R and S by returning all tuple
pairs where attribute(s) A are equal

• For simplicity, we’ll consider joins on two tables and with equality
constraints (“equijoins”)

Join can involve > 2 tables, and

some algorithms do support non-

equality constraints!

Notes

• We are considering “IO aware” algorithms: care about disk IO

• Given a relation R, let:

• T(R) = # of tuples in R

• P(R) = # of pages in R

• Note also that we omit ceilings in calculations… good exercise to
put back in!

Recall that we read /

write entire pages with

disk IO

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

P(R)

1. Loop over the tuples in R

Note that our IO cost is

based on the number of

pages loaded, not the

number of tuples!

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

P(R) + T(R)*P(S)

Have to read all of S from disk for every tuple in R!

1. Loop over the tuples in R

2. For every tuple in R, loop

over all the tuples in S

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

P(R) + T(R)*P(S)

Note that NLJ can handle things other than

equality constraints… just check in the if

statement!

1. Loop over the tuples in R

2. For every tuple in R, loop

over all the tuples in S

3. Check against join

conditions

Cost:

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

P(R) + T(R)*P(S) + OUT

1. Loop over the tuples in R

2. For every tuple in R, loop

over all the tuples in S

3. Check against join

conditions

4. Write out (to page, then

when page full, to disk)

Cost:

What would OUT

be if our join

condition is trivial

(if TRUE)?

OUT could be

P(R)*P(S)… but

usually not that bad

Nested Loop Join (NLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for r in R:

 for s in S:

 if r[A] == s[A]:

 yield (r,s)

P(R) + T(R)*P(S) + OUT

What if R (“outer”) and S

(“inner”) switched?

Cost:

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection makes a huge difference-

DBMS needs to know which relation is smaller!

Block Nested Loop Join
(IO-Aware Approach)

Block Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

P(𝑅)

Given B+1 pages of memory

1. Load in B-1 pages of R at a

time (leaving 1 page free for

S & output)

Cost:

Note: There could be some

speedup here due to the fact

that we’re reading in multiple

pages sequentially however we’ll

ignore this here!

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

P 𝑅 +
𝑃 𝑅

𝐵 − 1
𝑃(𝑆)

Note: Faster to iterate over

the smaller relation first!

1. Load in B-1 pages of R at a

time (leaving 1 page each free

for S & output)

2. For each (B-1)-page segment

of R, load each page of S

Cost:

Block Nested Loop Join (BNLJ) Given B+1 pages of memory

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

1. Load in B-1 pages of R at a

time (leaving 1 page each free

for S & output)

2. For each (B-1)-page segment

of R, load each page of S

3. Check against the join

conditions

BNLJ can also handle non-equality constraints

Cost:

P 𝑅 +
𝑃 𝑅

𝐵 − 1
𝑃(𝑆)

Given B+1 pages of memoryBlock Nested Loop Join (BNLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

P 𝑅 +
𝑃 𝑅

𝐵−1
𝑃(𝑆) + OUT

1. Load in B-1 pages of R at a

time (leaving 1 page each free

for S & output)

2. For each (B-1)-page segment

of R, load each page of S

3. Check against the join

conditions

4. Write out

Cost:

Given B+1 pages of memoryBlock Nested Loop Join (BNLJ)

BNLJ vs. NLJ: Benefits of IO Aware

In BNLJ, by loading larger chunks of R, we minimize the number
of full disk reads of S

• We only read all of S from disk for every (B-1)-page segment of R!

• Still the full cross-product, but more done only in memory

P 𝑅 +
𝑃 𝑅

𝐵−1
𝑃(𝑆) + OUTP(R) + T(R)*P(S) + OUT

NLJ BNLJ

BNLJ is faster by roughly
(𝐵−1)𝑇(𝑅)

𝑃(𝑅)
 !

BNLJ vs. NLJ: Benefits of IO Aware

Example:
• R: 500 pages
• S: 1000 pages
• 100 tuples / page
• We have 12 pages of memory (B = 11)

NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= 140 hours

BNLJ: Cost = 500 +
500∗1000

10
 = 50 Thousand IOs ~= 0.14 hours

A real difference from a small change in the

algorithm!

Ignoring OUT here…

Discussion: Buffer Management for BNLJ

Buffer: 3 pages

• R ⋈ S using BNLJ

• Relation R: 3 pages (R1,
R2, R3)

• Relation S: 3 pages (S1,
S2, S3)

for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 …

Main Memory

Buffer

Discussion: Buffer Management for BNLJ

for each B-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 …

Action Buffer

Read R1 [R1]

Read R2 [R1, R2]

Read S1 [R1, R2, S1]

Join S1 with R1,R2

Read S2 ??

Does LRU work well here?

Buffer 3 pages

Can you think of a better policy?

Index Nested Loop Join
(Smarter than Cross-Products)

Smarter than Cross-Products: From Quadratic
to Nearly Linear

All joins that compute the full cross-product have some quadratic
term

• For example we saw:

Now we’ll see some (nearly) linear joins:
• ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is

usually better

P 𝑅 +
𝑷 𝑹

𝐵−1
𝑷(𝑺) + OUT

P(R) + T(R)P(S) + OUTNLJ

BNLJ

We get this gain by taking advantage of structure -

equality constraints (“equijoin”) only!

Index Nested Loop Join (INLJ)

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 Given index idx on S.A:

 for r in R:

 if s in idx(r[A]):

 yield r,s

P(R) + T(R)*L + OUT

→ We can use an index (e.g., B+ Tree) to avoid

doing the full cross-product!

where L is the IO cost to

access all the distinct values

in the index; L ~ 3 is good

estimate

Cost:

2. Sort-Merge Join (SMJ)

33

Sort Merge Join (SMJ): Basic Procedure

To compute R ⋈ 𝑆 𝑜𝑛 𝐴:

1. Sort R, S on A using external merge sort

2. Scan sorted files and “merge”

3. [May need to “backup”- see next subsection]

Note that if R, S are already sorted on

A, SMJ will be awesome!

Note that we are only

considering equality

join conditions here

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

• For simplicity: Let each page be one tuple, and let the first value be A

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

We show the file

HEAD, which is the

next value to be read!

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

1. Sort the relations R, S on the join key (first value)

Disk

Main Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

2. Scan and “merge” on join key!

Disk

Main Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)

SMJ Example: R ⋈ 𝑆 𝑜𝑛 𝐴 with 3 page buffer

2. Done!

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)

What happens with duplicate
join keys?

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

Multiple tuples with Same Join Key: “Backup”

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)

Multiple tuples with Same Join Key: “Backup”

(0,g)

(0,j)

1. Start with sorted relations, and begin scan / merge…

Disk

Main Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j)

Have to “backup” in the scan of S and

read tuple we’ve already read!

(0,j)

Multiple tuples with Same Join Key: “Backup”

(0,j)

Backup

At best, no backup → scan takes P(R) + P(S) reads
• For ex: if no duplicate values in join attribute

At worst (e.g. full backup each time), scan could take P(R) * P(S) reads!
• For ex: if all duplicate values in join attribute, i.e. all tuples in R and S have the

same value for the join attribute

• Roughly: For each page of R, we’ll have to back up and read each page of S…

Often not that bad however, plus we can:
• Leave more data in buffer (for larger buffers)

SMJ: Total cost

Cost of SMJ is cost of sorting R and S…

Plus the cost of scanning: ~P(R)+P(S)
• Because of backup: in worst case P(R)*P(S); but this would be very

unlikely

Plus the cost of writing out

~ Sort(P(R)) + Sort(P(S))
+ P(R) + P(S) + OUT

Recall: Sort(N) ≈ 2𝑁 log𝐵
𝑵

𝟐(𝑩+𝟏)
+ 1

Note: this is using repacking, where we estimate
that we can create initial runs of length ~2(B+1)

SMJ vs. BNLJ

If we have 100 buffer pages, P(R) = 1000 pages and P(S) = 500 pages:
• Sort both in two passes: 2 * 2 * (1000 + 500) = 6,000 IOs

• Scan sorted files and merge 1000 + 500 = 1,500 IOs

• = 7,500 IOs + OUT

What is BNLJ?

• 500 + 1000*
500

98
 = 6,500 IOs + OUT

But, if we have 35 buffer pages?
• Sort Merge has same behavior (still 2 passes)

• BNLJ? 15,500 IOs + OUT!

SMJ is ~ linear vs. BNLJ is quadratic…

But it’s all about the memory.

A Simple Optimization: Merges Merged!

• SMJ is composed of a sort phase and a merge phase

• During the sort phase, run passes of external merge sort on R and
S
• Suppose at some point, R and S have <= B (sorted) runs in total

• We could do two merges (for each of R & S) at this point, complete the
sort phase, and start the merge phase…

• OR, we could combine them: do one B-way merge and complete the join!

Given B+1 buffer pages

Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

So far: Un-Optimized SMJ

SR

Split & sortSplit & sort

MergeMerge

MergeMerge

Given B+1 buffer pages

Joined output
file created!

Unsorted input relations

Sorted file for R
and S created

Merge / Join Phase

Sort Phase
(Ext. Merge Sort)

Simple SMJ Optimization

SR

Split & sortSplit & sort

MergeMerge

Given B+1 buffer pages

Joined output
file created!

Unsorted input relations

<= B total sorted files

B-Way Merge / Join

Simple SMJ Optimization

On this last pass, we only do P(R) + P(S) IOs to complete the join!

If we can initially split R and S into B total runs each of length approx
then we only need 3(P(R) + P(S)) + OUT for SMJ!

• 2 R/W per page to sort runs in memory, 1 R per page to B-way merge / join!

How much memory for this to happen?

•
𝑃 𝑅 +𝑃(𝑆)

2 𝐵+1
≤ 𝐵 ⇒ ~ P R + P S ≤ 2𝐵2

• 𝐦𝐚𝐱{𝐏 𝐑 , 𝐏 𝐒 } ≤ 𝑩𝟐 is an approximate sufficient condition

If the larger of R,S has <= B2 pages, then SMJ costs
3(P(R)+P(S)) + OUT!

Given B+1 buffer pages

Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
• SMJ is basically linear.

• Nasty but unlikely case: Many duplicate join keys.

SMJ needs to sort both relations
• If max { P(R), P(S) } < B2

 then cost is 3(P(R)+P(S)) + OUT

3. Hash Join (HJ)

54

Recall: Hashing

• Magic of hashing:
• A hash function hB maps into [0, B-1]
• And maps nearly uniformly

• A hash collision is when x != y but hB(x) = hB(y)
• Note however that it will never occur that x = y but hB(x) != hB(y)

• We hash on an attribute A, so our hash function is hB(t) has the
form hB(t.A).
• Collisions may be more frequent.

Hash Join: High-level procedure

To compute R ⋈ 𝑆 𝑜𝑛 𝐴:

1. Partition Phase: Using one (shared) hash function hB per pass
partition R and S into B buckets.
• Each phase creates B more buckets that are a factor of B smaller.
• Repeatedly partition with a new hash function

• Stop when all buckets for one relation are smaller than B-1 pages

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for h, and join these
• Use BNLJ here for each matching pair.

We decompose the problem using hB, then complete the join

P(R) + P(S) + OUT

Each pass takes 2(P(R) + P(S))

Given B+1 buffer pages

Hash Join: High-level procedure

1. Partition Phase: Using one (shared) hash function hB, partition R
and S into B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)

Suppose each

pages has two

tuples (one per

row)

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join

matching

buckets

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for hB, and join these

(3,j)
(3,b)

Hash Join: High-level procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t have

to join the

others!

E.g. (S1 and

R2)!

2. Matching Phase: Take pairs of buckets whose tuples have the
same values for hB, and join these

(3,j)
(3,b)

Hash Join Phase 1: Partitioning

Goal: For each relation, partition relation into buckets such that if
hB(t.A) = hB(t’.A) they are in the same bucket

Given B+1 buffer pages, we partition into B buckets:
• We use B buffer pages for output (one for each bucket), and 1 for input

Buffer

Input 0 1

Output (bucket) pages

(3,a)
(0,a)

How big do we want the resulting buckets?

Ideally, our buckets would be of size ≤ 𝑩 − 𝟏 pages

Recall: If we want to join a bucket from R and one from
S, we can do BNLJ in linear time if for one of them
(wlog say R), 𝑷(𝑹) ≤ 𝑩 − 𝟏!

• And more generally, being able to fit bucket in memory is
advantageous

• We can keep partitioning buckets until they are
≤ 𝑩 − 𝟏 pages
• Using a new hash key which will split them… We’ll call each of these a

“pass” again…

Given B+1 buffer pages

Recall for BNLJ:

P 𝑅 +
𝑃 𝑅 𝑃(𝑆)

𝐵 − 1

We partition into B = 2 buckets using hash function h2 so that we
can have one buffer page for each partition (and one for input)

Disk

R

(3,j)
(0,j)

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For simplicity, we’ll look at partitioning

one of the two relations- we just do the

same for the other relation!

Recall: our goal will be to get B = 2

buckets of size <= B-1 → 1 page each

Hash Join Phase 1: Partitioning

1. We read pages from R into the “input” page of the buffer…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

Hash Join Phase 1: Partitioning

2. Then we use hash function h2 to sort into the buckets, which
each have one page in the buffer

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(0) = 0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Hash Join Phase 1: Partitioning

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(3,a)

h2(3) = 1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2. Then we use hash function h2 to sort into the buckets, which
each have one page in the buffer

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(0,j)

(5,b) (5,a)
(0,j)

h2(3) = 1

(3,j)
(0,j)

(3,a)
(3,j)

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(0,a) (3,a)

(0,j)

(5,b) (5,a)
(0,j)

h2(0) = 0

(3,a)
(3,j)

(0,a)
(0,j)

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush to
disk

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

Hash Join Phase 1: Partitioning

3. We repeat until the buffer bucket pages are full… then flush to
disk

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

Hash Join Phase 1: Partitioning

Note that collisions can occur!

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5) = 1

Collision!!!

(5,a)
(0,j)

(5,a)

h2(5) = h2(3) = 1

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0) = 0

(5,a)(0,j)

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Hash Join Phase 1: Partitioning

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

Finish this pass…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5) = 1

(5,a)
(5,b)

h2(5) = h2(3) = 1

Collision!!!

Hash Join Phase 1: Partitioning

Finish this pass…

Main Memory

Buffer

Input

page
0 1

Output (bucket) pages

Disk

R

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We wanted buckets of size B-1 = 1…

however we got larger ones due to:

(1) Duplicate join

keys

(2) Hash collisions

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To take care of larger

buckets caused by (2) hash

collisions, we can just do

another pass!

Do another pass with a

different hash function, h’2,

ideally such that:

h’2(3) != h’2(5)

Hash Join Phase 1: Partitioning

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

B2
(5,a)
(5,b)

Hash Join Phase 1: Partitioning

To take care of larger

buckets caused by (2) hash

collisions, we can just do

another pass!

Do another pass with a

different hash function, h’2,

ideally such that:

h’2(3) != h’2(5)

Disk

Given B+1 = 3 buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What about duplicate join keys?

Unfortunately this is a problem…

but usually not a huge one.

B2
(5,a)
(5,b)

We call this

unevenness in the

bucket size skew

Hash Join Phase 1: Partitioning

Now that we have partitioned R and S…

Hash Join Phase 2: Matching

• Now, we just join pairs of buckets from R and S that have the same
hash value to complete the join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join

matching

buckets

(3,j)
(3,b)

Hash Join Phase 2: Matching

• Note that since x = y → h(x) = h(y), we only need to consider pairs of
buckets (one from R, one from S) that have the same hash function
value

• If our buckets are ~𝑩 − 𝟏 pages, can join each such pair using BNLJ in
linear time; recall (with P(R) = B-1):

BNLJ Cost: P 𝑅 +
𝑃 𝑅 𝑃(𝑆)

𝐵−1
= 𝑃(𝑅) +

(𝐵−1)𝑃(𝑆)

𝐵−1
 = P(R) + P(S)

Joining the pairs of buckets is linear!

(As long as smaller bucket <= B-1 pages)

Hash Join Phase 2: Matching

h(1)=
0

h(1)=

0

h(2)=

0

h(3)=

1

h(3)=

1

h(4)=

1

h(5)=

2

h(6)=

2

h(6)=

2

R.A

hashed

values

S.A hashed

values

R ⋈ 𝑆 𝑜𝑛 𝐴

Hash Join Phase 2: Matching

h(1)=
0

h(1)=

0

h(2)=

0

h(3)=

1

h(3)=

1

h(4)=

1

h(5)=

2

h(6)=

2

h(6)=

2

R.A

hashed

values

S.A hashed

values

R ⋈ 𝑆 𝑜𝑛 𝐴

To perform the join, we

ideally just need to

explore the dark blue

regions

= the tuples with same

values of the join key A

A=1

A=2

A=3

A=4

A=5

A=6

Hash Join Phase 2: Matching

h(1)=
0

h(1)=

0

h(2)=

0

h(3)=

1

h(3)=

1

h(4)=

1

h(5)=

2

h(6)=

2

h(6)=

2

R.A

hashed

values

S.A hashed

values

R ⋈ 𝑆 𝑜𝑛 𝐴

With a join algorithm like

BNLJ that doesn’t take

advantage of equijoin

structure, we’d have to

explore this whole grid!

Hash Join Phase 2: Matching

h(1)=
0

h(1)=

0

h(2)=

0

h(3)=

1

h(3)=

1

h(4)=

1

h(5)=

2

h(6)=

2

h(6)=

2

R.A

hashed

values

S.A hashed

values

R ⋈ 𝑆 𝑜𝑛 𝐴
h(A)=0

h(A)=1

h(A)=2

With HJ, we only

explore the blue

regions

= the tuples with same

values of h(A)!

We can apply BNLJ to
each of these regions

How much memory do we need for HJ?

• Given B+1 buffer pages

• Suppose (reasonably) that we can partition into B buckets in 2
passes:
• For R, we get B buckets of size ~P(R)/B

• To join these buckets in linear time, we need these buckets to fit in B-1
pages, so we have:

+ WLOG: Assume P(R) <= P(S)

𝐵 − 1 ≥
𝑃 𝑅

𝐵
⇒ ~𝑩𝟐 ≥ 𝑷(𝑹)

Quadratic relationship

between smaller relation’s

size & memory!

Hash Join Summary

• Given enough buffer pages as on previous slide…

• Partitioning requires reading + writing each page of R,S
• → 2(P(R)+P(S)) IOs

• Matching (with BNLJ) requires reading each page of R,S
• → P(R) + P(S) IOs

• Writing out results could be as bad as P(R)*P(S)… but probably closer to
P(R)+P(S)

HJ takes ~3(P(R)+P(S)) + OUT IOs!

Sort-Merge v. Hash Join

Given enough memory, both SMJ and HJ have performance:

“Enough” memory =

• SMJ: B2 > max{P(R), P(S)}

• HJ: B2 > min{P(R), P(S)}

Hash Join superior if relation sizes differ greatly. Why?

~3(P(R)+P(S)) + OUT

Other considerations of Hash and Sort Joins

• Hash Joins are highly parallelizable.

• Sort-Merge less sensitive to data skew and result is sorted

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Reading Materials
	Slide 3: Agenda
	Slide 4: RDBMS Architecture
	Slide 5: We will use JOIN algorithms as an example
	Slide 6: Joins: Example
	Slide 7: Joins: Example
	Slide 8: Joins: Example
	Slide 9: Joins: Example
	Slide 10: Joins: Example
	Slide 11: Semantically: A Subset of the Cross Product
	Slide 12: 1. Nested Loop Joins
	Slide 13: Notes
	Slide 14: Notes
	Slide 15: Nested Loop Join (NLJ)
	Slide 16: Nested Loop Join (NLJ)
	Slide 17: Nested Loop Join (NLJ)
	Slide 18: Nested Loop Join (NLJ)
	Slide 19: Nested Loop Join (NLJ)
	Slide 20: Nested Loop Join (NLJ)
	Slide 21
	Slide 22: Block Nested Loop Join (BNLJ)
	Slide 23: Block Nested Loop Join (BNLJ)
	Slide 24: Block Nested Loop Join (BNLJ)
	Slide 25: Block Nested Loop Join (BNLJ)
	Slide 26: BNLJ vs. NLJ: Benefits of IO Aware
	Slide 27: BNLJ vs. NLJ: Benefits of IO Aware
	Slide 28: Discussion: Buffer Management for BNLJ
	Slide 29: Discussion: Buffer Management for BNLJ
	Slide 30
	Slide 31: Smarter than Cross-Products: From Quadratic to Nearly Linear
	Slide 32: Index Nested Loop Join (INLJ)
	Slide 33: 2. Sort-Merge Join (SMJ)
	Slide 34: Sort Merge Join (SMJ): Basic Procedure
	Slide 35: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 36: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 37: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 38: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 39: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 40: SMJ Example: R bowtie cap S , o n , cap A. with 3 page buffer
	Slide 41: What happens with duplicate join keys?
	Slide 42: Multiple tuples with Same Join Key: “Backup”
	Slide 43: Multiple tuples with Same Join Key: “Backup”
	Slide 44: Multiple tuples with Same Join Key: “Backup”
	Slide 45: Multiple tuples with Same Join Key: “Backup”
	Slide 46: Backup
	Slide 47: SMJ: Total cost
	Slide 48: SMJ vs. BNLJ
	Slide 49: A Simple Optimization: Merges Merged!
	Slide 50: So far: Un-Optimized SMJ
	Slide 51: Simple SMJ Optimization
	Slide 52: Simple SMJ Optimization
	Slide 53: Takeaway points from SMJ
	Slide 54: 3. Hash Join (HJ)
	Slide 55: Recall: Hashing
	Slide 56: Hash Join: High-level procedure
	Slide 57: Hash Join: High-level procedure
	Slide 58: Hash Join: High-level procedure
	Slide 59: Hash Join: High-level procedure
	Slide 60: Hash Join Phase 1: Partitioning
	Slide 61: How big do we want the resulting buckets?
	Slide 62: Hash Join Phase 1: Partitioning
	Slide 63: Hash Join Phase 1: Partitioning
	Slide 64: Hash Join Phase 1: Partitioning
	Slide 65: Hash Join Phase 1: Partitioning
	Slide 66: Hash Join Phase 1: Partitioning
	Slide 67: Hash Join Phase 1: Partitioning
	Slide 68: Hash Join Phase 1: Partitioning
	Slide 69: Hash Join Phase 1: Partitioning
	Slide 70: Hash Join Phase 1: Partitioning
	Slide 71: Hash Join Phase 1: Partitioning
	Slide 72: Hash Join Phase 1: Partitioning
	Slide 73: Hash Join Phase 1: Partitioning
	Slide 74: Hash Join Phase 1: Partitioning
	Slide 75: Hash Join Phase 1: Partitioning
	Slide 76: Hash Join Phase 1: Partitioning
	Slide 77: Hash Join Phase 1: Partitioning
	Slide 78: Hash Join Phase 1: Partitioning
	Slide 79: Hash Join Phase 1: Partitioning
	Slide 80: Now that we have partitioned R and S…
	Slide 81: Hash Join Phase 2: Matching
	Slide 82: Hash Join Phase 2: Matching
	Slide 83: Hash Join Phase 2: Matching
	Slide 84: Hash Join Phase 2: Matching
	Slide 85: Hash Join Phase 2: Matching
	Slide 86: Hash Join Phase 2: Matching
	Slide 87: How much memory do we need for HJ?
	Slide 88: Hash Join Summary
	Slide 89: Sort-Merge v. Hash Join
	Slide 90: Other considerations of Hash and Sort Joins

