Database Systems
Concepts and Design

Lecture |4
10/13/25

Announcements

Assignment 2 due next Monday (Oct 20)

« Autograder run takes time.
* Reminder: extra credit for top 3 leaderboard entries

786.8451136178284

1 Nathan Braswell

Tarun 1019.521054953526

2 ITarun

2309.326552046627

3 Yihao

Project milestone assignment released
* Due Nov 3

Project proposal feedback will be released this week

Agenda

1. The Buffer
2. External Merge Algorithm

3. External Merge Sort

Reading Materials

Fundamental of Database Systems (7/th Edition)
« Chapter 16.3 - Buffering of Blocks
« Chapter 18.2 - Algorithms for External Sorting

%E'n

AASRI o INAVATHE | %
£ /I,;’é ,' '{I[l;{‘ ! § 3

I S ‘_-::., /!,r/ ” I
' & / SRI 0/,:_

i

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

1. The Bufter

Recall: Disk vs

Platters

Arm asse

Disk:

» Fast: sequential block access

» Read a blocks (not byte) at a time, so sequential
access is cheaper than random

» Disk read / writes are expensive

 Durable: \We will assume that once on
disk, data is safe!

« Cheap

Random Access Memory (RAM) or Main Memory:

» Fast: Random access, byte addressable
» ~10x faster for sequential access
« ~100,000x faster for random access!

» Volatile: Data can be lost if e.g. crash occurs,
power goes out, etc!

« Expensive: For $100, get 16GB of RAM vs.
2TB of disk! 6

The Buffer

A buffer is a region of physical memory
used to store temporary data

* In this lecture: a region in main
memory used to store intermediate
data between disk and processes

Key idea: Reading / writing to disk is
slow- need to cache data!

Main Memory

@ Buffer

The (Simplified) Buffer

In this class: \We'll consider a buffer located
in main memory that operates over pages ~ Buffer
and files:

Main Memory

« Read(page): Read page from disk ->
buffer if not already In buffer

The (Simplified) Buffer

In this class: \We'll consider a buffer located
iIN main memory that operates over pages
and files:

« Read(page): Read page from disk -> E
buffer if not already In buffer

Main Memory

Buffer

Processes can then read from /
write to the page in the buffer

The (Simplified) Buffer

In this class: \We'll consider a buffer located

Main Memory

iIN main memory that operates over pages Buffer
and files:
+ Read(page): Read page from disk -> 12,3

buffer if not already In buffer

* Flush(page): Evict page from buffer &
write to disk

The (Simplified) Buffer

In this class: \We'll consider a buffer located
iIN main memory that operates over pages
and files:

« Read(page): Read page from disk ->
buffer if not already In buffer

* Flush(page): Evict page from buffer &
write to disk

« Release(page): Evict page from
buffer without writing to disk

Main Memory

Buffer

1,2,3

The DBMS Buff

er

Database maintains its own buffer

* Why”? The OS already does this...

DB knows more about access

patterns.

* Recovery and logging require
ability to flush to disk.

Main Memory

@ Buffer

The Buffer Manager

A buffer manager handles supporting operations for the buffer:

 Primarily, handles & executes the “replacement policy”

* i.e. finds a page in buffer to flush/release if buffer is full and a
new page needs to be read in

« Examples: LRU, FIFO, Clock

« DBMSs typically implement their own buffer management routines

A Simplified Filesystem Model

For us, a page is a fixed-sized array of
Memory

* Think: One or more disk blocks
 Interface:

» write to an entry (called a slot) or set to “None”

« DBMS also needs to handle variable length fields

» Page layout is important for good hardware utilization
as well

And a file is a variable-length list of pages File
* Interface: create / open / close; next_page(); etc.

Page

2. External Merge Algorithm

Challenge: Merging

][0

-lles with Small Memory

* How do we efficiently merge two sorted files when both

are much

?

» Key point: Disk |10 (R/W) dominates the algorithm cost

Example of an “lO aware” algorithm / cost model

External Merge Algorithm: Summary

* Input: 2 sorted lists of length M and N
» Qutput: 1 sorted list of length M + N
* Required: At least 3 Buffer Pages

* |Os: 2(M+N)

Buffer
1 1 1
I I !
Input Input Output
Page Page Page

Key (Simple) |dea

To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
A <A, << Ay
By <B, <:-< By
Then:
Min(Aq, B1) < A;
Min(A,, B1) < B;
fori=1...N and j=1....M

External Merge Algorithm

Main Memory

nout: Tl ERT Buffer

Two sorted | > [][]
files 2,22 1 1 1
Output: / Input Input Output
One merged page page page
sorted file

Disk

External Merge Algorithm

Main Memory

Buffer

input:

s |

Two sorted

files

Output:
One merged
sorted file

Disk

External Merge Algorithm

Main Memory

Buffer

nput
i > I > J(2]

Two sorted

files

Output:
One merged
sorted file

Disk

External Merge Algorithm

input:

Main Memory

Buffer

Two sorted |
f||es 23,24 25,3@
Output:

One merged

sorted file

Disk

External Merge Algorithm

Input:

Two sorted

files

Output:
One merged
sorted file

Disk

Main Memory

Buffer

|

-]

This is all the algorithm
“sees”... Which file to load a
page from next?

External Merge Algorithm

Input:

Two sorted

files

Output:
One merged
sorted file

Disk

Main Memory

Buffer

External Merge Algorithm

Main Memory

Buffer
Input: 20,31

Two sorted) ||
files 25,30

Output:

One merged

sorted file

Disk

External Merge Algorithm

Main Memory

Buffer
Input: 20,31

Two sorted) | N EER
files 25,30

Output:

One merged

sorted file

Disk

External Merge Algorithm

Main Memory

Buffer
Input: 20,31

Two sorted | > [] [][

files

Output:

1,2 5,7
ovputs | N /
sorted file

Disk

External Merge Algorithm

Main Memory

Buffer
ot
Two sorted | > [][] []

f||es 23,24 25,3@
Output:

1,2 5,7
oo (ENEERE |
sorted file

And so on...

Disk

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) 10s
Each page is read once, written once

With B+1 buffer pages, can merge B lists. How?

3. External Merge Sort

Why are Sort Algorithms Important?

» Data requested from DB In sorted order is extremely
common

- €.9., find customer orders in increasing total amounts

* Why not just use quicksort in main memory??

 \What about if we need to sort 1TB of data with 1GB of RAM...

A classic problem in computer science!

More reasons to sort...

 Sorting useful for eliminating duplicate
copies In a collection of records

e« Sorting is first step in bulk loading B+ tree
iIndex.

» Sort-merge join algorithm involves sorting
Next lecture

Do people care”
http://sortbenchmark.org

Sort benchmark bears his name

http://sortbenchmark.org

So how do we sort big files?

1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge
algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left
with one sorted file!

External Merge Sort Algorithm

Example: Main Memory
e 3 Buffer
Pages , Buffer
+ 6-page il
F L
Orange fil »
= unsorted

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm

Example: ISk Main Memory
« 3 Buffer -
Dages : Buffer
* 6-pagefile y
orae e, L
= unsorted

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm

Example:
e 3 Buffer

pages
* 6-page file

Orange file
= unsorted

Main Memory

Buffer

CC G

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm

Example:
e 3 Buffer

pages
* 6-page file

Orange file
= unsorted

Main Memory

Buffer

CIC)

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm

Example:

. 3 Buffer -
pages

* 6-pagefile ¢ || BEAEEE EEE RS VR
Each sorted ¢ | EFIEEN BFIEYY BE ‘

file is a
called a run

Main Memory

Buffer

CICIC)

And similarly for F,

1. Split into chunks small enough to sort in memory

External Merge Sort Algorithm

Example: 1Sk Main Memory
. 3 Buffer —_—

pages | Buffer
* 6-pagefile

O

2. Now just run the external merge algorithm & we're donel

Calculating 10 Cost
For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
« 1R+ 1 W for each page = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge
algorithm
o« = 2%(3 + 3) = 12 10 operations

3. Total cost =24 10

Running

—xternal Merge Sort on Larger Files

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Running

III "Il
.
'

10,12 § 31,33 |} 44,55

45,38 | 18,43 | 24,27

10,12 § 31,33 | 47,55

41,3 18,22 | 23,20

42,46 f 31,33 § 39,55

1,3 [18,23 | 24,27

10,12 § 48,33 | 44,40

16,31 § 18,22 § 24,27

—xternal Merge Sort on Larger Files

Assume we still

- | only have 3 buffer
1. Split into files small enough oages (Buffer not

to sort in buffer... pictured)

Running External Merge Sort on Larger Files

Assume we still

- | only have 3 buffer
1. Split into files small enough oages (Buffer not

to sort in buffer... pictured)

10,12 § 31,33 | 44,55

18,24 § 27,38 § 43,45

10,12 § 31,33 | 47,55

3,18 20,22 g 23,41

31,33 § 39,42 | 46,55

1,3 | 18,23 | 24,27

10,12 § 33,40 | 44,48

Call each of these
sorted files a run

Running

—xternal Merge Sort on Larger Files

Assume we still
only have 3 buffer
pages (Buffer not

.
pictured)

2. Now merge

pairs of (sorted)
files... the

resulting files
will be sorted!

Running

—xternal Merge Sort on Larger Files

Assume we still
only have 3 buffer
pages (Buffer not

10,12 18,24 § 27,31 3,10 10,12 12,18 .
T T T) I

3. And
repeat...

Call each of these

>Ieps 2 pass

Running External Merge Sort on Larger Files

4. And repeat!

Simplified 3-page Buffer Version

Assume for simplicit%that we split an N-page file into N single-

page runs and sort these; then:

* First pass: Merge N/2 pairs of runs each of length 1 page

« Second pass: Merge N/4 pairs of runs each of length 2
pages

* In general, for N pages, we do [log, N| passes
« +1 for the initial split & sort

 Each pass involves reading in & writing out all the pages =
5N /OIO g g Pag

Unsorted input file

)

@ Split & sort

CJCI)JCd
[J (]

[J
Sorted!

Merge

Merge

- 2N*([log, N]+1) total 10 cost!

External Merge Sort: Optimizations

Now assume we have B+1 buffer pages; three optimizations:

1. Increase the length of initial runs
2. B-way merges

3. Repacking

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a timel!

At the beginning, we can split the N pages into runs of length B+1 and
sort these iIn memory

|O Cost:

2N ([log, N| + 1) > 2N [1 N +1
82 (082511)

Starting with runs Starting with runs of

of length 1 length B+1

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.

On each pass, we can merge groups of B runs at a time (vs. merging
pairs of runs)!

|O Cost:

2N ([log, N| + 1) > 2N [1 N + 1 » 2N [1 N }+1
82 (08ZB+1) (OgBB+1)

Starting with runs Starting with runs of Performing B-way

of length 1 length B+1 merges

Repacking for even longer initial runs
« With B+1 buffer pages, we can now start with B+17-length initial

runs (and use B-way merges) to get 2N ([logB BLJFJ + 1) 10
cost...

« Can we reduce this cost more by getting even longer initial runs”

 Use repacking- produce longer initial runs by “merging” in buffer
as we sort at initial stage

Repacking Example: 3 page buffer

 Start with unsorted single input file, and load 2 pages
Disk

Main Memory

Buffr

L

Repacking Example: 3 page buffer

Also keep track of
* Take the minimum two values, and put in output page max (last) value in
_ current run...
Disk

Main Memory m=12

Buffr

. | O |

Repacking Example: 3 page buffer

* Next, repack

Disk
Main Memory m=12
44,55
18,22 | 57,24 Buffer

CC

Repacking Example: 3 page buffer

* Next, repack, then load another page and continue!
Disk

Main Memory

18,22 157,24 3, Buffer

18,22
e

Repacking Example: 3 page buffer

« Now, however, the smallest values are less than the largest (last)
in the sorted run...

Main Memory m=33

Buffer

G-)

We call these values frozen because
we can’t add them to this run...

Repacking Example: 3 page buffer

« Now, however, the smallest values are less than the largest (last)
in the sorted run...

Main Memory m=55

Buffer

|

We call these values frozen because
we can’t add them to this run...

Repacking Example: 3 page buffer

« Now, however, the smallest values are less than the largest (last)
in the sorted run...

Main Memory m=55

Buffer

Co i .

Repacking Example: 3 page buffer

« Now, however, the smallest values are less than the largest (last)
in the sorted run...

Disk

Main Memory m=55

Buffer

Co L JC]

Repacking Example: 3 page buffer

« Now, however, the smallest values are less than the largest (last)
in the sorted run...

Disk

Main Memory m=55

Buffer

[) 5

Repacking Example: 3 page buffer

« Once all buffer pages have a frozen value, or input file is empty,
start new run with the frozen values

Main Memory m=0
Buffer
|| | =

Repacking Example: 3 page buffer

« Once all buffer pages have a frozen value, or input file is empty,
start new run with the frozen values

Main Memory m=0

Buffer

| |

Repacking

» Note that, for buffer with B+1 pages:

« Best case: If input file is sorted - nothing is frozen - we get a single
run!

» Worst case: If input file is reverse sorted - everything is frozen - we get
runs of length B+1

* In general, with repacking we do no worse than without it!

« Engineer’s approximation: runs will have ~2(B+1) length

~2N(|logg

+1)

2(B + 1)

Summary

 Basics of |O and buffer management.

« We introduced the 10 cost model using sorting.
« Saw how to do merges with few |Os,
* Works better than main-memory sort algorithms.

 Described a few optimizations for sorting

