
CS 6400 A
Database Systems
Concepts and Design
Lecture 14
10/13/25

1

Announcements
Assignment 2 due next Monday (Oct 20)

• Autograder run takes time.
• Reminder: extra credit for top 3 leaderboard entries

Project milestone assignment released
• Due Nov 3

Project proposal feedback will be released this week

Agenda

1. The Buffer

2. External Merge Algorithm

3. External Merge Sort

3

Reading Materials
Fundamental of Database Systems (7th Edition)
• Chapter 16.3 - Buffering of Blocks
• Chapter 18.2 - Algorithms for External Sorting

4

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

1. The Buffer

5

Recall: Disk vs. Main Memory

6

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:
• Fast: Random access, byte addressable

• ~10x faster for sequential access
• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs,
power goes out, etc!

• Expensive: For $100, get 16GB of RAM vs.
 2TB of disk!

Disk:
• Fast: sequential block access

• Read a blocks (not byte) at a time, so sequential
access is cheaper than random

• Disk read / writes are expensive

• Durable: We will assume that once on
disk, data is safe!

• Cheap

The Buffer

Disk

Main Memory

Buffer
A buffer is a region of physical memory
used to store temporary data

• In this lecture: a region in main
memory used to store intermediate
data between disk and processes

Key idea: Reading / writing to disk is
slow- need to cache data!

Main Memory

Buffer

The (Simplified) Buffer
In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

Disk
1,0,31,0,3

• Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

Buffer

The (Simplified) Buffer
In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

Disk
1,0,3

1,0,302

Processes can then read from /
write to the page in the buffer

• Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

Buffer

The (Simplified) Buffer
In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

Disk
1,0,3

1,2,3

• Flush(page): Evict page from buffer &
write to disk

• Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

Buffer

The (Simplified) Buffer
In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

Disk
1,0,3

1,2,3
• Read(page): Read page from disk ->

buffer if not already in buffer

• Flush(page): Evict page from buffer &
write to disk

• Release(page): Evict page from
buffer without writing to disk

Main Memory

Buffer

Disk

The DBMS Buffer

Database maintains its own buffer

• Why? The OS already does this…

• DB knows more about access
patterns.

• Recovery and logging require
ability to flush to disk.

The Buffer Manager
A buffer manager handles supporting operations for the buffer:

• Primarily, handles & executes the “replacement policy”
• i.e. finds a page in buffer to flush/release if buffer is full and a

new page needs to be read in
• Examples: LRU, FIFO, Clock

• DBMSs typically implement their own buffer management routines

A Simplified Filesystem Model
For us, a page is a fixed-sized array of
memory
• Think: One or more disk blocks
• Interface:

• write to an entry (called a slot) or set to “None”
• DBMS also needs to handle variable length fields

• Page layout is important for good hardware utilization
as well

And a file is a variable-length list of pages
• Interface: create / open / close; next_page(); etc.

Disk

1,0,3 1,0,3File

Page

2. External Merge Algorithm

15

Challenge: Merging Big Files with Small Memory

• How do we efficiently merge two sorted files when both
are much larger than our main memory buffer?

• Key point: Disk IO (R/W) dominates the algorithm cost

Example of an “IO aware” algorithm / cost model

External Merge Algorithm: Summary
• Input: 2 sorted lists of length M and N

• Output: 1 sorted list of length M + N

• Required: At least 3 Buffer Pages

• IOs: 2(M+N)

Buffer

Input
page

Input
page

Output
page

Key (Simple) Idea
To find an element that is no larger than all elements in two lists,
one only needs to compare minimum elements from each list.

If:
𝐴! ≤ 𝐴" ≤ ⋯ ≤ 𝐴#
𝐵! ≤ 𝐵" ≤ ⋯ ≤ 𝐵$

Then:
𝑀𝑖𝑛(𝐴!, 𝐵!) ≤ 𝐴%
𝑀𝑖𝑛(𝐴!, 𝐵!) ≤ 𝐵&

for i=1….N and j=1….M

External Merge Algorithm

7,11 20,31

23,24 25,30

Input:
Two sorted
files

Output:
One merged
sorted file

Disk

Main Memory

Buffer
1,5

2,22

F1

F2

Input
page

Input
page

Output
page

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

1,5 2,22
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22 1,2
Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

7,11 20,31

23,24 25,30

Disk

Main Memory

Buffer

5 22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

This is all the algorithm
“sees”… Which file to load a
page from next?

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2

7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

522

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
7,11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,722

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

External Merge Algorithm

20,31

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

External Merge Algorithm

23,24 25,30

Disk

Main Memory

Buffer

5,7

22

1,2

Input:
Two sorted
files

Output:
One merged
sorted file

F1

F2
11

20,31

And so on…

We can merge lists of arbitrary
length with only 3 buffer pages.

If lists of size M and N, then
Cost: 2(M+N) IOs

Each page is read once, written once

With B+1 buffer pages, can merge B lists. How?

3. External Merge Sort

30

Why are Sort Algorithms Important?

• Data requested from DB in sorted order is extremely
common
• e.g., find customer orders in increasing total amounts

•Why not just use quicksort in main memory??
• What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!

More reasons to sort…

• Sorting useful for eliminating duplicate
copies in a collection of records

• Sorting is first step in bulk loading B+ tree
index.

• Sort-merge join algorithm involves sorting
Next lecture

Do people care?

Sort benchmark bears his name

http://sortbenchmark.org

http://sortbenchmark.org

So how do we sort big files?
1. Split into chunks small enough to sort in memory (“runs”)

2. Merge pairs (or groups) of runs using the external merge
algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left
with one sorted file!

External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer

pages
• 6-page file

Disk Main Memory

Buffer

18,22
F

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2
33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file

Orange file
= unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory

Buffer

18,22

F1

F2
31,33 44,5510,12

Example:
• 3 Buffer

pages
• 6-page file

1. Split into chunks small enough to sort in memory

Orange file
= unsorted

External Merge Sort Algorithm
Disk Main Memory

Buffer
F1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22
18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer

pages
• 6-page file

Each sorted
file is a
called a run

External Merge Sort Algorithm
Disk Main Memory

Buffer
F1

F2

2. Now just run the external merge algorithm & we’re done!

31,33 44,5510,12

18,22 24,271,3

Example:
• 3 Buffer

pages
• 6-page file

Calculating IO Cost
For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
• 1 R + 1 W for each page = 2*(3 + 3) = 12 IO operations

2. Merge each pair of sorted chunks using the external merge
algorithm
• = 2*(3 + 3) = 12 IO operations

3. Total cost = 24 IO

Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough
to sort in buffer…

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Call each of these
sorted files a run

Running External Merge Sort on Larger Files

1. Split into files small enough
to sort in buffer…

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge
pairs of (sorted)
files… the
resulting files
will be sorted!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And
repeat…

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Call each of these
steps a pass

Running External Merge Sort on Larger Files

Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk

18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk

10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk

3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

Running External Merge Sort on Larger Files

Simplified 3-page Buffer Version
Assume for simplicity that we split an N-page file into N single-
page runs and sort these; then:

• First pass: Merge N/2 pairs of runs each of length 1 page

• Second pass: Merge N/4 pairs of runs each of length 2
pages

• In general, for N pages, we do 𝒍𝒐𝒈𝟐𝑵 passes
• +1 for the initial split & sort

• Each pass involves reading in & writing out all the pages =
2N IO

Unsorted input file

Split & sort

Merge

Merge

Sorted!

à 2N*(𝒍𝒐𝒈𝟐𝑵 +1) total IO cost!

External Merge Sort: Optimizations

Now assume we have B+1 buffer pages; three optimizations:

1. Increase the length of initial runs

2. B-way merges

3. Repacking

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and
sort these in memory

2𝑁(log!𝑁 + 1)

IO Cost:

Starting with runs
of length 1

2𝑁(log!
𝑵

𝑩+ 𝟏
+ 1)

Starting with runs of
length B+1

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.
On each pass, we can merge groups of B runs at a time (vs. merging
pairs of runs)!
IO Cost:

2𝑁(log!𝑁 + 1) 2𝑁(log!
𝑵

𝑩+ 𝟏
+ 1)

Starting with runs
of length 1

Starting with runs of
length B+1

2𝑁(log"
𝑵

𝑩+ 𝟏
+ 1)

Performing B-way
merges

Repacking for even longer initial runs
• With B+1 buffer pages, we can now start with B+1-length initial

runs (and use B-way merges) to get 2𝑁(log"
𝑵

𝑩%𝟏
+ 1) IO

cost…

• Can we reduce this cost more by getting even longer initial runs?

• Use repacking- produce longer initial runs by “merging” in buffer
as we sort at initial stage

Repacking Example: 3 page buffer
• Start with unsorted single input file, and load 2 pages

57,24 3,98

Disk
Main Memory

Buffer18,22
F1

10,33 44,5531,12

F2

Repacking Example: 3 page buffer
• Take the minimum two values, and put in output page

57,24 3,98

Disk
Main Memory

Buffer18,22
F1

10,33

44,55

31,12F2 31 33 10,12

m=12

Also keep track of
max (last) value in
current run…

Repacking Example: 3 page buffer
• Next, repack

57,24 3,98

Disk
Main Memory

BufferF1

33F2 31 31,3310,12

m=12
44,55

18,22

Repacking Example: 3 page buffer
• Next, repack, then load another page and continue!

57,24 3,98

Disk
Main Memory

BufferF1

F2 31,3310,12

m=12
44,55

m=33

18,22

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last)

in the sorted run…

3,98

Disk
Main Memory

BufferF1

F2 31,3310,12

m=33

18,2218,22

We call these values frozen because
we can’t add them to this run…

44,55

57,24

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last)

in the sorted run…

3,98

Disk
Main Memory

BufferF1

F2 31,3310,12

m=55

18,2218,22

We call these values frozen because
we can’t add them to this run…

44,55

57,24

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last)

in the sorted run…
Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22

3,98

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last)

in the sorted run…
Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22 3,98

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last)

in the sorted run…
Disk

Main Memory

BufferF1

F2 31,3310,12

m=55

44,55 3,24 18,22 57,98

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty,

start new run with the frozen values
Disk

Main Memory

BufferF1

F2 31,3310,12

m=0

44,55 3,24 18,22

57,98

F3

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty,

start new run with the frozen values
Disk

Main Memory

BufferF1

F2 31,3310,12

m=0

44,55

57,98

F3

3,18 22,24

Repacking
• Note that, for buffer with B+1 pages:
• Best case: If input file is sorted à nothing is frozen à we get a single

run!
• Worst case: If input file is reverse sorted à everything is frozen à we get

runs of length B+1

• In general, with repacking we do no worse than without it!

• Engineer’s approximation: runs will have ~2(B+1) length
~2𝑁(log"

𝑵
𝟐(𝑩 + 𝟏)

+ 1)

Summary
• Basics of IO and buffer management.

• We introduced the IO cost model using sorting.
• Saw how to do merges with few IOs,
• Works better than main-memory sort algorithms.

• Described a few optimizations for sorting

