CS 6400 A

Database Systems Concepts and Design

Lecture 13 10/08/25

Announcements

Assignment 2 released

• Due Oct 20

Project

- Never too early to start working on your project!
- Feedback on project proposal: expect next week
- Project Milestone: first week of November

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 14.6: Tree Structures for Multidimensional Data

Reference papers

- HNSW
- Product Quantization

Agenda

- 1. Multi-dimensional Indexes and ANNS
- 2. Graph-based Methods

3. Product Quantization

1. Multi-dimensional Indexes and ANNS

One-dimensional Indexes

Recall that **B-trees** are examples of a one-dimensional index

 Assume a single search key, and they retrieve records that match a given search key value.

13

The key can contain multiple attributes

Limitation of 1D indexes

Example spatial queries:

- Find the 10 closest restaurants to my current location
- Find all coffee shops within a 1 km radius of my current location

Building a B-tree on either the latitude or longitude is inefficient, since the query for a geographic area is essentially a range query in both dimensions *simultaneously*.

Multidimensional Indexes (Tree-based)

Multidimensional indexes:

- Examples: kd-tree, R-tree
- Specifically designed to partition multidimensional data

R-tree

A KD-Tree is a binary search tree that cycles through dimensions; designed primarily for in-memory operations.

Construction Algorithm (High-Level):

- Start with a set of points and choose a dimension to split on (e.g., round-robin).
- Find the median point in that dimension.
- Split the data into two subsets: {points ≤ median} and {points > median}.
- Recursively build the left and right subtrees, switching to the next dimension.

A KD-Tree is a binary search tree that cycles through dimensions.

A KD-Tree is a binary search tree that cycles through dimensions.

A KD-Tree is a binary search tree that cycles through dimensions.

A KD-Tree is a binary search tree that cycles through dimensions.

Q: What's the range represented by F's subtree?

KD-Tree

A KD-Tree is a binary search tree that cycles through dimensions.

Nearest Neighbor Queries (kNN Query)

Given a query object q, we search in a high-dimensional dataset \mathcal{D} for one or more objects in \mathcal{D} that are among the closet to q according to some distance metric.

Common distance metric:

- Euclidean distance (supported by kd-tree): $||\vec{q} \vec{p}||_2$
- Cosine similarity: $\frac{q \cdot p}{||q|| ||p||}$
- Jaccard similarity: $\frac{|q \cap p|}{|q \cup p|}$ (q and p are two arbitrary sets)

Search Algorithm (kNN Query):

- Traversal: Start at the root and traverse down the tree (comparing the query point to the split value at each node) until you reach a leaf. This is your initial "best guess."
- Backtracking: As you unwind the recursion, check if a better candidate could exist on the other side of the splitting hyperplane.
 - If the distance from the query point to the hyperplane is less than the current best distance, you *must* search the other subtree.

Curse of Dimensionality

Linear scan takes O(n) per query; kd-tree takes $\sim O(n^{1-1/d})$

When the dimension d is very large, search trees (e.g., kd-tree, R-Tree) performs no better than the linear scan, due to the

"curse of dimensionality" [C1994].

Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on Computational Geometry, pages 160–164, 1994.

Approximate Nearest Neighbor Search

Problem Definition: Given a query object q, we search in a massive high-dimensional dataset \mathcal{D} for one or more objects in \mathcal{D} that are among the closet to q with high probability according to some similarity or distance metric.

ANNS solutions are usually much faster than linear scan with negligible accuracy loss.

Tradeoff between performance and accuracy

Approximate Nearest Neighbor Search

Recall-Queries per second (1/s) tradeoff - up and to the right is better

Applications of ANNS

 Finding the most relevant data points in the database when compared to a specific query point

Example: Retrieval Augmented Generation

Scale of Embeddings

Example: OpenAl

- text-embedding-3-small: 1536 dims
 - 1536 * 4 bytes = 6 KB
 - 6 KB * 1B = 6 TB
 - 6 KB * 1T = 6 PB
- text-similarity-davinci-001: 12288 dims
 - 12288 * 4 bytes = 49 KB
 - 49 KB * 1B = 49 TB
 - 49 KB * 1T = 49 PB

Significant memory requirement for processing billion/trillion scale vector datasets!

Vector Databases

 Fast similarity searches and retrieval for highdimensional vectors

 Consistency guarantees, multitenancy, cloud-native, CRUD, logging and recovery, serverless, etc

Source: https://thedataquarry.com/posts/vector-db-1/

Indexing Algorithms in Vector Databases

Pinecone ·····	Proprietary composite index	
milvus / # zilliz	Flat, Annoy, IVF, HNSW/RHNSW (Flat/PQ), Disk	4NN
Weaviate ·····	Customized HNSW, HNSW (PQ), DiskANN (in progr	ress)
q drant ·····	Customized HNSW	
chroma ·····	HNSW	
LanceDB	IVF (PQ), DiskANN (in progress)	
vespa ·····	HNSW + BM25 hybrid	
Vald ·····	NGT	Com
elasticsearch ······	Flat (brute force), HNSW	HNS
redis ·····	Flat (brute force), HNSW	
pgvector	IVF (Flat), IVF (PQ) in progress	

Common indexes: HNSW, IVF(PQ)

Source: https://thedataquarry.com/posts/vector-db-1/

Index Algorithms: Big players in the field

- Meta: <u>FAISS</u> (CPU & GPU)
- Google: <u>ScaNN</u>
- Microsoft (Bing team): <u>DiskANN</u>, SPTAG
- Spotify: <u>ANNOY</u>
- Amazon: KNN based on HNSW in OpenSearch
- Baidu: IPDG (Baidu Cloud)
- Alibaba: NSG (Taobao Search Engine)

Different Approaches to ANNS Problem

Graph-based methods

A navigable graph where each point connects to its neighbor

Product Quantization (PQ)

 Use lossy compression to represent high-dimensional vectors with compact codes

Locality sensitive hashing (no covered in this lecture)

 Use hash functions that map similar points to the same buckets with high probability

2. Graph-based Methods

Graph-based ANNS: Quick Primer

Offline Stage:

Build a graph over base points, and designate a node s as start.

Online Stage:

For query q, start at a root vertex, traverse the edges as long as distance to q improves

NSG [github.com/ZJULearning/nsg]
HNSW [https://github.com/nmslib/hnswlib]

KNN Graph [WWW'11]

- KNN Graph: for a set of objects V is a directed graph with vertex set V and an edge from each v ∈ V to its K most similar objects in V under a given similarity measure.
- Key intuition: a neighbor of a neighbor is also likely to be a neighbor.
- Triangle inequality:

KNN Graph [WWW'11]

• Search Procedure: repeatedly move to the closest unvisited neighbor to query (similar to hill climbing), until no closer points can be found.

• Why this works: Exploits graph connectivity to quickly traverse from distant regions to the query's neighborhood without exhaustive search.

KNN Graph [WWW'11]

Challenges:

- To avoid local optima, we need to traverse over thousands of points to find the nearest neighbors of the query point.
- The size of KNN graph is usually very large and hard to store in memory.

Navigable Small Worlds (NSW)

- A kNN graph that has both long-range and short-range links; inspired by the "small-world" phenomenon, where any two individuals can be connected by a surprisingly short chain of acquaintances.
- NSW adds long-range links using a distribution based on distance: closer nodes are more likely to connect

Long-range links help ensure the search doesn't get stuck in local minima

Navigable Small Worlds (NSW)

Can get stuck in local minimal in zoom out phase!

Greedy search procedure:

- Phase 1: Zoom Out (low-degree vertices)
 - Use long-range links to make large jumps across the space
- Phase 2: Zoom in (High-degree vertices)
 - Use dense local connections to refine search

The Degree Dilemma: Increasing the average degree of vertices would increase search complexity – balance between recall and search speed

High-degree vertices have many links, whereas low-degree vertices have very few links.

Hierarchical Navigable Small Worlds (HNSW)

Among the top-performing indexes for vector similarity search: fast search speed and good recall

Probability skip list: building several layers of linked lists. On the first layer, we find links that skip many intermediate nodes/vertices. As we move down the layers, the number of 'skips' by each link is decreased.

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

- Start from the top layer with the longest 'skips'
- If you overshoot, move down to a lower layer

Hierarchical Navigable Small Worlds (HNSW)

Main idea: Combine skip list with NSW

- Top layers: few nodes, long links
- Bottom layer: all nodes, short links
- Middle layer: gradually increase density

Separation of concerns:

- Top layers are optimized for longrange navigation (zoom out)
- Bottom layers are optimized for accurate local search (zoom in)

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

- Enter from top layer:
 - A point in the top layer has few edges in the top layer, but it also has edges in all lower layers
 - Total degree across all layers is high, even though degree within top layer is low
- Upon finding local minimum, descend to a lower layer and repeat the search

Hierarchical Navigable Small Worlds (HNSW)

Index Construction

- Step1: assign layer level
 - Randomly determine maximum layer ℓ for the new point
 - $P(layer = \ell) \propto e^{-\ell}$
- Step2: Insert and connect at each layer
- Step3: prune connections (optional)

Hierarchical Navigable Small Worlds (HNSW)

HNSW is an in-memory index:

- Entire graph structure and vectors stored in RAM
- For each node, we need to store:
 - vector data (used for distance computation)
 - adjacency list (neighbor list for each layer 0 to ℓ)

What if server doesn't have enough memory:

- PQ: Compress vectors to save space (discussed next)
- Partition and distribute across machines (nontrivial due to network communication)
- <u>DiskANN</u> [NeurlPS'19], <u>SPANN</u> [NeurlPS'21]: memory-SSD hybrid solution

3. Product Quantization

Product Quantization

Winner in <u>BigANN Competition @ NeurIPS' 21</u>; a technique for compression high-dimensional vectors, therefore speeding up the similarity search.

Popular implementation: Meta's faiss library

Vector Quantization: use centroids to represent vectors in clusters.

 distance(query, vector) ~ distance(query, centroid)

Vector Quantization

- Map the original dataset by a vector quantizer with k centroids using k-means
- Store only the centroid ID (integer code) instead of full vector
- Codebook: set of k centroids (learned from data)

Problem: need a large number of clusters to distinguish vectors

• e.g., a quantizer producing 64-bit code contains $k = 2^{64}$ centroids

Product Quantization

- Split a high-dimensional vector into equally sized subvectors
- Assigning each of these subvectors to its nearest centroid
- Replacing these centroid values with unique IDs each ID represents a centroid

Product Quantization

Benefit: Produce a large set of centroids from several small sets of centroids

Suppose we are using 32 bits for each compressed vector

- Vector quantization:
 - $k = 2^{32}$ total centroids
 - Total centroids: $k = 2^{32} = 4,294,967,296$
- Product quantization:
 - m = 4 subquantizer
 - $k^* = 2^8$ centroids for each subquantizer
 - Total centroids: $m \cdot k^* = 1024$

$$k = (k^*)^m$$

Quantization

original vector

subvectors

Each subvector space has its own set of clusters

clustering

quantized vectors

reproduction values

Computing Distances with Quantized Codes

Asymmetric distance computation: The database vector y is represented by q(y), but the query x is NOT encoded.

$$\tilde{d}(x,y) = \sqrt{\sum_{j} d(u_{j}(x), \mathbf{q}_{j}(u_{j}(y)))^{2}}$$

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Using PQ in Indexes

PQ is just a lossy compression mechanism to reduce the memory footprint of vector data

During ANN search, still need an index to avoid exhaustive search

We will explore two examples:

- IVF-PQ: inverted index + PQ
- DiskANN: graph-based method that uses PQ for the in-memory component

IVF-PQ: Inverted File Index

Small memory footprint, but lower recall due to lossy compression

Assign all vectors to Voronoi cells (e.g., via K-Means clustering)

IVF-PQ: Inverted File Index

During search, only check nearby cells

IVF-PQ: Index Construction

Step 1: Coarse Partitioning with IVF

- Use K-Means to partition the datase
- Assigns each vector to its nearest centroid

Step 2: Compression with PQ

- For each vector in the database, calculate the **residual**:
 - Residual = Original Vector Assigned Centroid
- Compress the residuals using PQ
 - Result: Each vector represented by (centroid ID, PQ code)

IVF-PQ: Search

Step 1: Coarse Search (IVF)

 Select the *nprobe* nearest centroids to query vectpr

Step 2: Fine Search with PQ

- For each selected centroid, compute query residual:
 - Query Residual = Query Centroid
- Estimate distances between query residual and database residuals and rank candidates by distance

DiskANN [NeurlPS'19]: Memory-SSD

In Memory:

- Compressed vectors (PQ codes) for ALL points in dataset
- First few levels of graph

On SSD:

- For each node v:
 - Full-precision vector of v + adjacency list of v
 - Co-located for efficient single-read access (1 I/O for each node)

In full precision, 1B points in 100 dimensions would consume 400 GB RAM, but we can achieve very good results by storing them as compressed coordinates with \sim 32GB

Source: DiskANN NeurIPS slides

DiskANN: Vamana Graph

Graph construction algorithm used by DiskANN, optimized for

- Small graph diameter than NSG, HNSW: fewer disk reads
- Degree bounds: each node's data can fit into one page

Graph initialized with random connections, and can quickly converge

Source: DiskANN NeurIPS slides