
CS 6400 A

Database Systems
Concepts and Design

Lecture 13

10/08/25

1

Announcements

Assignment 2 released
• Due Oct 20

Project
• Never too early to start working on your project!

• Feedback on project proposal: expect next week

• Project Milestone: first week of November

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 14.6: Tree Structures for Multidimensional Data

Reference papers

• HNSW

• Product Quantization

https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
Product%20Quantization%20for%20Nearest%20Neighbor%20Search
Product%20Quantization%20for%20Nearest%20Neighbor%20Search

Agenda

1. Multi-dimensional Indexes and ANNS

2. Graph-based Methods

3. Product Quantization

4

1. Multi-dimensional Indexes
and ANNS

One-dimensional Indexes

Recall that B-trees are examples of a
one-dimensional index

○ Assume a single search key, and they
retrieve records that match a given
search key value.

○ The key can contain multiple
attributes

6

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Limitation of 1D indexes

Example spatial queries:
• Find the 10 closest restaurants to my current location

• Find all coffee shops within a 1 km radius of my current location

Building a B-tree on either the latitude or longitude is inefficient,
since the query for a geographic area is essentially a range query in
both dimensions simultaneously.

Multidimensional Indexes (Tree-based)

Multidimensional indexes:

● Examples: kd-tree, R-tree

● Specifically designed to partition multi-
dimensional data

8Image source: https://cglab.ca/~cdillaba/comp5409_project/R_Trees.html

R-tree

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions; designed
primarily for in-memory operations.

Construction Algorithm (High-Level):
• Start with a set of points and choose a

dimension to split on (e.g., round-robin).

• Find the median point in that dimension.

• Split the data into two subsets: {points ≤
median} and {points > median}.

• Recursively build the left and right
subtrees, switching to the next dimension.

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions.

Tree Structure

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions.

Tree Structure

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions.

Tree Structure

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions.

Tree Structure

KD-Tree

A KD-Tree is a binary search tree that
cycles through dimensions.

Tree Structure

Q: What’s the range represented by F’s subtree?

Nearest Neighbor Queries (kNN Query)

Given a query object 𝑞, we search in a high-dimensional dataset 𝒟
for one or more objects in 𝒟 that are among the closet to 𝑞
according to some distance metric.

Common distance metric:
• Euclidean distance (supported by kd-tree): ||q − p||2

• Cosine similarity:
𝑞 ∙ 𝑝

𝑞 | 𝑝 |

• Jaccard similarity:
|q ∩ p|

|q ∪ p|
 (q and p are two arbitrary sets)

KD-Tree

Search Algorithm (kNN Query):

• Traversal: Start at the root and traverse
down the tree (comparing the query point to
the split value at each node) until you reach
a leaf. This is your initial "best guess.”

• Backtracking: As you unwind the recursion,
check if a better candidate could exist on
the other side of the splitting hyperplane.
• If the distance from the query point to the

hyperplane is less than the current best
distance, you must search the other subtree.

Curse of Dimensionality

Linear scan takes 𝑂(𝑛) per query; kd-tree takes ~𝑂(𝑛1−1/𝑑)

When the dimension 𝑑 is very large, search trees (e.g., kd-tree,
R-Tree) performs no better than the linear scan, due to the
“curse of dimensionality” [C1994].

Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on
Computational Geometry, pages 160–164, 1994.

Approximate Nearest Neighbor Search

Problem Definition: Given a query object 𝑞, we search in a
massive high-dimensional dataset 𝒟 for one or more objects in
𝒟 that are among the closet to 𝑞 with high probability
according to some similarity or distance metric.

ANNS solutions are usually much faster than linear scan with
negligible accuracy loss.

• Tradeoff between performance and accuracy

Approximate Nearest Neighbor Search

This image is downloaded from: http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

KNN

search

http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html
http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

Applications of ANNS

• Finding the most relevant data points in the database when
compared to a specific query point

Structured and

unstructured data
ML embeddings

Example: Retrieval Augmented Generation

Vector DB
(Domain Knowledge)

User
Query

Top-k documents

Context
LLM

(General Knowledge)

Similarity
Search

Embed

…

Scale of Embeddings

Example: OpenAI
• text-embedding-3-small: 1536 dims

• 1536 * 4 bytes = 6 KB

• 6 KB * 1B = 6 TB

• 6 KB * 1T = 6 PB

• text-similarity-davinci-001: 12288 dims
• 12288 * 4 bytes = 49 KB

• 49 KB * 1B = 49 TB

• 49 KB * 1T = 49 PB

Source: openai.com

Significant memory
requirement for
processing billion/trillion
scale vector datasets!

Vector Databases

• Fast similarity searches
and retrieval for high-
dimensional vectors

• Consistency
guarantees, multi-
tenancy, cloud-native,
CRUD, logging and
recovery, serverless,
etc

Source: https://thedataquarry.com/posts/vector-db-1/

https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/

Indexing Algorithms in Vector Databases

Source: https://thedataquarry.com/posts/vector-db-1/

Common indexes:
HNSW, IVF(PQ)

https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/

Index Algorithms: Big players in the field

● Meta: FAISS (CPU & GPU)

● Google: ScaNN

● Microsoft (Bing team): DiskANN, SPTAG

● Spotify: ANNOY

● Amazon: KNN based on HNSW in OpenSearch

● Baidu: IPDG (Baidu Cloud)

● Alibaba: NSG (Taobao Search Engine)

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/google-research/google-research/tree/master/scann
https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy

Different Approaches to ANNS Problem

Graph-based methods
• A navigable graph where each point connects to its neighbor

Product Quantization (PQ)
• Use lossy compression to represent high-dimensional vectors with

compact codes

Locality sensitive hashing (no covered in this lecture)
• Use hash functions that map similar points to the same buckets with

high probability

2. Graph-based Methods

Graph-based ANNS: Quick Primer

Offline Stage:
Build a graph over base points, and designate

a node s as start.

Online Stage:
For query q, start at a root vertex, traverse the

edges as long as distance to q improves

NSG [github.com/ZJULearning/nsg]

HNSW [https://github.com/nmslib/hnswlib]

s

q

Adapted from DiskANN slides from Harsha Simhadri

https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/nmslib/hnswlib

• KNN Graph: for a set of objects V is a directed graph with
vertex set V and an edge from each v ∈ V to its K most
similar objects in V under a given similarity measure.

• Key intuition: a neighbor of a neighbor is also likely to be a
neighbor.

• Triangle inequality:

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf

• Search Procedure: repeatedly
move to the closest unvisited
neighbor to query (similar to
hill climbing), until no closer
points can be found.

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

• Why this works: Exploits graph connectivity to
quickly traverse from distant regions to the query's
neighborhood without exhaustive search.

Image source: https://www.skillcamper.com/blog/hill-climbing-algorithm-in-artificial-intelligence

https://www.cs.princeton.edu/cass/papers/www11.pdf

Challenges:

• To avoid local optima, we need
to traverse over thousands of

points to find the nearest

neighbors of the query point.

• The size of KNN graph is

usually very large and hard to

store in memory.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf

• A kNN graph that has both long-range and short-range links;
inspired by the “small-world” phenomenon, where any two
individuals can be connected by a surprisingly short chain of
acquaintances.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Long-range links help ensure the search
doesn’t get stuck in local minima

• NSW adds long-range links using a
distribution based on distance:
closer nodes are more likely to
connect

https://www.sciencedirect.com/science/article/pii/S0306437913001300

Greedy search procedure:

• Phase 1: Zoom Out (low-degree vertices)

• Use long-range links to make large jumps across the space

• Phase 2: Zoom in (High-degree vertices)

• Use dense local connections to refine search

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

The Degree Dilemma: Increasing the
average degree of vertices would
increase search complexity – balance
between recall and search speed

Can get stuck in local
minimal in zoom out phase!

https://www.sciencedirect.com/science/article/pii/S0306437913001300

Hierarchical Navigable Small Worlds (HNSW)

Among the top-performing indexes for vector similarity search: fast
search speed and good recall

Probability skip list: building several layers of linked lists. On the first
layer, we find links that skip many intermediate nodes/vertices. As
we move down the layers, the number of ‘skips’ by each link is
decreased.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Start from the top layer with the longest ’skips’

• If you overshoot, move down to a lower layer

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Main idea: Combine skip list with NSW
• Top layers: few nodes, long links

• Bottom layer: all nodes, short links

• Middle layer: gradually increase density

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Separation of concerns:
• Top layers are

optimized for long-
range navigation
(zoom out)

• Bottom layers are
optimized for accurate
local search (zoom in)

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Enter from top layer:

• A point in the top layer has few
edges in the top layer, but it also
has edges in all lower layers

• Total degree across all layers is
high, even though degree within
top layer is low

• Upon finding local minimum,
descend to a lower layer and
repeat the search

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Index Construction

• Step1: assign layer level
• Randomly determine maximum

layer ℓ for the new point

• 𝑃 𝑙𝑎𝑦𝑒𝑟 = ℓ ∝ 𝑒−ℓ

• Step2: Insert and connect at
each layer

• Step3: prune connections
(optional)

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

HNSW is an in-memory index:

• Entire graph structure and vectors stored in RAM

• For each node, we need to store:
• vector data (used for distance computation)

• adjacency list (neighbor list for each layer 0 to ℓ)

What if server doesn’t have enough memory:
• PQ: Compress vectors to save space (discussed next)
• Partition and distribute across machines (nontrivial due to network

communication)

• DiskANN [NeurIPS’19], SPANN [NeurIPS’21]: memory-SSD hybrid solution

https://arxiv.org/abs/1603.09320
https://dl.acm.org/doi/abs/10.5555/3454287.3455520
https://dl.acm.org/doi/abs/10.5555/3454287.3455520
https://www.microsoft.com/en-us/research/wp-content/uploads/2021/11/SPANN_finalversion1.pdf

3. Product Quantization

Product Quantization

Winner in BigANN Competition @ NeurIPS’ 21; a technique for
compression high-dimensional vectors, therefore speeding up the
similarity search.

Popular implementation: Meta’s faiss library

Vector Quantization: use centroids to
represent vectors in clusters.

• distance(query, vector) ~
distance(query, centroid)

https://big-ann-benchmarks.com/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss

Vector Quantization

• Map the original dataset by a vector quantizer with k centroids
using k-means

• Store only the centroid ID (integer code) instead of full vector

• Codebook: set of k centroids (learned from data)

Problem: need a large number of clusters to distinguish vectors
• e.g., a quantizer producing 64-bit code contains k = 264 centroids

Product Quantization
• Split a high-dimensional vector into equally sized subvectors

• Assigning each of these subvectors to its nearest centroid

• Replacing these centroid values with unique IDs — each ID
represents a centroid

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57

Product Quantization

Suppose we are using 32 bits for each compressed vector
• Vector quantization:

• 𝑘 = 232 total centroids

• Total centroids: 𝑘 = 232 = 4,294,967,296

• Product quantization:
• 𝑚 = 4 subquantizer

• 𝑘∗ = 28 centroids for each subquantizer

• Total centroids: 𝑚 ∙ 𝑘∗ = 1024

𝑘 = (𝑘∗)𝑚

Benefit: Produce a large set of centroids

from several small sets of centroids

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Quantization

Each subvector
space has its
own set of
clusters

Computing Distances with Quantized Codes

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Asymmetric distance computation: The database vector 𝑦 is

represented by 𝑞(𝑦), but the query 𝑥 is NOT encoded.

ሚ𝑑 𝑥, 𝑦 = ෍

𝑗

𝑑(𝑢𝑗 𝑥 , 𝒒𝒋(𝑢𝑗(𝑦)))2

Using PQ in Indexes

PQ is just a lossy compression mechanism to reduce the memory
footprint of vector data

During ANN search, still need an index to avoid exhaustive search

We will explore two examples:
• IVF-PQ: inverted index + PQ

• DiskANN: graph-based method that uses PQ for the in-memory
component

IVF-PQ: Inverted File Index

Assign all vectors to Voronoi cells (e.g., via K-Means clustering)

This is the coarse-grained

IVF index

Small memory footprint,
but lower recall due to lossy
compression

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202

IVF-PQ: Inverted File Index

nprobe parameter controls

how many cells to search

during query time => controls

search recall vs latency

https://lancedb.github.io/lancedb/concepts/index_ivfpq/#product-quantization

During search, only check nearby cells

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202

IVF-PQ: Index Construction

Step 1: Coarse Partitioning with IVF
• Use K-Means to partition the dataset

• Assigns each vector to its nearest
centroid

Step 2: Compression with PQ
• For each vector in the database,

calculate the residual:
• Residual = Original Vector - Assigned

Centroid

• Compress the residuals using PQ
• Result: Each vector represented by

(centroid ID, PQ code)

Image source: Product Quantization for Nearest Neighbor Search

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202

IVF-PQ: Search

Step 2: Fine Search with PQ
• For each selected centroid, compute query residual:

• Query Residual = Query – Centroid

• Estimate distances between query residual and database residuals
and rank candidates by distance

Image source: Product Quantization for Nearest Neighbor Search

Step 1: Coarse Search
(IVF)

• Select the nprobe nearest

centroids to query vectpr

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202

DiskANN [NeurIPS’19]: Memory-SSD

In Memory:
• Compressed vectors (PQ codes) for ALL points in dataset

• First few levels of graph

On SSD:
• For each node v:

• Full-precision vector of v + adjacency list of v

• Co-located for efficient single-read access (1 I/O for each node)

In full precision, 1B points in 100 dimensions would consume 400 GB RAM, but we can
achieve very good results by storing them as compressed coordinates with ~32GB

Source: DiskANN NeurIPS slides

https://dl.acm.org/doi/pdf/10.5555/3454287.3455520

DiskANN: Vamana Graph

Graph construction algorithm
used by DiskANN, optimized for

• Small graph diameter than NSG,
HNSW: fewer disk reads

• Degree bounds: each node’s
data can fit into one page

Graph initialized with
random connections, and
can quickly converge

Source: DiskANN NeurIPS slides

https://dl.acm.org/doi/pdf/10.5555/3454287.3455520

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: 1. Multi-dimensional Indexes and ANNS
	Slide 6: One-dimensional Indexes
	Slide 7: Limitation of 1D indexes
	Slide 8: Multidimensional Indexes (Tree-based)
	Slide 9: KD-Tree
	Slide 10: KD-Tree
	Slide 11: KD-Tree
	Slide 12: KD-Tree
	Slide 13: KD-Tree
	Slide 14: KD-Tree
	Slide 15: Nearest Neighbor Queries (kNN Query)
	Slide 16: KD-Tree
	Slide 17: Curse of Dimensionality
	Slide 18: Approximate Nearest Neighbor Search
	Slide 19: Approximate Nearest Neighbor Search
	Slide 20: Applications of ANNS
	Slide 21: Example: Retrieval Augmented Generation
	Slide 22: Scale of Embeddings
	Slide 23: Vector Databases
	Slide 24: Indexing Algorithms in Vector Databases
	Slide 25: Index Algorithms: Big players in the field
	Slide 26: Different Approaches to ANNS Problem
	Slide 27: 2. Graph-based Methods
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Hierarchical Navigable Small Worlds (HNSW)
	Slide 35: Hierarchical Navigable Small Worlds (HNSW)
	Slide 36: Hierarchical Navigable Small Worlds (HNSW)
	Slide 37: Hierarchical Navigable Small Worlds (HNSW)
	Slide 38: Hierarchical Navigable Small Worlds (HNSW)
	Slide 39: Hierarchical Navigable Small Worlds (HNSW)
	Slide 40: 3. Product Quantization
	Slide 41: Product Quantization
	Slide 42: Vector Quantization
	Slide 43: Product Quantization
	Slide 44: Product Quantization
	Slide 45: Quantization
	Slide 46: Computing Distances with Quantized Codes
	Slide 47: Using PQ in Indexes
	Slide 48: IVF-PQ: Inverted File Index
	Slide 49: IVF-PQ: Inverted File Index
	Slide 50: IVF-PQ: Index Construction
	Slide 51: IVF-PQ: Search
	Slide 52: DiskANN [NeurIPS’19]: Memory-SSD
	Slide 53: DiskANN: Vamana Graph

