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Announcements 

Assignment 2 released
• Due Oct 20

Project 
• Never too early to start working on your project! 

• Feedback on project proposal: expect next week 

• Project Milestone: first week of November



Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 14.6: Tree Structures for Multidimensional Data

Reference papers

• HNSW

• Product Quantization

https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
Product%20Quantization%20for%20Nearest%20Neighbor%20Search
Product%20Quantization%20for%20Nearest%20Neighbor%20Search


Agenda

1. Multi-dimensional Indexes and ANNS 

2. Graph-based Methods

3. Product Quantization
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1. Multi-dimensional Indexes 
and ANNS 



One-dimensional Indexes

Recall that B-trees are examples of a 
one-dimensional index 

○ Assume a single search key, and they 
retrieve records that match a given 
search key value.

○ The key can contain multiple 
attributes 
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Limitation of 1D indexes 

Example spatial queries: 
• Find the 10 closest restaurants to my current location

• Find all coffee shops within a 1 km radius of my current location

Building a B-tree on either the latitude or longitude is inefficient, 
since the query for a geographic area is essentially a range query in 
both dimensions simultaneously. 



Multidimensional Indexes (Tree-based)

Multidimensional indexes:

● Examples: kd-tree, R-tree

● Specifically designed to partition multi-
dimensional data

8Image source: https://cglab.ca/~cdillaba/comp5409_project/R_Trees.html

R-tree



KD-Tree

A KD-Tree is a binary search tree that 
cycles through dimensions; designed 
primarily for in-memory operations.

Construction Algorithm (High-Level):
• Start with a set of points and choose a 

dimension to split on (e.g., round-robin).

• Find the median point in that dimension. 

• Split the data into two subsets: {points ≤ 
median} and {points > median}.

• Recursively build the left and right 
subtrees, switching to the next dimension.



KD-Tree

A KD-Tree is a binary search tree that 
cycles through dimensions.

Tree Structure
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KD-Tree

A KD-Tree is a binary search tree that 
cycles through dimensions.

Tree Structure

Q: What’s the range represented by F’s subtree?



Nearest Neighbor Queries (kNN Query)

Given a query object 𝑞, we search in a high-dimensional dataset 𝒟 
for one or more objects in 𝒟 that are among the closet to 𝑞 
according to some distance metric.

Common distance metric:
• Euclidean distance (supported by kd-tree): ||q − p||2

• Cosine similarity: 
𝑞 ∙ 𝑝

𝑞  | 𝑝 |

• Jaccard similarity: 
|q ∩ p|

|q ∪ p|
 (q and p are two arbitrary sets)



KD-Tree

Search Algorithm (kNN Query):

• Traversal: Start at the root and traverse 
down the tree (comparing the query point to 
the split value at each node) until you reach 
a leaf. This is your initial "best guess.”

• Backtracking: As you unwind the recursion, 
check if a better candidate could exist on 
the other side of the splitting hyperplane. 
• If the distance from the query point to the 

hyperplane is less than the current best 
distance, you must search the other subtree.



Curse of Dimensionality 

Linear scan takes 𝑂(𝑛) per query; kd-tree takes ~𝑂(𝑛1−1/𝑑)

When the dimension 𝑑 is very large, search trees (e.g., kd-tree, 
R-Tree) performs no better than the linear scan, due to the 
“curse of dimensionality” [C1994]. 

Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on 
Computational Geometry, pages 160–164, 1994.



Approximate Nearest Neighbor Search

Problem Definition: Given a query object 𝑞, we search in a
massive high-dimensional dataset 𝒟 for one or more objects in 
𝒟 that are among the closet to 𝑞 with high probability 
according to some similarity or distance metric.

ANNS solutions are usually much faster than linear scan with 
negligible accuracy loss. 

• Tradeoff between performance and accuracy



Approximate Nearest Neighbor Search

This image is downloaded from: http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

KNN 

search 
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Applications of ANNS

• Finding the most relevant data points in the database when 
compared to a specific query point

Structured and 

unstructured data
ML embeddings



Example: Retrieval Augmented Generation

Vector DB
(Domain Knowledge)

User 
Query

Top-k documents

Context
LLM

(General Knowledge)

Similarity 
Search

Embed

…



Scale of Embeddings

Example: OpenAI
• text-embedding-3-small: 1536 dims 

• 1536 * 4 bytes = 6 KB 

• 6 KB * 1B = 6 TB 

• 6 KB * 1T = 6 PB 

•  text-similarity-davinci-001: 12288 dims 
• 12288 * 4 bytes = 49 KB 

• 49 KB * 1B = 49 TB 

• 49 KB * 1T = 49 PB 

Source: openai.com

Significant memory 
requirement for 
processing billion/trillion 
scale vector datasets!



Vector Databases

• Fast similarity searches 
and retrieval for high-
dimensional vectors

• Consistency 
guarantees, multi-
tenancy, cloud-native, 
CRUD, logging and 
recovery, serverless, 
etc 

Source: https://thedataquarry.com/posts/vector-db-1/

https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/


Indexing Algorithms in Vector Databases

Source: https://thedataquarry.com/posts/vector-db-1/

Common indexes: 
HNSW, IVF(PQ)

https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/
https://thedataquarry.com/posts/vector-db-1/


Index Algorithms: Big players in the field 

● Meta: FAISS (CPU & GPU)

● Google: ScaNN

● Microsoft (Bing team): DiskANN, SPTAG

● Spotify: ANNOY

● Amazon: KNN based on HNSW in OpenSearch

● Baidu: IPDG (Baidu Cloud)

● Alibaba: NSG (Taobao Search Engine)

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/google-research/google-research/tree/master/scann
https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy


Different Approaches to ANNS Problem

Graph-based methods 
• A navigable graph where each point connects to its neighbor

Product Quantization (PQ)
• Use lossy compression to represent high-dimensional vectors with 

compact codes

Locality sensitive hashing (no covered in this lecture)
• Use hash functions that map similar points to the same buckets with 

high probability



2. Graph-based Methods



Graph-based ANNS: Quick Primer

Offline Stage: 
Build a graph over base points, and designate 

a node s as start.

Online Stage:
For query q, start at a root vertex, traverse the 

edges as long as distance to q improves

NSG [github.com/ZJULearning/nsg]

HNSW [https://github.com/nmslib/hnswlib]

s

q

Adapted from DiskANN slides from Harsha Simhadri

https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/nmslib/hnswlib


• KNN Graph: for a set of objects V is a directed graph with 
vertex set V and an edge from each v ∈ V to its K most 
similar objects in V under a given similarity measure. 

• Key intuition: a neighbor of a neighbor is also likely to be a 
neighbor. 

• Triangle inequality:

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• Search Procedure: repeatedly 
move to the closest unvisited 
neighbor to query (similar to 
hill climbing), until no closer 
points can be found.

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

• Why this works: Exploits graph connectivity to 
quickly traverse from distant regions to the query's 
neighborhood without exhaustive search.

Image source: https://www.skillcamper.com/blog/hill-climbing-algorithm-in-artificial-intelligence

https://www.cs.princeton.edu/cass/papers/www11.pdf


Challenges:

• To avoid local optima, we need 
to traverse over thousands of 

points to find the nearest 

neighbors of the query point.

• The size of KNN graph is 

usually very large and hard to 

store in memory.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• A kNN graph that has both long-range and short-range links; 
inspired by the “small-world” phenomenon, where any two 
individuals can be connected by a surprisingly short chain of 
acquaintances.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Long-range links help ensure the search 
doesn’t get stuck in local minima 

• NSW adds long-range links using a 
distribution based on distance: 
closer nodes are more likely to 
connect

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Greedy search procedure:

• Phase 1: Zoom Out (low-degree vertices)

• Use long-range links to make large jumps across the space

• Phase 2: Zoom in (High-degree vertices)

• Use dense local connections to refine search

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

The Degree Dilemma: Increasing the 
average degree of vertices would 
increase search complexity – balance 
between recall and search speed 

Can get stuck in local 
minimal in zoom out phase!

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Hierarchical Navigable Small Worlds (HNSW)

Among the top-performing indexes for vector similarity search: fast 
search speed and good recall

Probability skip list: building several layers of linked lists. On the first 
layer, we find links that skip many intermediate nodes/vertices. As 
we move down the layers, the number of ‘skips’ by each link is 
decreased.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Search procedure 

• Start from the top layer with the longest ’skips’

• If you overshoot, move down to a lower layer 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Main idea: Combine skip list with NSW
• Top layers: few nodes, long links

• Bottom layer: all nodes, short links

• Middle layer: gradually increase density

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Separation of concerns:
• Top layers are 

optimized for long-
range navigation 
(zoom out)

• Bottom layers are 
optimized for accurate 
local search (zoom in) 

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Enter from top layer:

• A point in the top layer has few 
edges in the top layer, but it also 
has edges in all lower layers

• Total degree across all layers is 
high, even though degree within 
top layer is low

• Upon finding local minimum, 
descend to a lower layer and 
repeat the search 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Index Construction

• Step1: assign layer level
• Randomly determine maximum 

layer ℓ for the new point

• 𝑃 𝑙𝑎𝑦𝑒𝑟 = ℓ ∝  𝑒−ℓ

• Step2: Insert and connect at 
each layer

• Step3: prune connections 
(optional)

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

HNSW is an in-memory index:

• Entire graph structure and vectors stored in RAM

• For each node, we need to store:
• vector data (used for distance computation)

• adjacency list (neighbor list for each layer 0 to ℓ)

What if server doesn’t have enough memory:
• PQ: Compress vectors to save space (discussed next) 
• Partition and distribute across machines (nontrivial due to network 

communication)

• DiskANN [NeurIPS’19], SPANN [NeurIPS’21]: memory-SSD hybrid solution 

https://arxiv.org/abs/1603.09320
https://dl.acm.org/doi/abs/10.5555/3454287.3455520
https://dl.acm.org/doi/abs/10.5555/3454287.3455520
https://www.microsoft.com/en-us/research/wp-content/uploads/2021/11/SPANN_finalversion1.pdf


3. Product Quantization



Product Quantization 

Winner in BigANN Competition @ NeurIPS’ 21; a technique for 
compression high-dimensional vectors, therefore speeding up the 
similarity search. 

Popular implementation: Meta’s faiss library 

Vector Quantization: use centroids to 
represent vectors in clusters. 

• distance(query, vector) ~ 
distance(query, centroid)

https://big-ann-benchmarks.com/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss


Vector Quantization 

• Map the original dataset by a vector quantizer with k centroids 
using k-means

• Store only the centroid ID (integer code) instead of full vector

• Codebook: set of k centroids (learned from data)

Problem: need a large number of clusters to distinguish vectors 
• e.g., a quantizer producing 64-bit code contains k = 264 centroids



Product Quantization
• Split a high-dimensional vector into equally sized subvectors

• Assigning each of these subvectors to its nearest centroid

• Replacing these centroid values with unique IDs — each ID 
represents a centroid

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57


Product Quantization

Suppose we are using 32 bits for each compressed vector
• Vector quantization:

• 𝑘 = 232 total centroids 

• Total centroids: 𝑘 = 232 = 4,294,967,296

• Product quantization:
• 𝑚 = 4 subquantizer

• 𝑘∗ = 28 centroids for each subquantizer

• Total centroids: 𝑚 ∙ 𝑘∗ = 1024

𝑘 = (𝑘∗)𝑚

Benefit: Produce a large set of centroids 

from several small sets of centroids

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57


https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Quantization

Each subvector 
space has its 
own set of 
clusters 



Computing Distances with Quantized Codes

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Asymmetric distance computation: The database vector 𝑦 is 

represented by 𝑞(𝑦), but the query 𝑥 is NOT encoded.

ሚ𝑑 𝑥, 𝑦 = ෍

𝑗

𝑑(𝑢𝑗 𝑥 , 𝒒𝒋(𝑢𝑗(𝑦)))2



Using PQ in Indexes

PQ is just a lossy compression mechanism to reduce the memory 
footprint of vector data 

During ANN search, still need an index to avoid exhaustive search 

We will explore two examples:
• IVF-PQ: inverted index + PQ

• DiskANN: graph-based method that uses PQ for the in-memory 
component



IVF-PQ: Inverted File Index

Assign all vectors to Voronoi cells (e.g., via K-Means clustering)

This is the coarse-grained 

IVF index

Small memory footprint, 
but lower recall due to lossy 
compression

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202


IVF-PQ: Inverted File Index

nprobe parameter controls 

how many cells to search 

during query time => controls 

search recall vs latency

https://lancedb.github.io/lancedb/concepts/index_ivfpq/#product-quantization

During search, only check nearby cells

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202


IVF-PQ: Index Construction

Step 1: Coarse Partitioning with IVF
• Use K-Means to partition the dataset

• Assigns each vector to its nearest 
centroid

Step 2: Compression with PQ  
• For each vector in the database, 

calculate the residual:
• Residual = Original Vector - Assigned 

Centroid

• Compress the residuals using PQ
• Result: Each vector represented by 

(centroid ID, PQ code)

Image source: Product Quantization for Nearest Neighbor Search

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202


IVF-PQ: Search

Step 2: Fine Search with PQ
• For each selected centroid, compute query residual: 

• Query Residual = Query – Centroid

• Estimate distances between query residual and database residuals 
and rank candidates by distance

Image source: Product Quantization for Nearest Neighbor Search

Step 1: Coarse Search 
(IVF)

• Select the nprobe nearest 

centroids to query vectpr

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5432202


DiskANN [NeurIPS’19]: Memory-SSD

In Memory:
• Compressed vectors (PQ codes) for ALL points in dataset 

• First few levels of graph 

On SSD:
• For each node v:

• Full-precision vector of v + adjacency list of v

• Co-located for efficient single-read access (1 I/O for each node)

In full precision, 1B points in 100 dimensions would consume 400 GB RAM, but we can 
achieve very good results by storing them as compressed coordinates with ~32GB

Source: DiskANN NeurIPS slides

https://dl.acm.org/doi/pdf/10.5555/3454287.3455520


DiskANN: Vamana Graph

Graph construction algorithm 
used by DiskANN, optimized for 

• Small graph diameter than NSG, 
HNSW: fewer disk reads

• Degree bounds: each node’s 
data can fit into one page 

Graph initialized with 
random connections, and 
can quickly converge

Source: DiskANN NeurIPS slides

https://dl.acm.org/doi/pdf/10.5555/3454287.3455520
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