
CS 6400 A

Database Systems

Concepts and Design

Lecture 12

10/01/25

Agenda

1. Static Hash Table

○ Linear Probing Hashing

○ Cuckoo Hashing

2. Dynamic Hash Table

○ Chained Hashing

○ Extensible Hashing

○ Linear Hashing

2

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.3: Hash Tables

3

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

Indexing vs hashing

● Indexing (including B+ trees) is good for range lookups

● Hashing is good for equality-based point lookups

4

SELECT *

FROM Movies

WHERE title = ‘Ponyo’;

SELECT *

FROM Movies

WHERE year >= 2000;

Hash table basics

● A hash function h takes a key and returns a block number from 0 to B - 1

● Blocks contain records and are stored in secondary storage

● Complexity:
● O(1) operation complexity

● O(n) storage complexity

5

key ℎ(𝑘𝑒𝑦)

...
...

Hash table: Design Decisions

Hash Function

● How to map a large key space into a smaller domain of array offsets

● Trade-off between fast execution vs. collision rate

Hashing Scheme

● How to handle key collisions after hashing

● Trade-off between allocating a large hash table vs. extra steps to

location/insert keys

● Static vs dynamic schemes

6
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash function

For any input key, return an integer representation of that key

● Output is deterministic

● Ideally the function distributes keys to all buckets evenly

Example:

● Given a key that is a string, return the sum of the characters x i modulo B

(i.e., Σxi % B)

We do NOT want to use a cryptographic hash function (e.g., SHA-256) for

DBMS hash tables

● Commonly DBMS hash functions (fast and simple): MurmurHash, xxHash

In general, we only care about the hash function’s speed and collision rate.

7
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

1. Static Hash Table

8

Static hash table

● The number of buckets is fixed

● Often used during query execution because they are faster than dynamic

hashing schemes.

● If the DBMS runs out of storage space in the hash table, it has to rebuild

a larger hash table (usually 2x) from scratch, which is very expensive!

Examples

● Linear Probing Hashing

● Robinhood Hashing (not covered)

● Cuckoo Hashing

9
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

Single giant table of slots

Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index

and scan for it.

● Has to store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookups

Example: Google's absl::flat_hash_map

10
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://abseil.io/tips/136
https://abseil.io/tips/136
https://abseil.io/tips/136

Linear Probing Hashing

11
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

12
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

13
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

14
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

15
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

16
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Q: What would happen in this case?

Linear Probing Hashing

17
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

18
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing - Delete

19
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the

emptied cell, but are stored in a position later than the emptied cell.

Two solutions:

● Tombstone

● Movement (less common)

Linear Probing Hashing

20
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

21
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

22
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot

is logically deleted.

Problem: look up for D is
affected by the deletion

Linear Probing Hashing

23
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot

is logically deleted.

Linear Probing Hashing

24
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot

is logically deleted.

• Can reuse the slot for

new keys

Linear Probing Hashing

25
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot

is logically deleted.

• Can reuse the slot for

new keys

Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds
● On insert, check every table and pick one with a free slot

● If no table has a free slot, evict the element from one of then and then re-hash it to

find a new location

● In rare cases, we may end up in a cycle. If this happens, we can rebuild using

larger hash tables

26

Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Look-ups and deletions are ~O(1)

because only one location per hash

table is checked.

Cuckoo Hashing

27
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

28
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

29
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

30
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

31
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

32
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

2. Dynamic Hash Table

33

Dynamic hash table

The previous hash tables require the DBMS to know the number of

elements it wants to store; otherwise it needs to rebuild the table to resize

Dynamic hash tables incrementally resize the hash table on demand

without needing to rebuild the entire table at once.

● Key Trade-off: Eliminates massive rebuild costs in exchange for more complex

maintenance overhead during normal operations

Examples:

● Chained Hashing

● Extensible Hashing

● Linear Hashing
34

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Chained Hashing

● Maintain a linked list of buckets for each slot in the

hash table.

● Resolve collisions by placing all elements with the

same hash key into the same bucket.

● To determine whether an element is present, hash to its

bucket and scan for it.

● Insertions and deletions are generalizations of lookups.

35

0

1

2

3

d

e

c

a

Chained Hashing

● Add g where h(g) = 1

36

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

37

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

38

0

1

2

3

d

e

g

a

Q: What’s the worst-
case scenario for
chained hashing?

Extensible Hashing

Chained-hashing approach that splits buckets incrementally instead of letting

the linked list grow forever.

How it works at a high level:

● Uses a global directory (an array of pointers) that points to data pages.

● The directory doubles in size when any bucket overflows.

● Only the overflowing bucket is split, not the entire table.

● Uses a global depth (for the directory) and local depths (for data pages).

39

Extensible hash table

Use first i bits of hash value to locate block

○ i grows over time

40

h(key): 00101100

i = 3

Extensible hash table

Use level of indirection where buckets are pointers to blocks

41

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1Global depth

Local depth

Extensible hash table

● Add 0010

42

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1

Extensible hash table

● Add 0010

43

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1 0010

Extensible hash table

● Add 1010

44

0001 1

0010

0

1

i = 1

Buckets Data blocks

1001

1100

1

Extensible hash table

● Add 1010

45

1001

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

May need to repeat splitting

until there is space

Extensible hash table

● Add 1010

46

1001

1010

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

Extensible hash table

● Add 1010

47

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

● What happens in this case?

48

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

49

0001 1

1000

1001

3

0010

1010 3

1100 2

Buckets Data blocks

00

01

i = 2

10

11

In-class Exercise

● Add 1000

50

0001 1

1000

1001

3

0010

000

i = 3

001

010

011

100

101

110

111

1010 3

1100 2

Buckets Data blocks

Extensible hashing summary

If bucket array fits in memory, lookup is always 1 disk I/O

Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive

○ Splitting can occur frequently if the number of records per block is small

○ At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly

51

Linear hashing

How it works at a high level:

● No directory - uses the bucket array directly.

● Splits buckets in round-robin order regardless of which bucket overflowed.

● Maintains a pointer to the "next bucket to split”

Can use different overflow criterion:

● Space Utilization

● Average Length of Overflow Chains

53

Linear hash tables

● Use last i bits of hash value to locate block

● Hash table grows linearly

54

1111

0000

1010

0

1

Bucket Array

Policy: r ≤ 1.7n

split pointer p = 0

bits used i = 1

buckets n = 2

records r = 3

Linear hash tables

● Add 0101

55

0101

1111

0000

1010

0

1

Violation!

Policy: r ≤ 1.7n

split pointer p = 0

bits used i = 1

buckets n = 2

records r = 4

Linear hash tables

● Add 0101

56

0101

1111

0000

1010

00

01

Violation!

split pointer p = 0

bits used i = 2

buckets n = 3

records r = 4

Policy: r ≤ 1.7n

Split triggered:
0 -> [00, 10]

10

Linear hash tables

● Add 0101

57

0101

1111

0000

1010

split pointer p = 0

bits used i = 2

buckets n = 3

records r = 4

Policy: r ≤ 1.7n

00

01

10

Linear hash tables

● Add 0101

58

0101

1111

0000

1010

split pointer p = 1

bits used i = 2

buckets n = 3

records r = 4

Policy: r ≤ 1.7n

Split pointer moves
to the next bucket

1111 stays here because

there is no 11 bucket yet

00

01

10

Linear hash tables

● Add 0001

59

0101

1111

0000

1010

split pointer p = 1

bits used i = 2

buckets n = 3

records r = 4

Policy: r ≤ 1.7n

00

01

10

Linear hash tables

● Add 0001

60

0101

1111

0000

1010

split pointer p = 1

bits used i = 2

buckets n = 3

records r = 5

Policy: r ≤ 1.7n

Only add new bucket

when policy is violated

0001

Use overflow block

No violation!

00

01

10

In-class Exercise

● Continuing with example, add 0111.

What happens here?

61

split pointer p = 1

bits used i = 2

buckets n = 3

records r = 5

Policy: r ≤ 1.7n

0101

1111

0000

1010

0001

00

01

10

In-class Exercise

● Continuing with example, add 0111.

What happens here?

62

split pointer p = 2

bits used i = 2

buckets n = 4

records r = 6

Policy: r ≤ 1.7n

0101

1111

0000

1010

0001

00

01

10

11

0111

Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations

● Compared to extensible hashing, there is no array of buckets

● However, there can be a long chain of overflow blocks

63

Mostly

empty

...Mostly

full

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Agenda
	Slide 3: Reading Materials

	Hash Tables
	Slide 4: Indexing vs hashing
	Slide 5: Hash table basics
	Slide 6: Hash table: Design Decisions
	Slide 7: Hash function
	Slide 8: 1. Static Hash Table
	Slide 9: Static hash table
	Slide 10: Linear Probing Hashing
	Slide 11: Linear Probing Hashing
	Slide 12: Linear Probing Hashing
	Slide 13: Linear Probing Hashing
	Slide 14: Linear Probing Hashing
	Slide 15: Linear Probing Hashing
	Slide 16: Linear Probing Hashing
	Slide 17: Linear Probing Hashing
	Slide 18: Linear Probing Hashing
	Slide 19: Linear Probing Hashing - Delete
	Slide 20: Linear Probing Hashing
	Slide 21: Linear Probing Hashing
	Slide 22: Linear Probing Hashing
	Slide 23: Linear Probing Hashing
	Slide 24: Linear Probing Hashing
	Slide 25: Linear Probing Hashing
	Slide 26: Cuckoo Hashing
	Slide 27: Cuckoo Hashing
	Slide 28: Cuckoo Hashing
	Slide 29: Cuckoo Hashing
	Slide 30: Cuckoo Hashing
	Slide 31: Cuckoo Hashing
	Slide 32: Cuckoo Hashing
	Slide 33: 2. Dynamic Hash Table
	Slide 34: Dynamic hash table
	Slide 35: Chained Hashing
	Slide 36: Chained Hashing
	Slide 37: Chained Hashing
	Slide 38: Chained Hashing
	Slide 39: Extensible Hashing
	Slide 40: Extensible hash table
	Slide 41: Extensible hash table
	Slide 42: Extensible hash table
	Slide 43: Extensible hash table
	Slide 44: Extensible hash table
	Slide 45: Extensible hash table
	Slide 46: Extensible hash table
	Slide 47: Extensible hash table
	Slide 48: In-class Exercise
	Slide 49: In-class Exercise
	Slide 50: In-class Exercise
	Slide 51: Extensible hashing summary
	Slide 53: Linear hashing
	Slide 54: Linear hash tables
	Slide 55: Linear hash tables
	Slide 56: Linear hash tables
	Slide 57: Linear hash tables
	Slide 58: Linear hash tables
	Slide 59: Linear hash tables
	Slide 60: Linear hash tables
	Slide 61: In-class Exercise
	Slide 62: In-class Exercise
	Slide 63: Linear hashing summary

