
CS 6400 A

Database Systems

Concepts and Design

Lecture 11

09/29/25

Announcements

Midterm grade released

○ After adjustment: mean: 80.3, median: 83.5, std: 14.9

○ Answer key on Canvas; regrade request open till next Monday (Oct 6)

Assignment 2 will be released tonight

○ Programming assignment on in-memory data layout; due Oct 20

○ Please START EARLY on this assignment! Autograder takes ~15min to run

Project proposal due this Wednesday (Oct 1). No late days.
2

Agenda

1. B+-Tree Basics

2. B+-Tree Operations

3. Cost Model

3

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.2: B-Tree

4

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang, CS145 (Intro to Big Data Systems) taught by Peter Bailis, and CS 6530 (Advanced
Database Systems) taught by Prashant Pandey.

1. B+-Tree Basics

5

B Tree/B+ Tree Overview

They are search trees

○ Common misunderstanding: B does not mean binary!

○ More general index structure that is commonly used in commercial DBMS’s

Idea in B Trees:

○ Balanced, height adjusted tree

○ Stores data (keys and values) in all nodes (both internal and leaf)

○ Leaf nodes are independent; no connections between them

Idea in B+ Trees:

○ Stores data only in leaf nodes; make leaves into a linked list (for range queries)

○ Most popular variant (our focus this lecture)

B+ Tree Basics

10 20 30

Each non-leaf (“interior”) node
has node has ≥ d and ≤ 2d keys*

*except for root node, which can

have between 1 and 2d keys

Parameter d = the degree

B+ Tree Basics

10 20 30

k < 10

10 ≤ 𝑘 < 20

20 ≤ 𝑘 < 30

30 ≤ 𝑘

The n keys in a node
define n+1 ranges

B+ Tree Basics

10 20 30

22 25 28

For each range, in a non-leaf
node, there is a pointer to
another node with keys in
that range

Non-leaf or internal node

B+ Tree Basics

10 20 30

Leaf nodes also have

between d and 2d keys,

and are different in that:

22 25 28 29 32 34 37 3812 17

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29 32 34 37 3812 17

Their key slots contain
pointers to data records

21 22 27 28 30 33 35 371511

Leaf nodes also have

between d and 2d keys,

and are different in that:

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

They contain a pointer to
the next leaf node as well,
for faster sequential
traversal

Their key slots contain
pointers to data records

Leaf nodes also have

between d and 2d keys,

and are different in that:

Assuming unclustered index

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at
the leaf level will be to the
actual data records (rows).

We might truncate these
for simpler display…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

Assuming unclustered index

B+ Tree occupancy requirement: interior nodes

14

To keys

K < 23

To keys

23 ≤ K < 31

To keys

31 ≤ K < 43

To keys

43 ≤ K

Full

Minimal

To keys

K < 23

To keys

23 ≤ K < ?

At least half of the
pointers much be used

23 31 43

23

Every node (except root)
must be at least ”half-full”

B+ Tree occupancy requirement: leaf nodes

15

To next leaf in sequence

To record

with key 13

To record

with key 17

To record

with key 19

Full

Counts even if null

To record

with key 13

To record

with key 17

Minimal

At least half of the keys
must be used

13 17 19

13 17

Every node (except root)
must be at least ”half-full”

Occupancy requirement: why does it matter?

16

Ensure that the tree remains balances
○ Nodes split when they get too full

○ Nodes merge/redistribute when they get too empty

Stable and predictable performance
○ Under modifications

○ Also good for query planning

Efficient space utilization
○ at least 50% full

Expected tree height: O(log N)
Important for minimizing disk I/Os

2. B+-Tree Operations

17

B+ Tree: Lookup

● Search for key K recursively

18

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

19

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

20

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● Search for key K recursively

21

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

B+ Tree: Lookup

● For range query [a, b], search for key a

● Then scan leaves to right until we pass b

22

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

B+ Tree: Lookup

● For range query [a, b], search for key a

● Then scan leaves to right until we pass b

23

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

24

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

25

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

26

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 17

B+ Tree: Insertion

● A more complex insertion example:

27

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40
Which leaf node does K
belong to?

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

28

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40
Which leaf node does K
belong to?

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

29

13

23 31 43

13 17 19 23 29 31 37 43 4740 41

Insert K = 40

Problem: No internal node
points to new leaf node

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

30

13

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40

B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

31

13 40

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40 Which direction does
the B+-Tree grow? Root
or leaves?

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

32

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

33

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

34

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

35

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

Also need update
parent’s key

B+ Tree: Deletion

● A more complex deletion example:

36

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

B+ Tree: Deletion

37

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:

B+ Tree: Deletion

38

13

5 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:

B+ Tree: Deletion

39

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:

B+ Tree: Deletion

40

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

What are remaining
problems that we need
to fix in the tree?

Delete K=11

● A more complex deletion example:

B+ Tree: Deletion

41

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

How to update keys:

(A) (B)

Delete K=11

B+ Tree: Deletion

42

13

13 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

How to update keys:
○ Parent key moves down to underflow node (A)

(A) (B)

Delete K=11

B+ Tree: Deletion

43

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

(A) (B)

Delete K=11

How to update keys:
○ Parent key moves down to underflow node (A)

○ Smallest key from right sibling (B) moves up to parent

In practice, coalescing is
sometimes not implemented
because 1) it is hard to
implement and 2) the tree will
probably grow again.

In-class Exercise

● Delete K = 31

44

23

13 31 43

2 3 13 17 23 29 31 37 43 47

In-class Exercise

● Delete K = 31

45

23

13 43

2 3 13 17 23 29 37 43 47

3. B+-Tree cost model

46

B+ Tree: High Fanout = Smaller & Lower IO

So why does B+ tree work?

As compared to binary search trees, B+ Trees have

high fanout (between d+1 and 2d+1)

This means that the depth of the tree is small →

getting to any element requires very few IO operations!

○ Also can often store most or all of the B+ Tree in main

memory!

The fanout is defined as the

number of pointers to child

nodes coming out of a node

Note that fanout is dynamic
- we’ll often assume it’s

constant just to come up

with approximate eqns!

B+ Trees in Practice

Typical order: d=100. Typical fill-factor: 67%.

○ average fanout = 133

Top levels of tree sit in the buffer pool:

○ Level 1 = 1 page = 8 KB

○ Level 2 = 133 pages = 1 MB

○ Level 3 = 17,689 pages = 133 MB

Typically, only

pay for one IO!

Fill-factor is the percent of

available slots in the B+

Tree that are filled; is

usually < 1 to leave slack

for (quicker) insertions

Simple Cost Model for Search

Suppose:

○ f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)

○ N = the total number of pages we need to index

○ F = fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N / F pages!

○ We have the fill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

○ h=1 → Just the root node- room to index f pages

○ h=2 → f leaf nodes- room to index f2 pages

○ h=3 → f2 leaf nodes- room to index f3 pages

○ …

○ h → fh-1 leaf nodes- room to index fh pages!

→ We need a B+ Tree of

height h = logf
N

F
!

Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:

○ We can store 𝑳𝑩 levels of the B+ Tree in memory

○ where 𝑳𝑩 is the number of levels such that the sum of all the levels’ nodes fit in the buffer:

■ 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓𝐿𝐵−1 = σ𝑙=0
𝐿𝐵−1𝑓𝑙

In summary: to do exact search:

○ We read in one page per level of the tree

○ However, levels that we can fit in buffer are free!

○ Finally we read in the actual record

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The IO cost is that of loading additional leaf nodes we need to access + the IO

cost of loading each page of the results- we phrase this as “Cost(OUT)”

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

In-class Exercise

Given a B+ tree indexing over 𝑁 = 100,000 data pages with fill factor 𝐹 = 1 and

constant fanout f = 10. Assume that each node of the B+ tree occupies one page,

that there are 𝐵 = 11 buffer pages available to store B+ Tree nodes.

What’s IO cost of performing an exact search query on this index?

52

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Reading Materials

	B-tree
	Slide 5: 1. B+-Tree Basics
	Slide 6: B Tree/B+ Tree Overview
	Slide 7: B+ Tree Basics
	Slide 8: B+ Tree Basics
	Slide 9: B+ Tree Basics
	Slide 10: B+ Tree Basics
	Slide 11: B+ Tree Basics
	Slide 12: B+ Tree Basics
	Slide 13: B+ Tree Basics
	Slide 14: B+ Tree occupancy requirement: interior nodes
	Slide 15: B+ Tree occupancy requirement: leaf nodes
	Slide 16: Occupancy requirement: why does it matter?
	Slide 17: 2. B+-Tree Operations
	Slide 18: B+ Tree: Lookup
	Slide 19: B+ Tree: Lookup
	Slide 20: B+ Tree: Lookup
	Slide 21: B+ Tree: Lookup
	Slide 22: B+ Tree: Lookup
	Slide 23: B+ Tree: Lookup
	Slide 24: B+ Tree: Insertion
	Slide 25: B+ Tree: Insertion
	Slide 26: B+ Tree: Insertion
	Slide 27: B+ Tree: Insertion
	Slide 28: B+ Tree: Insertion
	Slide 29: B+ Tree: Insertion
	Slide 30: B+ Tree: Insertion
	Slide 31: B+ Tree: Insertion
	Slide 32: B+ Tree: Deletion
	Slide 33: B+ Tree: Deletion
	Slide 34: B+ Tree: Deletion
	Slide 35: B+ Tree: Deletion
	Slide 36: B+ Tree: Deletion
	Slide 37: B+ Tree: Deletion
	Slide 38: B+ Tree: Deletion
	Slide 39: B+ Tree: Deletion
	Slide 40: B+ Tree: Deletion
	Slide 41: B+ Tree: Deletion
	Slide 42: B+ Tree: Deletion
	Slide 43: B+ Tree: Deletion
	Slide 44: In-class Exercise
	Slide 45: In-class Exercise
	Slide 46: 3. B+-Tree cost model
	Slide 47: B+ Tree: High Fanout = Smaller & Lower IO
	Slide 48: B+ Trees in Practice
	Slide 49: Simple Cost Model for Search
	Slide 50: Simple Cost Model for Search
	Slide 51: Simple Cost Model for Search
	Slide 52: In-class Exercise

