
CS 6400 A

Database Systems 

Concepts and Design

Lecture 11

09/29/25



Announcements 

Midterm grade released 

○ After adjustment: mean: 80.3, median: 83.5, std: 14.9 

○ Answer key on Canvas; regrade request open till next Monday (Oct 6)

Assignment 2 will be released tonight 

○ Programming assignment on in-memory data layout; due Oct 20 

○ Please START EARLY on this assignment! Autograder takes ~15min to run 

Project proposal due this Wednesday (Oct 1). No late days. 
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Agenda

1. B+-Tree Basics

2. B+-Tree Operations

3. Cost Model
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Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.2: B-Tree
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang, CS145 (Intro to Big Data Systems) taught by Peter Bailis, and CS 6530 (Advanced 
Database Systems) taught by Prashant Pandey.



1. B+-Tree Basics
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B Tree/B+ Tree Overview

They are search trees 

○ Common misunderstanding: B does not mean binary!

○ More general index structure that is commonly used in commercial DBMS’s

Idea in B Trees:

○ Balanced, height adjusted tree

○ Stores data (keys and values) in all nodes (both internal and leaf) 

○ Leaf nodes are independent; no connections between them

Idea in B+ Trees:

○ Stores data only in leaf nodes; make leaves into a linked list (for range queries)

○ Most popular variant (our focus this lecture)



B+ Tree Basics

10 20 30

Each non-leaf (“interior”) node 
has node has ≥ d and ≤ 2d keys*

*except for root node, which can 

have between 1 and 2d keys

Parameter d = the degree



B+ Tree Basics

10 20 30

k < 10

10 ≤ 𝑘 < 20

20 ≤ 𝑘 < 30

30 ≤ 𝑘

The n keys in a node 
define n+1 ranges 



B+ Tree Basics

10 20 30

22 25 28

For each range, in a non-leaf 
node, there is a pointer to 
another node with keys in 
that range

Non-leaf or internal node



B+ Tree Basics

10 20 30

Leaf nodes also have 

between d and 2d keys, 

and are different in that:

22 25 28 29 32 34 37 3812 17

Leaf nodes

Non-leaf or internal node



B+ Tree Basics

10 20 30

22 25 28 29 32 34 37 3812 17

Their key slots contain 
pointers to data records

21 22 27 28 30 33 35 371511

Leaf nodes also have 

between d and 2d keys, 

and are different in that:

Leaf nodes

Non-leaf or internal node



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

They contain a pointer to 
the next leaf node as well, 
for faster sequential 
traversal

Their key slots contain 
pointers to data records

Leaf nodes also have 

between d and 2d keys, 

and are different in that:

Assuming unclustered index



B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at 
the leaf level will be to the 
actual data records (rows).  

We might truncate these 
for simpler display…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

Assuming unclustered index



B+ Tree occupancy requirement: interior nodes
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To keys

K < 23

To keys

23 ≤ K < 31

To keys

31 ≤ K < 43

To keys

43 ≤ K

Full

Minimal

To keys

K < 23

To keys

23 ≤ K < ?

At least half of the 
pointers much be used

23 31 43

23

Every node (except root) 
must be at least ”half-full”



B+ Tree occupancy requirement: leaf nodes
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To next leaf in sequence

To record 

with key 13

To record 

with key 17

To record 

with key 19

Full

Counts even if null

To record 

with key 13

To record 

with key 17

Minimal

At least half of the keys
must be used

13 17 19

13 17

Every node (except root) 
must be at least ”half-full”



Occupancy requirement: why does it matter?
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Ensure that the tree remains balances 
○ Nodes split when they get too full

○ Nodes merge/redistribute when they get too empty 

Stable and predictable performance 
○ Under modifications 

○ Also good for query planning

Efficient space utilization
○ at least 50% full

Expected tree height: O(log N)
Important for minimizing disk I/Os



2. B+-Tree Operations
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B+ Tree: Lookup

● Search for key K recursively

18

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41



B+ Tree: Lookup

● Search for key K recursively
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7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41



B+ Tree: Lookup

● Search for key K recursively
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13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41



B+ Tree: Lookup

● Search for key K recursively

21

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41



B+ Tree: Lookup

● For range query [a, b], search for key a 

● Then scan leaves to right until we pass b  

22

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup  41 ≤ K ≤ 43



B+ Tree: Lookup

● For range query [a, b], search for key a 

● Then scan leaves to right until we pass b  

23

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup  41 ≤ K ≤ 43



B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

24

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17



B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

25

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17



B+ Tree: Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

26

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 17



B+ Tree: Insertion

● A more complex insertion example:

27

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40
Which leaf node does K 
belong to?



B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

28

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40
Which leaf node does K 
belong to?



B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

29

13

23 31 43

13 17 19 23 29 31 37 43 4740 41

Insert K = 40

Problem: No internal node 
points to new leaf node



B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

30

13

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40



B+ Tree: Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

31

13 40

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40 Which direction does 
the B+-Tree grow? Root 
or leaves?



B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with 

adjacent sibling

32

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7



B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with 

adjacent sibling

33

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7



B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with 

adjacent sibling

34

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7



B+ Tree: Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with 

adjacent sibling

35

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

Also need update 
parent’s key



B+ Tree: Deletion

● A more complex deletion example:

36

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11



B+ Tree: Deletion

37

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:



B+ Tree: Deletion
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13

5 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:



B+ Tree: Deletion
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13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

● A more complex deletion example:



B+ Tree: Deletion

40

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

What are remaining 
problems that we need 
to fix in the tree?

Delete K=11

● A more complex deletion example:



B+ Tree: Deletion

41

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

How to update keys:

(A) (B)

Delete K=11



B+ Tree: Deletion

42

13

13 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

How to update keys:
○ Parent key moves down to underflow node (A)

(A) (B)

Delete K=11



B+ Tree: Deletion

43

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

(A) (B)

Delete K=11

How to update keys:
○ Parent key moves down to underflow node (A)

○ Smallest key from right sibling (B) moves up to parent

In practice, coalescing is 
sometimes not implemented 
because 1) it is hard to 
implement and 2) the tree will 
probably grow again.



In-class Exercise

● Delete K = 31

44

23

13 31 43

2 3 13 17 23 29 31 37 43 47



In-class Exercise

● Delete K = 31

45

23

13 43

2 3 13 17 23 29 37 43 47



3. B+-Tree cost model 
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B+ Tree: High Fanout = Smaller & Lower IO

So why does B+ tree work?

As compared to binary search trees, B+ Trees have 

high fanout (between d+1 and 2d+1)

This means that the depth of the tree is small →

getting to any element requires very few IO operations!

○ Also can often store most or all of the B+ Tree in main 

memory!

The fanout is defined as the 

number of pointers to child 

nodes coming out of a node

Note that fanout is dynamic 
- we’ll often assume it’s 

constant just to come up 

with approximate eqns!



B+ Trees in Practice

Typical order: d=100.  Typical fill-factor: 67%.

○ average fanout = 133

Top levels of tree sit in the buffer pool:

○ Level 1 =           1 page  =     8 KB

○ Level 2 =      133 pages =     1 MB

○ Level 3 = 17,689 pages = 133 MB

Typically, only 

pay for one IO!

Fill-factor is the percent of 

available slots in the B+ 

Tree that are filled; is 

usually < 1 to leave slack 

for (quicker) insertions



Simple Cost Model for Search

Suppose:

○ f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)

○ N = the total number of pages we need to index

○ F = fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N / F pages!

○ We have the fill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

○ h=1 → Just the root node- room to index f pages

○ h=2 → f leaf nodes- room to index f2 pages

○ h=3 → f2 leaf nodes- room to index f3 pages

○ …

○ h → fh-1 leaf nodes- room to index fh pages!

→ We need a B+ Tree of 

height h = logf
N

F
!



Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:

○ We can store 𝑳𝑩 levels of the B+ Tree in memory

○ where 𝑳𝑩 is the number of levels such that the sum of all the levels’ nodes fit in the buffer:

■ 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓𝐿𝐵−1 = σ𝑙=0
𝐿𝐵−1𝑓𝑙

In summary: to do exact search:

○ We read in one page per level of the tree

○ However, levels that we can fit in buffer are free!

○ Finally we read in the actual record

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where  𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙



Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The IO cost is that of loading additional leaf nodes we need to access + the IO 

cost of loading each page of the results- we phrase this as “Cost(OUT)”

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where  𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙



In-class Exercise

Given a B+ tree indexing over 𝑁 = 100,000 data pages with fill factor 𝐹 = 1 and 

constant fanout f = 10. Assume that each node of the B+ tree occupies one page, 

that there are 𝐵 = 11 buffer pages available to store B+ Tree nodes. 

What’s IO cost of performing an exact search query on this index? 

52

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where  𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙
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