
The Snowflake Elastic Data
Warehouse

Nirmala Niraula, Yiwei Gao, Yicheng Liao, Zihao Zhao, Sheikh Munim Tazwar Riddhi

Author

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon Bock, Jonathan Claybaugh,
Daniel Engovatov, Martin Hentschel, Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,

Peter Povinec, Greg Rahn, Spyridon Triantafyllis, Philipp Unterbrunner

Published

14 June 2016 at 2016 ACM SIGMOD International Conference on Management of Data

Limitation of Traditional Data Warehouse

• Fixed Resources: Limited scalability, designed for static
infrastructure.

• Rigid Data Processing: Depend heavily on ETL pipelines for
structured data.

• Inflexible Architecture: Can’t handle unpredictable workloads or
semi-structured data efficiently.

• High Maintenance: Require significant tuning and physical design
to perform well.

2Yiwei Gao

What is Snowflake?

Snowflake is a data warehouse built on top of the Amazon Web
Services or Microsoft Azure cloud infrastructure and allows storage
and computing to scale independently:

• Cloud-Based Data Warehouse
• Unified Data Platform
• Modern Solution for Modern Data Needs

3Yiwei Gao

Key Features

•No hardware to manage; Snowflake handles updates and
maintenance.

Pure SaaS

• Full ANSI SQL and ACID compliance for easy
workload migration

Relational Database Support

• Handles both structured and semi-structured data
effortlessly

Seamless Data Support

• Independently scale compute and storage based on
demand

Elastic Scaling

•Handles node, cluster, and data center failures without
downtime

Continuous Availability

• Features cloning, undrop, and cross-region backups
to safeguard against accidental data loss

Durability

•Pay-as-you-go pricing with data compression for savings

Cost-Efficiency

•End-to-end encryption, role-based access, and robust
data protection

High Security

4Yiwei Gao

Pure Shared-Nothing Architecture

Good for scalability and efficiency

Works well for static and on-premise environments

• Tight Coupling of Compute and Storage:
oScaling compute requires adding storage, even if unnecessary.
oLeads to underutilized resources and increased costs.

• Membership Changes:
oNode failures or resizing causes significant data shuffling.
o Impacts system performance and limits elasticity.

Sheikh Munim Tazwar Riddhi 5

Snowflake’s Solution: Separation of Storage
and Compute
• Independent Scaling:

oCentralized storage using Amazon S3, unaffected by compute changes.
oVirtual warehouses that can scale up or down as needed.

• Elasticity:
oCompute resources can be added or paused without moving or changing

stored data.

• Local Caching:
oFrequently accessed data is cached on compute nodes for quick

retrieval, but permanent data stays in centralized storage.

Sheikh Munim Tazwar Riddhi 6

Benefits of Separating Storage and Compute

• Flexible Resource Management:
oScale compute up or down based on workload without touching storage.

• Cost Efficiency:
oPay only for active compute resources; storage costs remain steady.

• High Availability and Resilience:
oData remains accessible even if compute nodes experience failures.

• Improved Performance:
oNo data shuffling required during scaling, ensuring faster response times.

• Simplicity:
oReduces administrative overhead, making it easier to manage workloads.

Sheikh Munim Tazwar Riddhi 7

Multi-cluster Shared-data Architecture

Data Storage

• All data in one place

• Independently scale
storage and compute

• No unload / reload to
shut off compute

• Every virtual warehouse
can access all data

Cloud
Services

Transaction

Manager
SecurityOptimizer

Infrastructure

manager

Authentication & access control

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Virtual
Warehouse

Cache

Rest (JDBC/ODBC/Python)

Metadata

Yicheng Liao 8

Data Storage Layer

•Stores table data and query results
•Table is a set of immutable micro-partitions

•Uses tiered storage with Amazon S3 at the bottom
•Object store (key-value) with HTTP(S) PUT/GET/DELETE interface
•High availability, extreme durability (11-9)

•Some important differences w.r.t. local disks
•Performance (sure…)
•No update-in-place, objects must be written in full
•But: can read parts (byte ranges) of objects

•Strong influence on table micro-partition format and
concurrency control

Yicheng Liao 9

Virtual Warehouse

•warehouse = Cluster of EC2 instances called worker nodes
•Pure compute resources

•Created, destroyed, resized on demand
•Users may run multiple warehouses at same time
•Each warehouse has access to all data but isolated performance
•Users may shut down all warehouses when they have nothing to run

•T-Shirt sizes: XS to 4XL
•Users do not know which type or how many EC2 instances
•Service and pricing can evolve independent of cloud platform

Yicheng Liao 10

Query Management and Optimization

> SELECT … FROM …

Semi-structured data
(e.g. JSON, Avro, XML)

Structured data
(e.g. CSV, TSV, …)

Native support
Loaded in raw form (e.g.

JSON, Avro, XML)

Optimized storage
Optimized data type, no fixed schema or

transformation required

Optimized SQL querying

Full benefit of database optimizations

(pruning, filtering, …)

Yicheng Liao 11

Concurrency Control

•Designed for analytic workloads
•Large reads, bulk or trickle inserts, bulk updates

•Snapshot Isolation (SI) [Berenson95]
•SI based on multi-version concurrency control (MVCC)

•DML statements (insert, update, delete, merge) produce new table
versions of tables by adding or removing whole files
•Natural choice because table files on S3 are immutable
•Additions and removals tracked in metadata (key-value store)

•Versioned snapshots used also for time travel and cloning

Yicheng Liao 12

Pruning

•Database adage: The fastest way to process data? Don’t.
•Limiting access only to relevant data is key aspect of query processing

•Traditional solution: B+-trees and other indices
•Poor fit for us: random accesses, high load time, manual tuning

•Snowflake approach: pruning
•AKA small materialized aggregates [Moerkotte98], zone maps
[Netezza], data skipping [IBM]
•Per file min/max values, #distinct values, #nulls, bloom filters etc.
•Use metadata to decide which files are relevant for a given query
•Smaller than indices, more load-friendly, no user input required

Yicheng Liao 13

Feature Highlights

• Expected Features
oComprehensive SQL support
oACID transactions
oStability

• Technical differentiators

Nirmala Niraula 14

Pure Software-as-a-Service

• Ways to interact with the system
oStandard database interfaces (JDBC, ODBC, Python PEP-0249)
oWeb browser

Nirmala Niraula 15

Continuous Availability – Fault Resistance

• Data Storage Layer / Metadata Store
oUses Amazon S3 storage with multi-availability zone (AZ) replication
o99.99% data availability
oResilient to full AZ failures

• Virtual Warehouses
o Located within a single AZ
oFaults in VWs trigger transparent re-execution or quick replacement of

failed nodes
oFull AZ outages are rare, but they cause VW-based queries to fail

Nirmala Niraula 16

Continuous Availability – Online Upgrade

• New software versions deployed
alongside previous versions

• Load balancer directs users
progressively to the new version

• Once all queries on the old version
finish, older services are
decommissioned

Nirmala Niraula 17

Semi-Structured and Schema-Less Data

• VARIANT
oany value of native SQL type
o variable length ARRAYs
oOBJECTS

• ARRAY
oarrays of values

• OBJECT
o JavaScript-like key-value maps

Nirmala Niraula 18

Columnar Storage and Processing

• automatically performs statistical analysis to perform automatic
type inference

• corresponding columns are then stored efficiently in columnar
format, allowing fast access and materialized aggregates

• Common formats (e.g., JSON/XML) often represent SQL types
(e.g., dates) as strings, requiring conversion at write time or read
time

• perform optimistic data conversion, and preserve both the result
of the conversion and the original string

Nirmala Niraula 19

Performance

• 10% Overhead
• Outliers (Q9, Q17): A bug in join

optimization caused additional
slowdown for two queries on SF1000

Nirmala Niraula 20

Time Travel

• Write Operations: Insert, update, delete, and merge operations
produce new versions by managing entire files

• Removed files retained for a configurable duration
• Perform time travel using the convenient AT or BEFORE syntax
• UNDROP keyword to quick restoration

Nirmala Niraula 21

Cloning

• New keyword CLONE
• Creates new tables, schemas, or databases without physical

copies
• Copies metadata, not data files
• Clone to a specific past version using AT or BEFORE

Nirmala Niraula 22

Security - Key Hierarchy

Nirmala Niraula 23

• AES 256-bit encryption with a
hierarchical key model rooted in AWS
CloudHSM

•Four levels: root keys, account keys,
table keys, and file keys.

Security - Key Life Cycle

Nirmala Niraula 24

•limits the key-usage period
using key rotation and
rekeying
•Key rotation - creates new
versions of keys at regular
intervals
• Rekeying - the process of
re-encrypting old data with
new keys.

• Cloud-based Parallel Database Systems

Related Works

Feature Snowflake Amazon Redshift Google BigQuery Azure Warehouse

Architecture
(Scaling)

Multi-cluster, shared data
(Instantly scale, pause, or
resume compute w/o data

removement)

Shared-nothing
(Scalable but
requires data

reshuffle)

Parallel query
service

(Not support full
SQL)

Separate storage and
compute

(Scalable but limits
concurrent queries)

Physical Tuning No manual tuning required Requires user
tuning Not specified Requires user tuning

Semi-Structured
Data (e.g., JSON) Native support, optimized JSON as text only

Supports JSON,
limited SQL

compatibility

Limited support via
external integration

Data Operations

Full Data Manipulation
Language (DML), ACID

transactions w/o schema
definitions

Supports DML Append-only and
require schemas

Limited DML with
concurrency cap

(<32)

25Zihao Zhao

Challenges & Lesson Learnt

• Initial Architecture Challenges: Building against the trend (SQL on Hadoop)
o Lesson: Sometimes going against market trends pays off when based on fundamental user

needs.

• Implementation Missteps: Oversimplified relational operators, Delayed
datatype implementation, Postponed resource management
o Lesson: Early architectural decisions have long-lasting impacts

• Multi-tenancy Challenges: Complex metadata layer for concurrent users, Node
and network failures, Security across multiple dimensions
o Lesson: SaaS architecture creates unique operational complexities

26Yiwei Gao

New Challenges & Future Work

• Users continuously push larger workloads
o Need for better skew handling and load balancing

• More complex queries than anticipated
o Requires ongoing optimization without adding complexity

• Unexpected rapid adoption of semi-structured data
o Need to maintain efficient processing while supporting various data formats
o Balancing SQL functionality with semi-structured data capabilities

• Users want zero-touch operations
o Need for automated support systems
o Automated performance optimization
o Enhanced security automation

27Yiwei Gao

Conclusion

• Cloud-Native Architecture

• Flexible Data Support

• Fully Managed SaaS

Main
Contribution

• High Complexity in Multi-Tenancy

• Resource Management ConstraintsLimitations

• Improving Skew Handling and Load Balancing

• Enhanced Support for Semi-Structured Data

• Advancing Zero-Touch Operations
Future Work

28Yiwei Gao

Study Questions

1. Explain the rationale behind Snowflake's separation of storage and
compute layers. How does this architectural decision address
specific limitations in traditional data warehousing solutions, and
what unique benefits does it provide for cloud environments?

2. Discuss the role of Snowflake's semi-structured data support,
including the VARIANT data type and columnar storage optimization.
How does this feature impact data loading, query performance, and
flexibility compared to conventional ETL processes in data
warehouses?

29

Thank You!
Any Questions?

	Slide 1: The Snowflake Elastic Data Warehouse
	Slide 2: Limitation of Traditional Data Warehouse
	Slide 3: What is Snowflake?
	Slide 4: Key Features
	Slide 5: Pure Shared-Nothing Architecture
	Slide 6: Snowflake’s Solution: Separation of Storage and Compute
	Slide 7: Benefits of Separating Storage and Compute
	Slide 8: Multi-cluster Shared-data Architecture
	Slide 9: Data Storage Layer
	Slide 10: Virtual Warehouse
	Slide 11: Query Management and Optimization
	Slide 12: Concurrency Control
	Slide 13: Pruning
	Slide 14: Feature Highlights
	Slide 15: Pure Software-as-a-Service
	Slide 16: Continuous Availability – Fault Resistance
	Slide 17: Continuous Availability – Online Upgrade
	Slide 18: Semi-Structured and Schema-Less Data
	Slide 19: Columnar Storage and Processing
	Slide 20: Performance
	Slide 21: Time Travel
	Slide 22: Cloning
	Slide 23: Security - Key Hierarchy
	Slide 24: Security - Key Life Cycle
	Slide 25: Related Works
	Slide 26: Challenges & Lesson Learnt
	Slide 27: New Challenges & Future Work
	Slide 28: Conclusion
	Slide 29: Study Questions
	Slide 30: Thank You!

