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Introduction
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• Need for Data Reuse - Many modern applications need to reuse intermediate 

results across multiple computations / jobs:

• Iterative machine learning algorithms: K-means, Logistic Regression

• Graph algorithms: PageRank

• Interactive Data Mining: where a user needs to run ad-hoc queries on the same data subset

• Limitations of Existing Frameworks - Limited and inefficient for data reuse:

• High Cost of External Stable Storage (e.g. MapReduce, Dryad): 

• Rely on external stable storage (e.g. distributed file systems) rather than memory

• Substantial overheads due to disk I/O, data replication

• Limitations of Specialized Frameworks (e.g. Pregel, HaLoop): 

• Developed for iterative jobs

• Limited to very specific patterns; lack generalization

Problem – Inefficiencies in Data Reuse for Cluster 
Computing
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What are RDD’s? 

• Immutable collections of objects

• Distributed in memory (faster access / write speeds than stable storage) across different nodes in a 

cluster.

• Equipped with lineage info for each RDD - Sequence (or DAG) of transformations applied to RDD’s to 

compute the current RDD

Solution – Resilient Distributed Datasets (RDDs)
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• Why not other in-memory storage solutions? Example: Piccolo, DSM

• Apply fine-grained updates to mutable state (e.g. individual cells in a table)

• Inefficient Fault Tolerance: Need to replicate intermediate data / log multiple updates across nodes 

• RDD’s go above and beyond in solving this inefficiency! 

• Efficient Fault Tolerance:

• Coarse-Grained Transformations: RDD’s use scalable operations applied to many data items at 

once, rather than multiple fine-grained updates 

• Fast Recovery via Lineage: Each RDD logs transformation lineage for efficient recomputation of 

lost partitions, avoiding replication overheads.

• Flexibility + Generalizability: Can express different programming models that otherwise only require 

separate systems (e.g. MapReduce, SQL) and also new applications like interactive data mining

Benefits of RDD’s
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Resilient Distributed 
Datasets (RDDs)
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● RDDs are read-only, partitioned collections of records designed for distributed computing.

○ Created through deterministic transformations on data in stable storage (e.g., HDFS) 

or from other RDDs.

○ Central abstraction of the Spark framework.

○ Actions: Operations (that trigger computation on RDDs and) requiring return results to 

the user. Examples include count, collect, and save.

○ Transformations: Operations that create new RDDs from existing ones (lazy i.e. don’t 

execute until an action is called). Examples include map, filter, and join. 

● Analogy: Think of lineage graphs in RDDs as recipes. 

● Purpose:

○ To optimize data reuse in memory for iterative processes (e.g. ML, graph algorithms).

○ Enable efficient fault recovery by reconstructing data from transformations instead of 

full data replication.
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Introduction to RDDs 
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● Immutability:

○ Once created, an RDD cannot be modified.

○ Simplifies fault tolerance, as RDDs can track their transformations in a lineage graph.

○ Note: create new RDDs representing different versions of data, simulating updates.

● Deterministic Transformations:

○ Generated through operations like map, filter, and join, known as coarse-grained 

transformations.

○ This allows Spark to apply the same operation to many data items simultaneously, 

optimizing processing.

● Lazy Evaluation:

○ RDD transformations are not immediately executed. 

○ Spark builds a logical plan of transformations. Only executes when an action is called.

○ This lazy evaluation approach helps Spark to optimize execution plans, minimizing 

computation and memory use.

● Persistence and Partitioning:

○ Persistence: Users can choose to store and persist certain RDDs in memory for faster 

reuse, critical for iterative algorithms.

○ Partitioning: RDDs can be partitioned across nodes, improving data locality and 

reducing data shuffling during distributed processing.
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Example: Console Log Mining 

• Spark Programming Interface:

• Spark provides a language-integrated API for defining RDD transformations 

(e.g., map, filter) and actions (e.g., count, collect).

• Transformations are lazy, creating a logical plan that Spark executes only 

when an action is called.

• Spark’s scheduler pipelines the filter and map transformations, dispatching tasks 

to nodes holding cached partitions of errors.

• Fault Tolerance in Action: If a partition of errors is lost, Spark can rebuild it by 

reapplying the original filter transformation on the corresponding partition of 

lines.

Shayar Shah
Image and Code Credits Resilient Distributed Datasets, M. Zaharia et al. 2012

• Example Query: Return the time fields of errors mentioning ‘HDFS’

• Define lines RDD from HDFS.

• Filter for "ERROR" messages → Create errors RDD.

• Persist errors in memory for reuse.

• Further transformations: filter for HDFS errors, then map to extract 

timestamp.

• Finally, action collect is invoked to return all the time fields in the final 

RDD created after the map transformation.



Advantages over Existing In-Memory Storage Abstractions
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Feature Existing In-Memory Storage 

Abstractions (e.g., DSM, Key-Value 
Stores, Databases, Piccolo)

RDDs (Resilient Distributed Datasets)

Data Updates Fine-grained updates to mutable state 

(e.g., individual cells or key-value pairs)

Coarse-grained transformations (map, 

filter, join) applied to entire datasets

Fault Tolerance 

Approach

● Replication of data / Logging of 

fine-grained updates across nodes
● Checkpoints

● High Cost (Expensive and slow) -

Requires significant network 
bandwidth and storage

● Logging transformations (lineage) used to 

build the dataset and recompute lost 
partitions 

● Lower Cost (Fast and efficient) - Avoids 

data replication

Scalability for 

Data-Intensive 
Workloads

Limited scalability - High storage and 

network overhead
- struggles with memory limitations

High scalability - Minimal storage and network 

overhead due to lineage-based recovery
- can spill partitions to disk gracefully

Flexibility Low - Separate frameworks needed for 

expressing different programming models 
(MapReduce, SQL, etc.)

High - Can express multiple programming 

models (MapReduce, SQL, etc.) and new 
applications like interactive data mining
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Comparison with Distributed Shared Memory (DSM):

● Straggler Mitigation: RDDs’ immutability allows for running backup tasks 

without data consistency issues, similar to MapReduce.

● Work Placement/Data Locality: RDDs support automatic data placement and 

and task placement based on locality to keep them close, which enhances 

performance and minimizes latency.
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● Suitable Applications: RDDs are ideal for batch processing where the same operation is applied to all elements in a dataset 

(e.g., data mining, ML training).

● Limitations:

○ Not Suitable for Fine-Grained Asynchronous Updates: Applications requiring fine-grained, asynchronous updates for 

applications needing frequent updates are better served by systems designed for mutable data..

○ Examples: Real-time web applications and incremental web crawlers are better served by traditional databases or DSM-

based systems.

○ Alternatives: Systems like RAMCloud, Percolator, and Piccolo handle such tasks better as they support fine-grained 

updates and checkpointing.
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Spark Programming 
Interface
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• Spark’s RDD API: Provides 2 types of RDD operations for manipulating and analyzing 

large datasets - transformations & actions

• Transformations (e.g., map, filter, join):

• Lazy (don’t execute immediately), coarse-grained operations that produce a new RDD from one or 

more RDD’s (e.g. RDD[T] ⇒ RDD[U])

• Only executed when a subsequent action is called, for optimal computation via lineage

• Actions (e.g., count, collect, save): Produce user-facing outcomes

• Trigger actual computation to produce non-RDD results from RDD’s (e.g. RDD[T] ⇒ U, RDD[T] ⇒

Seq[U]) or write a RDD to a storage system

• Execute lineage of all preceding transformations before action itself

RDD Operations in Spark
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Transformations & Actions
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Key Transformations: 

● map: A one-to-one mapping function 

that transforms each item in RDD.

● filter: Selects elements based on a 

specified condition.

● flatMap: Similar to map but allows for 

one-to-many mapping, commonly used 

for splitting text.

● join: Combines two RDDs based on a 

common key (like an inner join)

Key Actions: 

● count: Quickly gives the number of elements in an RDD

● collect: Returns a list of all the elements in an RDD

● reduce: Combines elements using a specified function, used for aggregations

● save: Outputs the RDD to external storage, enabling data persistence



• Algorithm Overview: ML algorithm for binary classification (e.g., spam detection)

• Uses gradient descent to find optimal weights by initializing weights w randomly and then iteratively

computing gradients and updating w to minimize classification error on training data

• Spark Program and Approach: 

1. Load points from a text file; use map transformation to parse lines into a Points RDD and explicitly 

persist it in memory for prioritized reuse

2. Initialize weight vector w randomly

3. In each iteration of a loop:

a. map transformation: Compute gradients for each point in 

Points RDD using a common formula with w, creating 

a new RDD (call it PointGradients) of per-point gradients

b. reduce action: Sum gradients for all points in 

PointGradients RDD to compute total gradient

a. Finally, update w by subtracting the gradient

Example Application - Logistic Regression
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Achieves up to 20x Speedup! 



Representing RDDs
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An RDD is represented in Spark using the following 5 attributes:

• A set of partitions, which are atomic pieces of the dataset

• A set of dependencies on parent RDDs

• An iterator computes the RDD using its parents

• Partitioner describes if dataset is hash/range partitioned

• Preferred location stores which node each partition is stored on

Attributes of an RDD
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Narrow dependency means each partition of a parent RDD 

is used by at most one child partition. Wide dependency 

means each partition of a parent RDD is used by multiple 

child partitions. 

Advantages of narrow dependencies:

1) Pipelining of transformations on one node. Wide 

dependencies need to reshuffle. 

2) Recovery after node failure is fast since lost parent 

partitions can be recomputed in parallel on different 

nodes.

Dependencies
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• HDFS files: Input RDDs. Each block of the file is a partition. Iterator reads the 

block and preferred location tells us which node has the block. 

• Map: Creates a mappedRDD object by applying the function in its iterator to 

parent RDD partitions. Has same partition and preferred location as parent.

• Union: Creates an RDD that combines partitions from two RDDs, creating a 

narrow dependency.

• Sample: RDD stores a random number generator seed for each partition so 

that it can deterministically sample records.  

• Join: Creates an RDD by joining two RDDs. Narrow dependency if parents are 

partitioned, else wide dependency. 

A Few RDD Implementations
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Implementation
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When an action is run on an RDD, the 
scheduler:

1. Looks at the RDD’s lineage graph to build a Directed 
Acyclic Graph (DAG) of stages of as many pipelined 
transformations with narrow dependencies as 
possible

2. Then launches tasks to compute missing partitions 
until the target RDD has been computed

Upon task failure:
• If stage parents are available, it will simply be 

rerun on another node
• If unavailable, tasks need to be resubmitted to 

compute missing partitions in parallel

Due to scheduler optimization of tasks:
• Less need for shuffling data → enhanced 

performance 

Job Scheduling
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Three options of storage of persistent RDD’s are provided by Spark:
1. In-memory (RAM) storage as deserialized Java object

• Fastest, since Java virtual machine can access each element natively
1. In-memory (RAM) storage as serialized data

• Allows for user input on choosing a more memory-efficient representation when 
RAM is limited

• May lower performance
1. On-disk storage

• Useful are large RDDs, but costly to recompute on each use

Least Recently Used (LRU) eviction policy is employed at RDD level to manage limited 
memory
• Exception is made when RDD is the same as the one with the new partition
• Importance: most operations will require tasks to be run over entire RDD so in-

memory partitions are likely to be reused

Memory Management
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Why checkpoint to stable storage when RDDs can be recovered through their 
lineage?

• For RDDs with longer lineage chains, recovery can be time-consuming
• Especially useful for RDDs containing wide dependencies which would require full 

recomputation upon node failure
• e.g. joining two tables on a key

• For more narrow dependencies, checkpointing is less necessary as recomputation is low-
cost

• e.g. filtering records of a single table

Easy to checkpoint because of the read-only nature of RDDs
• Compared to general shared memory

Support for Checkpointing
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Evaluation
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- The authors test Spark against 
Hadoop and HadoopBinMem, 
which converts input to binary 
format in first iteration and stores 
it in in-memory HDFS to avoid 
parsing in later iterations.

- Spark was 3x faster for K-means 
and 20x faster for logistic 
regression. This difference is 
because k-means is more 
compute intensive and I/O and 
serialization costs don’t affect it 
as much. 

- We also see that performance 
scales approximately linearly with 
number of nodes. 
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Iterative ML Applications
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The main reasons why Spark 
performed better were 

1) Hadoop has operational overhead 
(a no-op Hadoop job takes 25 sec) 

2) Hadoop has overhead when 
serving data (performs checksums)

3) Hadoop needs to deserialize 
binary data into Java objects before 
using. 
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- Before iteration 6, a node was 
killed, so its partitions were 
recalculated on other nodes in 
parallel, which is why it took 
longer. Afterwards, the nodes 
went back to normal iteration 
times.

- Checkpointing system would 
have required rerunning several 
iterations of the algorithm. 
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- Researchers wanted to see how 
the performance varies if the 
cluster doesn’t have memory to 
store all of the RDD data in 
memory. 

- We can see that performance 
degrades reasonably when we 
lower memory available.
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Conducted by the Mobile Millennium project at 
Berkley

• Parallelized a learning algorithm to infer road 
traffic congestions

• 10,000 link road network
• 600,000 samples of point-to-point trip times 

from sporadic automobile GPS data
• Estimates travel time across individual road 

links
• Trained using an expectation-maximization 

algorithm by repeating the map and 
reducebykey steps iteratively

Demonstrates starks ability to perform rapid 
iterative computations

Scales nearly linearly from 20 to 80 nodes with 
4 cores each

User Applications: Traffic Modeling
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1 TB of Wikipedia view logs (2 years)

Three queries were tested on entire input 
data

1. Total view count of all pages
2. Pages with titles exactly matching a given word
3. Pages with titles partially matching a given 

word

For context: querying 1TB file on disk took 
170 seconds (~3 min)

Confirms that RDD framework makes Spark 
a powerful tool for interactive data mining

Interactive Data Mining
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Discussion
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RDDs can express a variety of programming models.

Programming Models Supported by RDDs in Spark:
• MapReduce: Expressed using flatMap and groupByKey operations.

• DryadLINQ: Direct correspondence to RDD transformations (e.g., map, groupByKey, join).

• SQL: Data-parallel operations naturally supported.

• Pregel: Iterative graph processing achieved by storing vertex states in RDDs, transforming RDDs 
through bulk operations and join with the vertex states to perform message exchanges.

• Iterative MapReduce (HaLoop, Twister): Achieved through consistent data partitioning across 
iterations.

Benefits: RDDs can capture the optimizations each framework provide, like efficient 
memory usage, minimized communication through partitioning, fault-tolerant data 
recovery via lineage

Expressing Existing Programming Models in Spark
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Tracking RDD Lineage for Debugging:
• The deterministic recomputation ability of RDDs can assist in debugging.
• Lineage logs allow:

• Reconstruction of RDDs for interactive querying.
• Single-process task re-execution by recomputing dependent RDD partitions.

Key Advantages:
• Contrasts with traditional replay debuggers that require capturing complex event orders 

across distributed nodes.
• Near-zero recording overhead (only lineage graph needs to be logged).
• Enables efficient task re-execution and data inspection during the debugging process​

Leveraging RDDs for Debugging
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Related Work
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Prominent Related Systems and Concepts:
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Traditional Data Flow Models:
• MapReduce and Dryad: Provide parallel processing capabilities but rely heavily on stable storage for data 

sharing. Overhead due to data replication, serialization, and I/O costs.
• Spark & RDDs: Use in-memory data sharing and efficient lineage-based recovery, improve both latency and 

throughput.
Specialized Iterative and Graph Processing Frameworks:

• Pregel, Twister, HaLoop: Focus on iterative computations with built -in data reuse for specific patterns (e.g., 
graph processing, iterative MapReduce loops).

• Spark & RDDs: Provides a more general-purpose approach that can express and optimize these specialized 
models while allowing broader flexibility.

Caching and Data Sharing Systems:
• Nectar: Automatically manages data sharing by identifying common subexpressions, but lack in-memory 

caching.
• Spark & RDDs: Offers explicit control over which datasets to persist in-memory, reducing I/O costs and 

providing more efficient data sharing.
Shared Mutable State Systems:

• Piccolo, DSM: Provide fine-grained access to shared state with checkpointing and rollback-based recovery.
• Spark & RDDs: Use coarse-grained transformations that simplify and accelerate fault recovery using lineage 

tracking, improving overall system scalability and fault tolerance.



Conclusion
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RDDs as a Transformative Abstraction:
• Efficient data sharing across cluster applications.

• Supports iterative computations, graph processing, and data mining with minimal data 
replication and serialization overhead.

Spark’s Impact on the Industry:
• Widely adopted in both academic and industrial applications, delivering substantial 

performance improvements.

• Interactive use-cases supported by fast, in-memory data processing.

Future of RDDs and Spark:
• Expected continued influence on scalable and interactive data analytics.

• Active developments focused on enhancing data caching, lineage-based debugging, and 
interactive processing capabilities

Conclusion
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Explain how RDDs (Resilient Distributed Datasets) provide a more efficient data 
sharing mechanism compared to traditional distributed memory systems and 
discuss the benefits associated with using coarse-grained transformations for fault 
tolerance. 

How does the job scheduler in Spark improve query performance using in-memory 
RDDs and dependencies?

Study Questions
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