
Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-
Memory Cluster Computing
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica

1

Presentation by -

Zone Li, Shayar Shah, Aryan Pariani, Sai Anoop Avunuri, Wei Zhou

Introduction

2

• Need for Data Reuse - Many modern applications need to reuse intermediate

results across multiple computations / jobs:

• Iterative machine learning algorithms: K-means, Logistic Regression

• Graph algorithms: PageRank

• Interactive Data Mining: where a user needs to run ad-hoc queries on the same data subset

• Limitations of Existing Frameworks - Limited and inefficient for data reuse:

• High Cost of External Stable Storage (e.g. MapReduce, Dryad):

• Rely on external stable storage (e.g. distributed file systems) rather than memory

• Substantial overheads due to disk I/O, data replication

• Limitations of Specialized Frameworks (e.g. Pregel, HaLoop):

• Developed for iterative jobs

• Limited to very specific patterns; lack generalization

Problem – Inefficiencies in Data Reuse for Cluster
Computing

3

Aryan Pariani

What are RDD’s?

• Immutable collections of objects

• Distributed in memory (faster access / write speeds than stable storage) across different nodes in a

cluster.

• Equipped with lineage info for each RDD - Sequence (or DAG) of transformations applied to RDD’s to

compute the current RDD

Solution – Resilient Distributed Datasets (RDDs)

4

Aryan Pariani

• Why not other in-memory storage solutions? Example: Piccolo, DSM

• Apply fine-grained updates to mutable state (e.g. individual cells in a table)

• Inefficient Fault Tolerance: Need to replicate intermediate data / log multiple updates across nodes

• RDD’s go above and beyond in solving this inefficiency!

• Efficient Fault Tolerance:

• Coarse-Grained Transformations: RDD’s use scalable operations applied to many data items at

once, rather than multiple fine-grained updates

• Fast Recovery via Lineage: Each RDD logs transformation lineage for efficient recomputation of

lost partitions, avoiding replication overheads.

• Flexibility + Generalizability: Can express different programming models that otherwise only require

separate systems (e.g. MapReduce, SQL) and also new applications like interactive data mining

Benefits of RDD’s

5

Aryan Pariani

Resilient Distributed
Datasets (RDDs)

6

● RDDs are read-only, partitioned collections of records designed for distributed computing.

○ Created through deterministic transformations on data in stable storage (e.g., HDFS)

or from other RDDs.

○ Central abstraction of the Spark framework.

○ Actions: Operations (that trigger computation on RDDs and) requiring return results to

the user. Examples include count, collect, and save.

○ Transformations: Operations that create new RDDs from existing ones (lazy i.e. don’t

execute until an action is called). Examples include map, filter, and join.

● Analogy: Think of lineage graphs in RDDs as recipes.

● Purpose:

○ To optimize data reuse in memory for iterative processes (e.g. ML, graph algorithms).

○ Enable efficient fault recovery by reconstructing data from transformations instead of

full data replication.

7

Introduction to RDDs

Shayar Shah

I mage C red: https: //www.dataneb. com/post/spark-rdd-transformations -and-acti ons-example

I mage C red: https: //kexinrong. github.io/fa24-cs6400/assets/lectures/l ec18-dqp.pdf

● Immutability:

○ Once created, an RDD cannot be modified.

○ Simplifies fault tolerance, as RDDs can track their transformations in a lineage graph.

○ Note: create new RDDs representing different versions of data, simulating updates.

● Deterministic Transformations:

○ Generated through operations like map, filter, and join, known as coarse-grained

transformations.

○ This allows Spark to apply the same operation to many data items simultaneously,

optimizing processing.

● Lazy Evaluation:

○ RDD transformations are not immediately executed.

○ Spark builds a logical plan of transformations. Only executes when an action is called.

○ This lazy evaluation approach helps Spark to optimize execution plans, minimizing

computation and memory use.

● Persistence and Partitioning:

○ Persistence: Users can choose to store and persist certain RDDs in memory for faster

reuse, critical for iterative algorithms.

○ Partitioning: RDDs can be partitioned across nodes, improving data locality and

reducing data shuffling during distributed processing.
8

Key Properties of RDDs

Shayar Shah

Image Cred: ht tps:/ /realpython.com/python-lazy-evaluati on/

Image Cred: ht tps:/ /techvidvan.com /tutorials/persistence-and-cachi ng-m echanism /

Image Cred: ht tps:/ /youtube.com/@BigDataE learning

9

Example: Console Log Mining

• Spark Programming Interface:

• Spark provides a language-integrated API for defining RDD transformations

(e.g., map, filter) and actions (e.g., count, collect).

• Transformations are lazy, creating a logical plan that Spark executes only

when an action is called.

• Spark’s scheduler pipelines the filter and map transformations, dispatching tasks

to nodes holding cached partitions of errors.

• Fault Tolerance in Action: If a partition of errors is lost, Spark can rebuild it by

reapplying the original filter transformation on the corresponding partition of

lines.

Shayar Shah
Image and Code Credits Resilient Distributed Datasets, M. Zaharia et al. 2012

• Example Query: Return the time fields of errors mentioning ‘HDFS’

• Define lines RDD from HDFS.

• Filter for "ERROR" messages → Create errors RDD.

• Persist errors in memory for reuse.

• Further transformations: filter for HDFS errors, then map to extract

timestamp.

• Finally, action collect is invoked to return all the time fields in the final

RDD created after the map transformation.

Advantages over Existing In-Memory Storage Abstractions

10

Feature Existing In-Memory Storage

Abstractions (e.g., DSM, Key-Value
Stores, Databases, Piccolo)

RDDs (Resilient Distributed Datasets)

Data Updates Fine-grained updates to mutable state

(e.g., individual cells or key-value pairs)

Coarse-grained transformations (map,

filter, join) applied to entire datasets

Fault Tolerance

Approach

● Replication of data / Logging of

fine-grained updates across nodes
● Checkpoints

● High Cost (Expensive and slow) -

Requires significant network
bandwidth and storage

● Logging transformations (lineage) used to

build the dataset and recompute lost
partitions

● Lower Cost (Fast and efficient) - Avoids

data replication

Scalability for

Data-Intensive
Workloads

Limited scalability - High storage and

network overhead
- struggles with memory limitations

High scalability - Minimal storage and network

overhead due to lineage-based recovery
- can spill partitions to disk gracefully

Flexibility Low - Separate frameworks needed for

expressing different programming models
(MapReduce, SQL, etc.)

High - Can express multiple programming

models (MapReduce, SQL, etc.) and new
applications like interactive data mining

Shayar Shah

Comparison with Distributed Shared Memory (DSM):

● Straggler Mitigation: RDDs’ immutability allows for running backup tasks

without data consistency issues, similar to MapReduce.

● Work Placement/Data Locality: RDDs support automatic data placement and

and task placement based on locality to keep them close, which enhances

performance and minimizes latency.

11

Other Advantages of the RDD Model

Shayar Shah
Image Credits: Resilient Distributed Datasets, M. Zahar ia et al. 2012

● Suitable Applications: RDDs are ideal for batch processing where the same operation is applied to all elements in a dataset

(e.g., data mining, ML training).

● Limitations:

○ Not Suitable for Fine-Grained Asynchronous Updates: Applications requiring fine-grained, asynchronous updates for

applications needing frequent updates are better served by systems designed for mutable data..

○ Examples: Real-time web applications and incremental web crawlers are better served by traditional databases or DSM-

based systems.

○ Alternatives: Systems like RAMCloud, Percolator, and Piccolo handle such tasks better as they support fine-grained

updates and checkpointing.

12

Applications Not Suitable for RDDs

Shayar Shah

Spark Programming
Interface

13

• Spark’s RDD API: Provides 2 types of RDD operations for manipulating and analyzing

large datasets - transformations & actions

• Transformations (e.g., map, filter, join):

• Lazy (don’t execute immediately), coarse-grained operations that produce a new RDD from one or

more RDD’s (e.g. RDD[T] ⇒ RDD[U])

• Only executed when a subsequent action is called, for optimal computation via lineage

• Actions (e.g., count, collect, save): Produce user-facing outcomes

• Trigger actual computation to produce non-RDD results from RDD’s (e.g. RDD[T] ⇒ U, RDD[T] ⇒

Seq[U]) or write a RDD to a storage system

• Execute lineage of all preceding transformations before action itself

RDD Operations in Spark

14

Aryan Pariani

Transformations & Actions

15

Aryan Pariani

Key Transformations:

● map: A one-to-one mapping function

that transforms each item in RDD.

● filter: Selects elements based on a

specified condition.

● flatMap: Similar to map but allows for

one-to-many mapping, commonly used

for splitting text.

● join: Combines two RDDs based on a

common key (like an inner join)

Key Actions:

● count: Quickly gives the number of elements in an RDD

● collect: Returns a list of all the elements in an RDD

● reduce: Combines elements using a specified function, used for aggregations

● save: Outputs the RDD to external storage, enabling data persistence

• Algorithm Overview: ML algorithm for binary classification (e.g., spam detection)

• Uses gradient descent to find optimal weights by initializing weights w randomly and then iteratively

computing gradients and updating w to minimize classification error on training data

• Spark Program and Approach:

1. Load points from a text file; use map transformation to parse lines into a Points RDD and explicitly

persist it in memory for prioritized reuse

2. Initialize weight vector w randomly

3. In each iteration of a loop:

a. map transformation: Compute gradients for each point in

Points RDD using a common formula with w, creating

a new RDD (call it PointGradients) of per-point gradients

b. reduce action: Sum gradients for all points in

PointGradients RDD to compute total gradient

a. Finally, update w by subtracting the gradient

Example Application - Logistic Regression

16

Aryan Pariani

Achieves up to 20x Speedup!

Representing RDDs

17

An RDD is represented in Spark using the following 5 attributes:

• A set of partitions, which are atomic pieces of the dataset

• A set of dependencies on parent RDDs

• An iterator computes the RDD using its parents

• Partitioner describes if dataset is hash/range partitioned

• Preferred location stores which node each partition is stored on

Attributes of an RDD

18

Sai Anoop Avunuri

Narrow dependency means each partition of a parent RDD

is used by at most one child partition. Wide dependency

means each partition of a parent RDD is used by multiple

child partitions.

Advantages of narrow dependencies:

1) Pipelining of transformations on one node. Wide

dependencies need to reshuffle.

2) Recovery after node failure is fast since lost parent

partitions can be recomputed in parallel on different

nodes.

Dependencies

19

Sai Anoop Avunuri

• HDFS files: Input RDDs. Each block of the file is a partition. Iterator reads the

block and preferred location tells us which node has the block.

• Map: Creates a mappedRDD object by applying the function in its iterator to

parent RDD partitions. Has same partition and preferred location as parent.

• Union: Creates an RDD that combines partitions from two RDDs, creating a

narrow dependency.

• Sample: RDD stores a random number generator seed for each partition so

that it can deterministically sample records.

• Join: Creates an RDD by joining two RDDs. Narrow dependency if parents are

partitioned, else wide dependency.

A Few RDD Implementations

20

Sai Anoop Avunuri

Implementation

21

When an action is run on an RDD, the
scheduler:

1. Looks at the RDD’s lineage graph to build a Directed
Acyclic Graph (DAG) of stages of as many pipelined
transformations with narrow dependencies as
possible

2. Then launches tasks to compute missing partitions
until the target RDD has been computed

Upon task failure:
• If stage parents are available, it will simply be

rerun on another node
• If unavailable, tasks need to be resubmitted to

compute missing partitions in parallel

Due to scheduler optimization of tasks:
• Less need for shuffling data → enhanced

performance

Job Scheduling

22

Zone Li

Three options of storage of persistent RDD’s are provided by Spark:
1. In-memory (RAM) storage as deserialized Java object

• Fastest, since Java virtual machine can access each element natively
1. In-memory (RAM) storage as serialized data

• Allows for user input on choosing a more memory-efficient representation when
RAM is limited

• May lower performance
1. On-disk storage

• Useful are large RDDs, but costly to recompute on each use

Least Recently Used (LRU) eviction policy is employed at RDD level to manage limited
memory
• Exception is made when RDD is the same as the one with the new partition
• Importance: most operations will require tasks to be run over entire RDD so in-

memory partitions are likely to be reused

Memory Management

23

Zone Li

Why checkpoint to stable storage when RDDs can be recovered through their
lineage?

• For RDDs with longer lineage chains, recovery can be time-consuming
• Especially useful for RDDs containing wide dependencies which would require full

recomputation upon node failure
• e.g. joining two tables on a key

• For more narrow dependencies, checkpointing is less necessary as recomputation is low-
cost

• e.g. filtering records of a single table

Easy to checkpoint because of the read-only nature of RDDs
• Compared to general shared memory

Support for Checkpointing

24

Zone Li

Evaluation

25

- The authors test Spark against
Hadoop and HadoopBinMem,
which converts input to binary
format in first iteration and stores
it in in-memory HDFS to avoid
parsing in later iterations.

- Spark was 3x faster for K-means
and 20x faster for logistic
regression. This difference is
because k-means is more
compute intensive and I/O and
serialization costs don’t affect it
as much.

- We also see that performance
scales approximately linearly with
number of nodes.

26

Iterative ML Applications

Sai Anoop Avunuri

The main reasons why Spark
performed better were

1) Hadoop has operational overhead
(a no-op Hadoop job takes 25 sec)

2) Hadoop has overhead when
serving data (performs checksums)

3) Hadoop needs to deserialize
binary data into Java objects before
using.

27

Reasons for Speedup

Sai Anoop Avunuri

- Before iteration 6, a node was
killed, so its partitions were
recalculated on other nodes in
parallel, which is why it took
longer. Afterwards, the nodes
went back to normal iteration
times.

- Checkpointing system would
have required rerunning several
iterations of the algorithm.

28

Fault Recovery

Sai Anoop Avunuri

- Researchers wanted to see how
the performance varies if the
cluster doesn’t have memory to
store all of the RDD data in
memory.

- We can see that performance
degrades reasonably when we
lower memory available.

29

Performance vs Cluster Memory

Sai Anoop Avunuri

Conducted by the Mobile Millennium project at
Berkley

• Parallelized a learning algorithm to infer road
traffic congestions

• 10,000 link road network
• 600,000 samples of point-to-point trip times

from sporadic automobile GPS data
• Estimates travel time across individual road

links
• Trained using an expectation-maximization

algorithm by repeating the map and
reducebykey steps iteratively

Demonstrates starks ability to perform rapid
iterative computations

Scales nearly linearly from 20 to 80 nodes with
4 cores each

User Applications: Traffic Modeling

30

Zone Li

1 TB of Wikipedia view logs (2 years)

Three queries were tested on entire input
data

1. Total view count of all pages
2. Pages with titles exactly matching a given word
3. Pages with titles partially matching a given

word

For context: querying 1TB file on disk took
170 seconds (~3 min)

Confirms that RDD framework makes Spark
a powerful tool for interactive data mining

Interactive Data Mining

31

Zone Li

Discussion

32

RDDs can express a variety of programming models.

Programming Models Supported by RDDs in Spark:
• MapReduce: Expressed using flatMap and groupByKey operations.

• DryadLINQ: Direct correspondence to RDD transformations (e.g., map, groupByKey, join).

• SQL: Data-parallel operations naturally supported.

• Pregel: Iterative graph processing achieved by storing vertex states in RDDs, transforming RDDs
through bulk operations and join with the vertex states to perform message exchanges.

• Iterative MapReduce (HaLoop, Twister): Achieved through consistent data partitioning across
iterations.

Benefits: RDDs can capture the optimizations each framework provide, like efficient
memory usage, minimized communication through partitioning, fault-tolerant data
recovery via lineage

Expressing Existing Programming Models in Spark

33

Wei Zhou

Tracking RDD Lineage for Debugging:
• The deterministic recomputation ability of RDDs can assist in debugging.
• Lineage logs allow:

• Reconstruction of RDDs for interactive querying.
• Single-process task re-execution by recomputing dependent RDD partitions.

Key Advantages:
• Contrasts with traditional replay debuggers that require capturing complex event orders

across distributed nodes.
• Near-zero recording overhead (only lineage graph needs to be logged).
• Enables efficient task re-execution and data inspection during the debugging process​

Leveraging RDDs for Debugging

34

Wei Zhou

Related Work

35

Prominent Related Systems and Concepts:

36

Wei Zhou

Traditional Data Flow Models:
• MapReduce and Dryad: Provide parallel processing capabilities but rely heavily on stable storage for data

sharing. Overhead due to data replication, serialization, and I/O costs.
• Spark & RDDs: Use in-memory data sharing and efficient lineage-based recovery, improve both latency and

throughput.
Specialized Iterative and Graph Processing Frameworks:

• Pregel, Twister, HaLoop: Focus on iterative computations with built -in data reuse for specific patterns (e.g.,
graph processing, iterative MapReduce loops).

• Spark & RDDs: Provides a more general-purpose approach that can express and optimize these specialized
models while allowing broader flexibility.

Caching and Data Sharing Systems:
• Nectar: Automatically manages data sharing by identifying common subexpressions, but lack in-memory

caching.
• Spark & RDDs: Offers explicit control over which datasets to persist in-memory, reducing I/O costs and

providing more efficient data sharing.
Shared Mutable State Systems:

• Piccolo, DSM: Provide fine-grained access to shared state with checkpointing and rollback-based recovery.
• Spark & RDDs: Use coarse-grained transformations that simplify and accelerate fault recovery using lineage

tracking, improving overall system scalability and fault tolerance.

Conclusion

37

RDDs as a Transformative Abstraction:
• Efficient data sharing across cluster applications.

• Supports iterative computations, graph processing, and data mining with minimal data
replication and serialization overhead.

Spark’s Impact on the Industry:
• Widely adopted in both academic and industrial applications, delivering substantial

performance improvements.

• Interactive use-cases supported by fast, in-memory data processing.

Future of RDDs and Spark:
• Expected continued influence on scalable and interactive data analytics.

• Active developments focused on enhancing data caching, lineage-based debugging, and
interactive processing capabilities

Conclusion

38

Wei Zhou

Explain how RDDs (Resilient Distributed Datasets) provide a more efficient data
sharing mechanism compared to traditional distributed memory systems and
discuss the benefits associated with using coarse-grained transformations for fault
tolerance.

How does the job scheduler in Spark improve query performance using in-memory
RDDs and dependencies?

Study Questions

39

	Slide 1: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
	Slide 2: Introduction
	Slide 3: Problem – Inefficiencies in Data Reuse for Cluster Computing
	Slide 4: Solution – Resilient Distributed Datasets (RDDs)
	Slide 5: Benefits of RDD’s
	Slide 6: Resilient Distributed Datasets (RDDs)
	Slide 7: Introduction to RDDs
	Slide 8: Key Properties of RDDs
	Slide 9: Example: Console Log Mining
	Slide 10: Advantages over Existing In-Memory Storage Abstractions
	Slide 11: Other Advantages of the RDD Model
	Slide 12: Applications Not Suitable for RDDs
	Slide 13: Spark Programming Interface
	Slide 14: RDD Operations in Spark
	Slide 15: Transformations & Actions
	Slide 16: Example Application - Logistic Regression
	Slide 17: Representing RDDs
	Slide 18: Attributes of an RDD
	Slide 19: Dependencies
	Slide 20: A Few RDD Implementations
	Slide 21: Implementation
	Slide 22: Job Scheduling
	Slide 23: Memory Management
	Slide 24: Support for Checkpointing
	Slide 25: Evaluation
	Slide 26: Iterative ML Applications
	Slide 27: Reasons for Speedup
	Slide 28: Fault Recovery
	Slide 29: Performance vs Cluster Memory
	Slide 30: User Applications: Traffic Modeling
	Slide 31: Interactive Data Mining
	Slide 32: Discussion
	Slide 33: Expressing Existing Programming Models in Spark
	Slide 34: Leveraging RDDs for Debugging
	Slide 35: Related Work
	Slide 36: Prominent Related Systems and Concepts:
	Slide 37: Conclusion
	Slide 38: Conclusion
	Slide 39: Study Questions

