
Dynamo: Amazon’s Highly
Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner Vogels

Amazon.com, 2007

Group 7
Quyen Tran, Pujith Veeravelli, Sean Jung, Saatvik Agrawal, Sarvesh Kasture

1

Introduction and Motivation

2

Motivation

Scalability and Performance

- Traditional relational databases face challenges to meet Amazon’s fast-growing
demand

Reliability and availability

- Infrastructure failing is not an exception, but rather a norm in large-scale distributed
systems.

- Any downtime or performance degradation has big financial impacts

3Quyen Tran

Introduction

4

Dynamo: Amazon’s internal technology

● Distributed data storage
● No SQL
● Highly available
● Highly scalable

In 2012, Amazon combined the best parts of Dynamo (scalability and predictable high
performance) with the best parts of SimpleDB (ease of administration, consistency , and a
table-based data model) to introduce DynamoDB as AWS database system.

Amazon Prime Day 2021, the peak load to the database
reached 89 million requests per second *

Elhemali, Mostafa, et al. "Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service." 2022 USENIX Annual
Technical Conference, USENIX Associat ion, 11-13 July 2022, Carlsbad, CA, USA, www.usenix.org/system/files/atc22-elhemali.pdf.

Quyen Tran

http://www.usenix.org/system/files/atc22-elhemali.pdf

Background

5

System Assumptions and Requirements

6

● Query Model
○ Assumption: Many Amazon’s services does not require complex data relationships
○ No need for relational schema like SQL databases
○ Does not support operations spanning multiple data items
○ Each operation (read or write) only interacts with a single data item identified by a unique key.
○ Each unique keys can retrieve data stored as binary object (BLOB). BLOBs are flexity as it can hold many

types of data
● ACID Properties (Atomicity, Consistency, Isolation, Durability)

○ ACID are properties that guarantee database reliability
○ Assumption: Strong ACID guarantees often impact availability
○ Relax Consistency if it yields better availability
○ No guarantee in Isolation so it permits only single-value update

● Efficiency
○ System needs to run on standard, low-cost hardware
○ Must delivery fast and reliable data access at level 99.9th percentile

● Other Assumptions
○ Assumption: Dynamo is exclusively used within Amazon
○ Security measures like authentication and authorization are unnecessary

Quyen Tran

Service Level Agreements (SLA)

SLA: A performance contract between the client and service

High requirement for response time: 99.9th percentile of the distribution

● Focus on customer experience
● Cost-benefit analysis

7https://blog.exploratory.io /how-to-calculate-percentile-for-each-group-in-r-and-exploratory-4e6021f7fe10

Quyen Tran

Design Considerations

Conflict resolution: Data replication → Data conflict

● When to resolve update conflict → during reads or writes
● Who to resolve update conflict → data store or application

Incremental scalability: ability to scale out one storage host (called node) at a time

Symmetry: each node has the same set of responsibilities as its peers

Decentralization: distributed control

Heterogeneity: work distribution, must be proportional to the capabilities of the individual servers

8Quyen Tran

Related Work

9

Peer-to-peer Systems

P2P consists of a fully decentralized network where nodes directly communicate.

● Unstructured - Search query floods through system to find peers which share data.

● Structured - Uses a globally consistent protocol for efficient routing of search queries.

● Pastry/Chord - Routing mechanisms to ensure queries will be answered within a
bounded number of hops

● Oceanstore - Global, transactional, persistent storage service supporting updates on
widely replicated data with conflict resolution using total order.

● PAST - Abstraction of Pastry for persistent and immutable object, the application
must handle storage semantics such as mutable files.

Saatvik Agrawal 10

Distributed File Systems and Databases

DFS has many machines, but generally with some level of coordination.

● Unlike P2P, hierarchical files are supported.

● Update conflicts require resolution procedures.

● Consistency is guaranteed even in the case of disconnected operations and issues
such as network partitions.

● Distributed block storage systems split large objects into highly-available blocks.

Saatvik Agrawal 11

Discussion

Unlike the mentioned decentralized storage systems, Dynamo is:

● Targeted at applications needing an “always writable” data store where no updates
are rejected.

● Intended for an environment where all nodes are trusted.

● Not expected to support for hierarchical namespaces or complex relational schemas.

● Built for extremely latency sensitive applications

Saatvik Agrawal 12

System Architecture

13

Architecture

● Architecture is complex because it is within a production setting
● Requirements:

○ Data persistence
○ Scalable and robust solutions for many problems

■ Load balancing, membership and failure detection, failure recovery, etc.
● Paper focuses on the core distributed techniques utilized by Dynamo:

○ Partitioning
○ Replication
○ Versioning
○ Membership
○ Failure handling and scaling

Sean Jung 14

Sean Jung 15

System Interface

● Dynamo stores objects associated with a key
● The interface provides two operations:

○ get(key)
■ Finds object replicas associated with the key
■ Returns either

● Single object
● or list of objects from multiple versions along with their context

○ put(key, context, object)
■ Determines where object replicas should be placed based on the key
■ Writes data

Sean Jung 16

System Interface

● Context:
○ Contains system metadata about the object

■ Versioning information
○ Not directly accessed or analyzed by the caller
○ Helps validate objects
○ Handles conflicts between objects returned by the put operation

● Hashing:
○ Dynamo uses a MD5 hash for the object keys to determine which storage node to use

■ MD5 hash generates a 128-bit hash value

Sean Jung 17

Partitioning Algorithm

● Dynamo must scale incrementally
○ Data must be dynamically distributed amongst storage hosts (nodes)

● Dynamo uses consistent hashing
○ Output hash space is represented as a ring

■ Largest possible value wraps around to the smallest possible value
○ Each node in the system is assigned a random hash value, this value represents the node’s

position on the ring
○ Objects are hashed based on their key value, and then the ring is traversed clockwise to find

the first largest node
● Advantage of consistent hashing is that removal or insertion of a node affects only the

direct neighbors, allowing incremental scaling

Sean Jung 18

Partitioning Algorithm

● However, consistent hashing has some issues
○ Random position of the nodes can lead to non-uniform load distribution
○ Consistent hashing does not account for the different performance capabilities of the nodes

● Thus, Dynamo uses a consistent hashing variant
○ Each node is assigned to multiple points in the ring
○ These are considered “virtual nodes”

● Virtual nodes have several advantages:
○ If a node fails, its load is distributed amongst the other nodes
○ A new node receives an even/equivalent amount of load from the other existing nodes
○ The number of virtual nodes assigned can vary depending on the performance capability of the

node

Sean Jung 19

Replication

● Dynamo replicates its data across multiple nodes
○ Ensures high availability and durability

● Each item is stored on N nodes, where N is a configurable parameter
● Each key is assigned to a coordinator node

○ Node is responsible for replicating its data items
○ Item is stored locally, and replicated in N-1 clockwise successor nodes

● Essentially, each node becomes responsible for the region of the ring between it and
the node N places before it
○ Just an extension of the consistent hashing method

Sean Jung 20

Replication

● Each key k has a corresponding list of nodes that is
responsible for storing k
○ This is called the preference list

● Every node in the system can determine which nodes should
be on this list
○ I.e., every node understands where each key should be stored

● Preference list contains more than N nodes to account for node
failure
○ If one of the first N nodes is down, the next node from the

preference list is used to store the item
● To account for virtual nodes, the preference list skips positions

in the ring that correspond to physical nodes that have already
been utilized
○ For example, if an item should be replicated onto virtual nodes A,

B, and C, but A and C map to the same physical node, the item
will instead be replicated onto virtual nodes A, C and D

Sean Jung 21

Data Versioning

● Dynamo prioritizes availability over consistency
● Updates can happen during: network partitions, server outages, concurrent client

modifications
● Result: Multiple versions of same object may exist
● How can we track and reconcile versions?

Pujith Veeravelli 22

Vector Clocks

● Track causality between different versions
● Structure: List of (node, counter) pairs

○ Example: [(Sx, 1), (Sy, 2)]
■ Node Sx: counter value 1
■ Node Sy: counter value 2

● Each version of object has associated vector clock
● Used to determine relationship between versions:

○ Causally related (one is newer)
○ Concurrent modifications (conflict)

Pujith Veeravelli 23

Version Evolutions Example

1. Initial Write (D1):
○ Clock: [(Sx, 1)]
○ First write handled by node Sx

2. Second Write (D2):
○ Clock: [(Sx, 2)]
○ Same node handles update
○ D2 descends from D1 (can overwrite D1)

3. Third Write (D3):
○ Clock: [(Sx, 2), (Sy, 1)]
○ New node Sy handles this update
○ Builds on D2's version

4. Concurrent Write (D4):
○ Clock: [(Sx, 2), (Sz, 1)]
○ Different client updates D2
○ Handled by node Sz

5. Reconciliation Write (D5):
○ Clock: [(Sx, 2), (Sy, 1), (Sz, 1)]
○ Client reconciles the versions and writes back new version D5

Pujith Veeravelli 24

Put() and Get() Requests

● Any node in Dynamo can receive a client request
● Key parameters:

○ N: Number of replicas
○ R: Minimum nodes for successful read
○ W: Minimum nodes for successful write

Pujith Veeravelli 25

Put Operation Flow

1. Client sends put(key, value) to any Dynamo node
2. That node becomes the coordinator for this request
3. Coordinator:

○ Generates new vector clock for this version
○ Saves locally
○ Sends to N-1 other nodes (based on preference list)

4. Waits for W-1 responses
5. If it gets W-1 responses, tells client "success"

Pujith Veeravelli 26

Get Operation Flow

1. Client sends get(key) to any Dynamo node
2. That node becomes coordinator
3. Coordinator:

a. Requests key from N highest-ranked reachable nodes
b. Waits for R responses

4. If there are multiple versions (conflicts):
a. Returns all conflicting versions to client
b. Client must reconcile

5. If versions can be reconciled syntactically (one is clearly newer):
a. Returns the newest version

Pujith Veeravelli 27

Handling Permanent Failures

● Nodes can fail permanently or be down so long that hinted handoff hasn’t worked
● Result: Replicas become inconsistent across nodes
● How can we detect and fix these inconsistencies?
● Can’t simply compare all keys across nodes (too expensive)
● Can’t transfer all data between nodes (too much bandwidth)
● Need a way to quickly identify which keys are different

Pujith Veeravelli 28

Merkle Trees

● Smart fingerprinting system for data
● Each node maintains a Merkle tree for its key ranges
● Properties:

○ Can compare large datasets by just comparing “fingerprints”
○ If fingerprints differ, can drill down to find exactly which keys are different

Pujith Veeravelli 29

How Dynamo Manages Nodes

● Gossip protocol for membership sharing
● Explicit node join/leave (no auto-join)
● Data automatically redistributed when nodes added/removed

Pujith Veeravelli 30

Implementation

31

Implementation

● Each storage node has request coordination, membership/failure detection, and a local
persistence engine.

● Different storage engines may be plugged in, allowing for customization.

● Request coordinator executes read/write requests by collecting/storing data at one or
more nodes.

● Every request results in a state machine to handle logic, failure handling, and retries.

● Read repair fixes any nodes which return stale data on a read.

● Writes are coordinated by a node in the top N of the preference list. Usually, the node
which replied fastest to the preceding read is selected.

Saatvik Agrawal 32

Results

Saatvik Agrawal 33

Experiences and Lessons
Learned

34

N,R and W values

● N: Number of Replicas
○ Higher N: Increases durability, decreases performance.
○ Lower N: Improves performance, reduces durability.

● R: Read Quorum
○ Higher R: Increases consistency, higher latency.
○ Lower R: Reduces consistency, improves availability/latency.

● W: Write Quorum
○ Higher W: Increases consistency and durability, decreases availability.
○ Lower W: Increases availability, decreases consistency/durability.

Sarvesh 35

Practical Use Cases

● Business Logic-Specific Reconciliation: Services like shopping carts, where custom
reconciliation logic (merging versions) is used.

● Timestamp-based Reconciliation: Services requiring simple “last write wins”
reconciliation, e.g., session management.

● High-Performance Read Engine: Services with minimal updates, tuned for high read
throughput with low latency.

Sarvesh 36

Uniform Load Distribution

● Consistent Hashing
○ Data Partitioning: Uses a hashing ring to assign data to nodes based on hash values.

● Virtual Nodes
○ Multiple Tokens per Node: Each node is assigned multiple points (virtual nodes) on the ring.

● Dynamic Load Adjustment
○ Rebalancing: As nodes join or leave, key ranges are dynamically redistributed to maintain uniform load.
○ Proportional Assignment: Nodes with more resources handle a larger portion of the load.

● Load Distribution Strategies
○ Random Tokens: Initially random assignment of tokens across nodes.
○ Equal-Sized Partitions: Divides the hash space into equal partitions, improving load balance.

Sarvesh 37

Divergent Versions and Client-Side vs. Server-Side
coordination

● Divergent Versions: Low rates of multiplicity with 99.94% having one version

● Client-Driven: Client handles routing, more flexible but increases complexity.

● Server-Driven: Server manages routing, simplifies client logic but adds load to the

server.

Sarvesh 38

Balancing Background and Foreground Tasks

● Foreground Tasks: High-priority tasks that interact directly with the user and require quick
completion.

● Background Tasks: Lower-priority tasks that don't require immediate user feedback, can run
asynchronously or during idle periods.

● Task Prioritization: Foreground tasks should be prioritized to ensure responsive UI and
optimal user experience, while background tasks can be deferred or run in parallel without
affecting user-facing processes.

● Resource Management: System resources like CPU and memory should be allocated
dynamically, ensuring foreground tasks are given the necessary resources without
background tasks causing delays or affecting performance.

Sarvesh 39

Conclusion

40

Conclusion

● Dynamo is a highly available and scalable data store that stores the state of Amazon’s
core services.

● Desired levels of availability and performance have been achieved while handling
failures.

● Tuning of N, R, and W enables customization.
● Production use has demonstrated the success of combining decentralized techniques

and shows that an eventual-consistent storage system can be a building block for
highly-available applications.

Sarvesh 41

Study questions

1) Given two versions of data with vector clocks [(Sx, 1), (Sy, 3)] and [(Sx, 2), (Sz, 1)],
explain step by step how Dynamo determines if these versions are in conflict. Then
explain what would happen in a GET request that receives these two versions as
responses.

2) Consider a Dynamo system configured with N=3, R=2, W=2. If an application needs to
handle a sudden 10x increase in write traffic while maintaining availability, what
configuration changes might you recommend? Explain how your changes would affect
consistency, durability, and latency.

42

	Slide 1: Dynamo: Amazon’s Highly Available Key-value Store Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels Amazon.com, 2007
	Slide 2: Introduction and Motivation
	Slide 3: Motivation
	Slide 4: Introduction
	Slide 5: Background
	Slide 6: System Assumptions and Requirements
	Slide 7: Service Level Agreements (SLA)
	Slide 8: Design Considerations
	Slide 9: Related Work
	Slide 10: Peer-to-peer Systems
	Slide 11: Distributed File Systems and Databases
	Slide 12: Discussion
	Slide 13: System Architecture
	Slide 14: Architecture
	Slide 15
	Slide 16: System Interface
	Slide 17: System Interface
	Slide 18: Partitioning Algorithm
	Slide 19: Partitioning Algorithm
	Slide 20: Replication
	Slide 21: Replication
	Slide 22: Data Versioning
	Slide 23: Vector Clocks
	Slide 24: Version Evolutions Example
	Slide 25: Put() and Get() Requests
	Slide 26: Put Operation Flow
	Slide 27: Get Operation Flow
	Slide 28: Handling Permanent Failures
	Slide 29: Merkle Trees
	Slide 30: How Dynamo Manages Nodes
	Slide 31: Implementation
	Slide 32: Implementation
	Slide 33: Results
	Slide 34: Experiences and Lessons Learned
	Slide 35: N,R and W values
	Slide 36: Practical Use Cases
	Slide 37: Uniform Load Distribution
	Slide 38: Divergent Versions and Client-Side vs. Server-Side coordination
	Slide 39: Balancing Background and Foreground Tasks
	Slide 40: Conclusion
	Slide 41: Conclusion
	Slide 42: Study questions

