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Introduction and Motivation
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Motivation

Scalability and Performance

- Traditional relational databases face challenges to meet Amazon’s fast-growing 
demand

Reliability and availability

- Infrastructure failing is not an exception, but rather a norm in large-scale distributed 
systems.

- Any downtime or performance degradation has big financial impacts
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Introduction
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Dynamo: Amazon’s internal technology 

● Distributed data storage 
● No SQL
● Highly available 
● Highly scalable  

In 2012, Amazon combined the best parts of Dynamo (scalability and predictable high 
performance) with the best parts of SimpleDB (ease of administration, consistency , and a 
table-based data model) to introduce DynamoDB as AWS database system.

Amazon Prime Day 2021, the peak load to the database 
reached 89 million requests per second *

Elhemali, Mostafa, et al. "Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service." 2022 USENIX Annual 
Technical Conference, USENIX Associat ion, 11-13 July 2022, Carlsbad, CA, USA, www.usenix.org/system/files/atc22-elhemali.pdf.
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Background 
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System Assumptions and Requirements
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● Query Model
○ Assumption: Many Amazon’s services does not require complex data relationships 
○ No need for relational schema like SQL databases 
○ Does not support operations spanning multiple data items
○ Each operation (read or write) only interacts with a single data item identified by a unique key.
○ Each unique keys can retrieve data stored as binary object (BLOB). BLOBs are flexity as it can hold many 

types of data 
● ACID Properties (Atomicity, Consistency, Isolation, Durability)

○ ACID are properties that guarantee database reliability 
○ Assumption: Strong ACID guarantees often impact availability
○ Relax Consistency if it yields better availability 
○ No guarantee in Isolation so it permits only single-value update 

● Efficiency
○ System needs to run on standard, low-cost hardware 
○ Must delivery  fast and reliable data access at level 99.9th percentile 

● Other Assumptions
○ Assumption: Dynamo is exclusively used within Amazon
○ Security measures like authentication and authorization are unnecessary 
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Service Level Agreements (SLA)

SLA: A performance contract between the client and service 

High requirement for response time: 99.9th percentile of the distribution 

● Focus on customer experience 
● Cost-benefit analysis 

7https://blog.exploratory.io /how-to-calculate-percentile-for-each-group-in-r-and-exploratory-4e6021f7fe10
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Design Considerations

Conflict resolution: Data replication → Data conflict 

● When to resolve update conflict → during reads or writes
● Who to resolve update conflict → data store or application

Incremental scalability: ability to scale out one storage host (called node) at a time

Symmetry: each node has the same set of responsibilities as its peers 

Decentralization: distributed control

Heterogeneity: work distribution, must be proportional to the capabilities of the individual servers 
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Related Work
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Peer-to-peer Systems

P2P consists of a fully decentralized network where nodes directly communicate.

● Unstructured - Search query floods through system to find peers which share data.

● Structured - Uses a globally consistent protocol for efficient routing of search queries.

● Pastry/Chord - Routing mechanisms to ensure queries will be answered within a 
bounded number of hops

● Oceanstore - Global, transactional, persistent storage service supporting updates on 
widely replicated data with conflict resolution using total order.

● PAST - Abstraction of Pastry for persistent and immutable object, the application 
must handle storage semantics such as mutable files.
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Distributed File Systems and Databases

DFS has many machines, but generally with some level of coordination.

● Unlike P2P, hierarchical files are supported.

● Update conflicts require resolution procedures.

● Consistency is guaranteed even in the case of disconnected operations and issues 
such as network partitions.

● Distributed block storage systems split large objects into highly-available blocks.
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Discussion

Unlike the mentioned decentralized storage systems, Dynamo is:

● Targeted at applications needing an “always writable” data store where no updates 
are rejected.

● Intended for an environment where all nodes are trusted.

● Not expected to support for hierarchical namespaces or complex relational schemas.

● Built for extremely latency sensitive applications

Saatvik Agrawal 12



System Architecture
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Architecture

● Architecture is complex because it is within a production setting
● Requirements:

○ Data persistence
○ Scalable and robust solutions for many problems

■ Load balancing, membership and failure detection, failure recovery, etc.
● Paper focuses on the core distributed techniques utilized by Dynamo:

○ Partitioning
○ Replication
○ Versioning
○ Membership
○ Failure handling and scaling
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System Interface

● Dynamo stores objects associated with a key
● The interface provides two operations:

○ get(key)
■ Finds object replicas associated with the key
■ Returns either

● Single object
● or list of objects from multiple versions along with their context

○ put(key, context, object)
■ Determines where object replicas should be placed based on the key
■ Writes data
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System Interface

● Context:
○ Contains system metadata about the object

■ Versioning information
○ Not directly accessed or analyzed by the caller
○ Helps validate objects
○ Handles conflicts between objects returned by the put operation

● Hashing:
○ Dynamo uses a MD5 hash for the object keys to determine which storage node to use

■ MD5 hash generates a 128-bit hash value
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Partitioning Algorithm

● Dynamo must scale incrementally
○ Data must be dynamically distributed amongst storage hosts (nodes)

● Dynamo uses consistent hashing
○ Output hash space is represented as a ring

■ Largest possible value wraps around to the smallest possible value
○ Each node in the system is assigned a random hash value, this value represents the node’s 

position on the ring
○ Objects are hashed based on their key value, and then the ring is traversed clockwise to find 

the first largest node
● Advantage of consistent hashing is that removal or insertion of a node affects only the 

direct neighbors, allowing incremental scaling
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Partitioning Algorithm

● However, consistent hashing has some issues
○ Random position of the nodes can lead to non-uniform load distribution
○ Consistent hashing does not account for the different performance capabilities of the nodes

● Thus, Dynamo uses a consistent hashing variant
○ Each node is assigned to multiple points in the ring
○ These are considered “virtual nodes”

● Virtual nodes have several advantages:
○ If a node fails, its load is distributed amongst the other nodes
○ A new node receives an even/equivalent amount of load from the other existing nodes
○ The number of virtual nodes assigned can vary depending on the performance capability of the 

node
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Replication

● Dynamo replicates its data across multiple nodes
○ Ensures high availability and durability

● Each item is stored on N nodes, where N is a configurable parameter
● Each key is assigned to a coordinator node

○ Node is responsible for replicating its data items
○ Item is stored locally, and replicated in N-1 clockwise successor nodes

● Essentially, each node becomes responsible for the region of the ring between it and 
the node N places before it
○ Just an extension of the consistent hashing method

Sean Jung 20



Replication

● Each key k has a corresponding list of nodes that is 
responsible for storing k
○ This is called the preference list

● Every node in the system can determine which nodes should 
be on this list
○ I.e., every node understands where each key should be stored

● Preference list contains more than N nodes to account for node 
failure
○ If one of the first N nodes is down, the next node from the 

preference list is used to store the item
● To account for virtual nodes, the preference list skips positions 

in the ring that correspond to physical nodes that have already 
been utilized
○ For example, if an item should be replicated onto virtual nodes A, 

B, and C, but A and C map to the same physical node, the item 
will instead be replicated onto virtual nodes A, C and D
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Data Versioning

● Dynamo prioritizes availability over consistency
● Updates can happen during: network partitions, server outages, concurrent client 

modifications
● Result: Multiple versions of same object may exist
● How can we track and reconcile versions?
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Vector Clocks

● Track causality between different versions
● Structure: List of (node, counter) pairs

○ Example: [(Sx, 1), (Sy, 2)]
■ Node Sx: counter value 1
■ Node Sy: counter value 2

● Each version of object has associated vector clock
● Used to determine relationship between versions:

○ Causally related (one is newer)
○ Concurrent modifications (conflict)

Pujith Veeravelli 23



Version Evolutions Example

1. Initial Write (D1):
○ Clock: [(Sx, 1)]
○ First write handled by node Sx

2. Second Write (D2):
○ Clock: [(Sx, 2)]
○ Same node handles update
○ D2 descends from D1 (can overwrite D1)

3. Third Write (D3):
○ Clock: [(Sx, 2), (Sy, 1)]
○ New node Sy handles this update
○ Builds on D2's version

4. Concurrent Write (D4):
○ Clock: [(Sx, 2), (Sz, 1)]
○ Different client updates D2
○ Handled by node Sz

5. Reconciliation Write (D5):
○ Clock: [(Sx, 2), (Sy, 1), (Sz, 1)]
○ Client reconciles the versions and writes back new version D5
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Put() and Get() Requests

● Any node in Dynamo can receive a client request
● Key parameters:

○ N: Number of replicas
○ R: Minimum nodes for successful read
○ W: Minimum nodes for successful write
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Put Operation Flow

1. Client sends put(key, value) to any Dynamo node
2. That node becomes the coordinator for this request
3. Coordinator:

○ Generates new vector clock for this version
○ Saves locally
○ Sends to N-1 other nodes (based on preference list)

4. Waits for W-1 responses
5. If it gets W-1 responses, tells client "success"
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Get Operation Flow

1. Client sends get(key) to any Dynamo node
2. That node becomes coordinator
3. Coordinator:

a. Requests key from N highest-ranked reachable nodes
b. Waits for R responses

4. If there are multiple versions (conflicts):
a. Returns all conflicting versions to client
b. Client must reconcile

5. If versions can be reconciled syntactically (one is clearly newer):
a. Returns the newest version

Pujith Veeravelli 27



Handling Permanent Failures

● Nodes can fail permanently or be down so long that hinted handoff hasn’t worked
● Result: Replicas become inconsistent across nodes
● How can we detect and fix these inconsistencies?
● Can’t simply compare all keys across nodes (too expensive)
● Can’t transfer all data between nodes (too much bandwidth)
● Need a way to quickly identify which keys are different

Pujith Veeravelli 28



Merkle Trees

● Smart fingerprinting system for data
● Each node maintains a Merkle tree for its key ranges
● Properties:

○ Can compare large datasets by just comparing “fingerprints”
○ If fingerprints differ, can drill down to find exactly which keys are different

Pujith Veeravelli 29



How Dynamo Manages Nodes

● Gossip protocol for membership sharing
● Explicit node join/leave (no auto-join)
● Data automatically redistributed when nodes added/removed

Pujith Veeravelli 30



Implementation
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Implementation

● Each storage node has request coordination, membership/failure detection, and a local 
persistence engine.

● Different storage engines may be plugged in, allowing for customization.

● Request coordinator executes read/write requests by collecting/storing data at one or 
more nodes.

● Every request results in a state machine to handle logic, failure handling, and retries.

● Read repair fixes any nodes which return stale data on a read.

● Writes are coordinated by a node in the top N of the preference list. Usually, the node 
which replied fastest to the preceding read is selected.
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Results
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Experiences and Lessons 
Learned
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N,R and W values

● N: Number of Replicas
○ Higher N: Increases durability, decreases performance.
○ Lower N: Improves performance, reduces durability.

● R: Read Quorum
○ Higher R: Increases consistency, higher latency.
○ Lower R: Reduces consistency, improves availability/latency.

● W: Write Quorum
○ Higher W: Increases consistency and durability, decreases availability.
○ Lower W: Increases availability, decreases consistency/durability.
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Practical Use Cases

● Business Logic-Specific Reconciliation: Services like shopping carts, where custom 
reconciliation logic (merging versions) is used.

● Timestamp-based Reconciliation: Services requiring simple “last write wins” 
reconciliation, e.g., session management.

● High-Performance Read Engine: Services with minimal updates, tuned for high read 
throughput with low latency.

Sarvesh 36



Uniform Load Distribution

● Consistent Hashing
○ Data Partitioning: Uses a hashing ring to assign data to nodes based on hash values.

● Virtual Nodes
○ Multiple Tokens per Node: Each node is assigned multiple points (virtual nodes) on the ring.

● Dynamic Load Adjustment
○ Rebalancing: As nodes join or leave, key ranges are dynamically redistributed to maintain uniform load.
○ Proportional Assignment: Nodes with more resources handle a larger portion of the load.

● Load Distribution Strategies
○ Random Tokens: Initially random assignment of tokens across nodes.
○ Equal-Sized Partitions: Divides the hash space into equal partitions, improving load balance.
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Divergent Versions and Client-Side vs. Server-Side 
coordination

● Divergent Versions: Low rates of multiplicity with 99.94% having one version

● Client-Driven: Client handles routing, more flexible but increases complexity.

● Server-Driven: Server manages routing, simplifies client logic but adds load to the 

server.
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Balancing Background and Foreground Tasks

● Foreground Tasks: High-priority tasks that interact directly with the user and require quick 
completion.

● Background Tasks: Lower-priority tasks that don't require immediate user feedback, can run 
asynchronously or during idle periods.

● Task Prioritization: Foreground tasks should be prioritized to ensure responsive UI and 
optimal user experience, while background tasks can be deferred or run in parallel without 
affecting user-facing processes.

● Resource Management: System resources like CPU and memory should be allocated 
dynamically, ensuring foreground tasks are given the necessary resources without 
background tasks causing delays or affecting performance.
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Conclusion

● Dynamo is a highly available and scalable data store that stores the state of Amazon’s 
core services.

● Desired levels of availability and performance have been achieved while handling 
failures.

● Tuning of N, R, and W enables customization.
● Production use has demonstrated the success of combining decentralized techniques 

and shows that an eventual-consistent storage system can be a building block for 
highly-available applications.
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Study questions 

1) Given two versions of data with vector clocks [(Sx, 1), (Sy, 3)] and [(Sx, 2), (Sz, 1)], 
explain step by step how Dynamo determines if these versions are in conflict. Then 
explain what would happen in a GET request that receives these two versions as 
responses.

2) Consider a Dynamo system configured with N=3, R=2, W=2. If an application needs to 
handle a sudden 10x increase in write traffic while maintaining availability, what 
configuration changes might you recommend? Explain how your changes would affect 
consistency, durability, and latency.
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