
An Empirical Evaluation of
Columnar Storage Formats

Akshay Sadhu, David Teng, Isha Perry, Gabriel Sanson, Sebastian Jankowski

1

ACM Digital Library, 2023

Authors: Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew
Pavlo, Wes McKinney Voltron, Huanchen Zhang

Introduction

2

● Why Columnar Storage?
○ Optimized for data analytics via:

i. Irrelevant attribute skipping
ii. Efficient data compression
iii. Vectorized query processing

● Popular Formats: Parquet and ORC (adopted in data lakes and warehouses)
○ Challenges:

i. Developed a decade ago, not optimized for modern hardware.
ii. Current hardware supports high-bandwidth storage but with high latency in cloud environments (e.g.,

AWS S3, Azure Blob).
iii. New lightweight compression, indexing, and filtering methods have emerged, yet existing formats rely on

outdated DBMS techniques.

Introduction to Columnar Storage Formats

3 Akshay Sadhu

Research Goals And Key Findings

4 Akshay Sadhu

● Study Objective: Evaluate and benchmark Parquet and ORC to guide the design of next-generation columnar
formats.

a. Benchmark Creation: Uses realistic workloads based on real-world data to test components like encoding,
compression, indexing, and nested data modeling.

b. Machine Learning Focus: Examines efficiency for ML workloads and GPU processing.
● Key Findings:

a. File Size & Decoding: Parquet has smaller file size due to aggressive encoding; ORC excels in selection
pruning.

b. Compression Trade-offs: Faster decoding preferred over high compression as storage becomes cheaper.
c. ML Workloads & GPU: Current formats lack parallelism and support for large ML projections; more

aggressive compression needed for GPU utilization.

Background &
Related Work

5

Timeline

6 Akshay Sadhu

2000s

Columnar DBMS:
C-Store, MonetDB and
VectorWise develop
foundational
techniques like
columnar
compression,
vectorized processing,
and late
materialization.

Early 2010s

Apache Hadoop:
Introduction of
row-oriented formats
SequenceFile and
Avro.
RCFile:
Facebook/Meta
releases RCFile, a
columnar format for
Hadoop.

2013

ORC: Meta refines
RCFile with
PAX-based design
and announces ORC
Parquet: Twitter and
Cloudera release
Parquet, based on
the PAX model and
Dremel-inspired
record shredding.

Late 2010s

Proprietary Columnar
Storage Format:
Google’s Capacitor
YouTube’s Artus
Meta’s DWRF
Meta’s Alpha

2018 - 2020

Lakehouse Formats

Delta Lake, Apache
Iceberg, and Apache
Hudi introduce ACID
transactions and
enhanced metadata
management for data
lakes.

2020s

Scientific Storage
Formats:

HPC-oriented
formats like HDF5,
BP5, NetCDF, and
Zarr for complex,
multi-dimensional
data

Present

Newest Columnar
Storage Databases

Apache Druid, Apache
Pinot, ClickHouse
Amazon Redshift
Azure Cosmos DB

http://static.druid.io/docs/druid.pdf
https://github.com/apache/pinot
https://github.com/apache/pinot
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf

Feature Taxonomy

7

• Authors developed feature taxonomy for Parquet and ORC

• Convenient way to identify commonalities and differences
• Primarily discuss rationale behind different implementations of features

Feature Taxonomy Overview

8 Akshay Sadhu

Format Layout

9 Akshay Sadhu

Parquet ORC

Row Group Size Defined by row count (1M rows) Defined by physical size (64 MB)

Block Compression Maps compression unit to smallest
zone map

Allows tuning for performance vs.
space trade-off

● Encoding & Compression: Lightweight encoding per column chunk, followed by block compression.
● Footer Metadata: Stores schema, tuple count, row group offsets, and zone maps.
● Internal Layout: PAX

Parquet Encoding:

● Dictionary Encoding:
○ Effective for large-value integers,

compresses by mapping values to codes.
○ Limited to 1 MB dictionary size per column

chunk; excess values are stored “plain.”
● RLE (Run-Length Encoding) + Bitpacking:

○ Applied to dictionary codes.
○ RLE for runs of 8+ consecutive values;

otherwise, Bitpacking.
○ Limitation: Fixed RLE threshold (8) lacks

flexibility for data with varying patterns.

Encoding

10 Akshay Sadhu

ORC Encoding:

● NDV Ratio Threshold:
○ Determines whether Dictionary Encoding is

applied, based on column's NDV / row
count.

● Four Encoding Schemes for Integer Columns:
○ RLE: For repeated values of 3-10

occurrences.
○ Delta Encoding: For long runs and

increasing/decreasing patterns.
○ Bitpacking & PFOR: Based on

subsequence characteristics.
○ Advantage: Higher compression

opportunity by detecting patterns.
○ Trade-off: Increased complexity and

metadata requirements may slow down
decoding.

• Both use block compression by default, but differ in configurability
• Parquet: exposes all configuration to users
• ORC: provides wrapper with two pre-configured options:

• (1) Optimize for speed
• (2) Optimize for compression

• Key observation: block compression is unhelpful/detrimental to query speed
when used on columnar storage formats

Compression

11 Sebastian Jankowski

Parquet ORC

Compression Snappy, gzip, LZO, zstd,
LZ4, Brotli

Snappy, zlib, LZO, zstd, LZ4

• Drastically different type systems
• Parquet: minimal set of primitive types, all other types encoded as primitive
• ORC: separate implementation for each type

• Both support complex types (e.g. Struct, List, Map)
• Parquet does not support Union type

Type System

12 Sebastian Jankowski

Parquet ORC

Type System Separate logical and
physical type system

One unified type system

• Metadata which contains (1) min value, (2) max value, (3) row count of a range
in the file

• Improves query performance by skipping unnecessary data

• Both contain zone maps at file and row group level
• Parquet: Smallest granularity is physical page
• ORC: Smallest granularity is configurable value

Zone Map / Index

13 Sebastian Jankowski

Parquet ORC

Zone Map / Index Min-max per smallest zone
map/row group/file

Min-max per smallest zone
map/row group/file

• Parquet: originally stored small zone maps in page headers
• caused expensive random I/O
• updated to add optional “PageIndex” → Store small zone maps in one place

• ORC: stores smallest zone maps at start of each row group

Zone Map / Index (cont.)

14 Sebastian Jankowski

• Cheap data structure which says if a value is likely absent from a column
• Improves query performance by skipping unnecessary data

• Differing levels of granularity
• Parquet: Granularity only at column chunk level because PageIndex is optional
• ORC: Same granularity as the smallest zone maps; co-located with them

Bloom Filter

15 Sebastian Jankowski

Parquet ORC

Bloom Filter Supported per column
chunk

Supported per smallest
zone map

• Parquet encoding only uses atomics → duplicated non-atomics → file size > ORC’s

Nested Data Encoding

16 Sebastian Jankowski

Parquet ORC

Nested Data Encoding Dremel Model Length and presence

Columnar Storage
Benchmark

17

● NDV Ratio: fcr = 𝑁 / 𝐷𝑉
● Null Ratio: | {𝑖|𝑎i is null} | / N
● Value Range
● Sortedness:

● Skewness:

Column Properties

18 David Teng

• Public BI Benchmark: real-world data and queries from Tableau with 206 tables
• UCI-ML: 622 data sets for ML training
• Yelp: Yelp’s businesses, reviews, and user information
• LOG: log information of internet search traffic for EDGAR filings through

SEC.gov
• Geonames: geographical information of all countries
• IMDb: data sets that with basic information, ratings, and reviews for movies in

a collection

Parameter Distribution in Real-World Data

19 David
Teng

• Split into five workloads of bi, classic,
Geo, LOG, and ML

• Core workload was created as a default
for evaluation

• Selectivity specified based on the
window of data collection

• For example Geo and LOG with smaller
windows utilized lower selectivity

Predefined Workloads

20 David Teng

Experimental Evaluation

21

Environment: AWS i3.2x large instance
• 8 Intel Xeon vCPUs, 61GB memory , 1.7TB NVMe SSD storage
• OS: Ubuntu 20.04 LTS

Data Generation and File Format: Arrow v9.0.0 for test file generation
• Parquet: 1 million rows, dictionary page size limit of 1 MB
• ORC: 64MB row group size, default NDV-ratio threshold of 0.8
• 20-column table with 1m rows for each workload

Methodology
• Take the average measurement of 3 runs per test
• Focus on raw scan performance of Parquet and ORC
• Perform a sequential scan, report the execution time
• Clear the buffer cache and perform 30 select queries
• Report the average latency of the select queries

Experiment Setup

22 Isha Perry

File Size: Neither format was consistently better
Scan Time: Parquet performed faster scans due to lightweight integer encoding
Select Time: Parquet had lower average latencies for the select queries, except
on the geo workload

Benchmark Result Overview

23 Isha Perry

Encoding Analysis

24 Isha Perry

Decoding Speed (Fig 8a)
• Parquet: Faster decoding

for integer and string
columns

• ORC: Faster decoding for
floats, ORC does not apply
float encoding algorithms

Compression Ratio
• Parquet: better for

integers with low/medium
NDV ratio, floats, integer
value ranges

• ORC: better for large
NDV ratio and highly
sorted integer columns

Compression Ratio
• Ztsd achieves a better compression ratio than Snappy for all data types

Block Compression

25 Isha Perry

Scan Time

• Applying Zstd to Parquet only speeds
up scans on slow storage tiers

• Decompression overhead of Ztsd
hinders scan performance for faster
storage devices

Wide-Table Projection
Experiment Data:

• Table of 10K rows with a varying number of float attributes stored in Parquet and ORC.
Task:

• Randomly selecting 10 attributes to project.

Results:
• Metadata Parsing: Both Parquet and ORC show

increasing metadata parsing time as the number
of features grows.

• Decoding: ORC's data decode time grows more
rapidly compared to Parquet for wide tables.

Parquet generally handles wide-tables (>4000
features) projections more efficiently than ORC.
26 Gabriel Sanson

Parquet fasterORC faster

Results:
• None of the four formats achieves good compression with vector embeddings
• Zarr outperformed in scan time, because of it supports parallel reads. Parquet and ORC

struggled due to their sequential decoding processes.

 Machine Learning Workloads
Compression Ratio and Deserialization Performance

27 Gabriel Sanson

Experiment Data:
• 30 data sets with vector

embeddings from the top
downloaded and top trending
lists on Hugging Face

Task:
• Measure compression ratio and

scan time with NumPy arrays for
embeddings.

Sequential decoding Faster
because of
parallelism

Results:
• ORC is better on SSD: because of fine-grained zone maps.
• Parquet is better on S3: because of faster GET requests

 Machine Learning Workloads
Top-k Similarity Search Performance

28 Gabriel Sanson

Experiment Data:
• LAION-5B dataset - open-source

dataset containing 5 billion
image-text pairs

Task:
• Perform top-k similarity search

queries using 100M embeddings
for nearest neighbors (k=10)

Results:

• Smaller row groups help with unstructured data (images) but hurt tabular queries.
• Larger row groups help with structured data but slow down image retrieval.

 Machine Learning Workloads
Storage of Unstructured Data

29 Gabriel Sanson

Experiment Data:
• LAION-5B dataset with Parquet

storing URLs and metadata. 13 GB
with 219K rows and is stored on
NVMe SSD

Task:
• Evaluate filter scan queries on

Parquet data using varying filter
selectivities (1, 0.1, 0.01, 0.001, and
0.0001, respectively).

Results:
• Throughput: ORC-cuDF achieves higher throughput than Parquet-cuDF, leveraging GPU parallelism

effectively.
• Compression Impact: ORC performs better only for smaller row count.

GPU Decoding

30 Gabriel Sanson

Experiment Data:
• Dataset stored in Parquet and ORC

formats, 32 columns and varying rows
System Used:

● NVIDIA RTX 3090, AMD EPYC 7H12 (128
cores), 512GB RAM, Intel P5530 NVMe
SSD.

Task:
• Evaluate GPU decoding efficiency using

Parquet-cuDF and ORC-cuDF, focusing on
throughput and compression performance.

Lesson and Future
Directions

31

Lessons Learned:

32 Gabriel Sanson

1. Dictionary Encoding: Effective for most data types; future formats should use it aggressively.

2. Simple Encoding: Simpler schemes boost decoding performance; avoid complex codec selection overhead.

3. Query Bottleneck: Shifting to CPU; use block compression sparingly unless highly beneficial.

4. Metadata Layout: Centralized and optimized for random access to support wide ML tables.

5. Sophisticated Indexing: Cheaper storage allows for better indexing/filtering to speed up queries.

6. Nested Models: Design for modern in-memory formats to reduce overhead.

7. ML Workload Support: Prioritize wide-table projections, low-selectivity efficiency, and float-specific compression.

8. GPU Decoding: Parallelizable encoding algorithms needed to maximize GPU utilization.

Future Focus:
Enhance parallelism, metadata organization, and GPU compatibility to meet evolving data needs.

Conclusion

33

Conclusion

34 David Teng

● Evaluation of Columnar formats
● Tradeoffs tested with Real World data sets to demonstrate

differences between encoding algorithms
● Experiments were conducted on the metrics of the format to show

design differences and considerations important for ML workloads
and modern hardware

Exam Questions

35

1. What compression techniques do both ORC and Parquet use? Which
techniques are distinct to either ORC or Parquet?

2. Briefly explain the key differences between Parquet and ORC.

3. What are the benefits of using multiple compression techniques? What
are the drawbacks?

4. How does the Number of Distinct Values (NDV) in a dataset affect the
choice and efficiency of compression techniques in data storage formats
like Parquet and ORC?

Thank You

36

