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● Why Columnar Storage?
○ Optimized for data analytics via:

i. Irrelevant attribute skipping
ii. Efficient data compression
iii. Vectorized query processing

● Popular Formats: Parquet and ORC (adopted in data lakes and warehouses)
○ Challenges:

i. Developed a decade ago, not optimized for modern hardware.
ii. Current hardware supports high-bandwidth storage but with high latency in cloud environments (e.g., 

AWS S3, Azure Blob).
iii. New lightweight compression, indexing, and filtering methods have emerged, yet existing formats rely on 

outdated DBMS techniques.

Introduction to Columnar Storage Formats
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Research Goals And Key Findings

4 Akshay Sadhu

● Study Objective: Evaluate and benchmark Parquet and ORC to guide the design of next-generation columnar 
formats.

a. Benchmark Creation: Uses realistic workloads based on real-world data to test components like encoding, 
compression, indexing, and nested data modeling.

b. Machine Learning Focus: Examines efficiency for ML workloads and GPU processing.
● Key Findings:

a. File Size & Decoding: Parquet has smaller file size due to aggressive encoding; ORC excels in selection 
pruning.

b. Compression Trade-offs: Faster decoding preferred over high compression as storage becomes cheaper.
c. ML Workloads & GPU: Current formats lack parallelism and support for large ML projections; more 

aggressive compression needed for GPU utilization.



Background & 
Related Work
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Timeline
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2000s

Columnar DBMS: 
C-Store, MonetDB and 
VectorWise develop 
foundational 
techniques like 
columnar 
compression, 
vectorized processing, 
and late 
materialization.

Early 2010s

Apache Hadoop: 
Introduction of 
row-oriented formats 
SequenceFile and 
Avro.
RCFile: 
Facebook/Meta 
releases RCFile, a 
columnar format for 
Hadoop.

2013

ORC: Meta refines 
RCFile with 
PAX-based design 
and announces ORC 
Parquet: Twitter and 
Cloudera release 
Parquet, based on 
the PAX model and 
Dremel-inspired 
record shredding.

Late 2010s

Proprietary Columnar 
Storage Format:
Google’s Capacitor
YouTube’s Artus
Meta’s DWRF
Meta’s Alpha

2018 - 2020

Lakehouse Formats

Delta Lake, Apache 
Iceberg, and Apache 
Hudi introduce ACID 
transactions and 
enhanced metadata 
management for data 
lakes.

2020s

Scientific Storage 
Formats:

HPC-oriented 
formats like HDF5, 
BP5, NetCDF, and 
Zarr for complex, 
multi-dimensional 
data 

Present

Newest Columnar 
Storage Databases

Apache Druid, Apache 
Pinot, ClickHouse
Amazon Redshift
Azure Cosmos DB

http://static.druid.io/docs/druid.pdf
https://github.com/apache/pinot
https://github.com/apache/pinot
https://www.vldb.org/pvldb/vol17/p3731-schulze.pdf


Feature Taxonomy
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• Authors developed feature taxonomy for Parquet and ORC

• Convenient way to identify commonalities and differences
• Primarily discuss rationale behind different implementations of features

Feature Taxonomy Overview
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Format Layout
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Parquet ORC

Row Group Size Defined by row count (1M rows) Defined by physical size (64 MB)

Block Compression Maps compression unit to smallest 
zone map

Allows tuning for performance vs. 
space trade-off

● Encoding & Compression: Lightweight encoding per column chunk, followed by block compression.
● Footer Metadata: Stores schema, tuple count, row group offsets, and zone maps.
● Internal Layout: PAX



Parquet Encoding:

● Dictionary Encoding:
○ Effective for large-value integers, 

compresses by mapping values to codes.
○ Limited to 1 MB dictionary size per column 

chunk; excess values are stored “plain.”
● RLE (Run-Length Encoding) + Bitpacking:

○ Applied to dictionary codes.
○ RLE for runs of 8+ consecutive values; 

otherwise, Bitpacking.
○ Limitation: Fixed RLE threshold (8) lacks 

flexibility for data with varying patterns.

Encoding
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ORC Encoding:

● NDV Ratio Threshold:
○ Determines whether Dictionary Encoding is 

applied, based on column's NDV / row 
count.

● Four Encoding Schemes for Integer Columns:
○ RLE: For repeated values of 3-10 

occurrences.
○ Delta Encoding: For long runs and 

increasing/decreasing patterns.
○ Bitpacking & PFOR: Based on 

subsequence characteristics.
○ Advantage: Higher compression 

opportunity by detecting patterns.
○ Trade-off: Increased complexity and 

metadata requirements may slow down 
decoding.



• Both use block compression by default, but differ in configurability
• Parquet: exposes all configuration to users
• ORC: provides wrapper with two pre-configured options:

• (1) Optimize for speed
• (2) Optimize for compression

• Key observation: block compression is unhelpful/detrimental to query speed 
when used on columnar storage formats

Compression
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Parquet ORC

Compression Snappy, gzip, LZO, zstd, 
LZ4, Brotli

Snappy, zlib, LZO, zstd, LZ4



• Drastically different type systems
• Parquet: minimal set of primitive types, all other types encoded as primitive
• ORC: separate implementation for each type

• Both support complex types (e.g. Struct, List, Map)
• Parquet does not support Union type

Type System
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Parquet ORC

Type System Separate logical and 
physical type system

One unified type system



• Metadata which contains (1) min value, (2) max value, (3) row count of a range 
in the file

• Improves query performance by skipping unnecessary data

• Both contain zone maps at file and row group level
• Parquet: Smallest granularity is physical page
• ORC: Smallest granularity is configurable value

Zone Map / Index
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Parquet ORC

Zone Map / Index Min-max per smallest zone 
map/row group/file

Min-max per smallest zone 
map/row group/file



• Parquet: originally stored small zone maps in page headers
• caused expensive random I/O
• updated to add optional “PageIndex” → Store small zone maps in one place

• ORC: stores smallest zone maps at start of each row group

Zone Map / Index (cont.)

14 Sebastian Jankowski



• Cheap data structure which says if a value is likely absent from a column
• Improves query performance by skipping unnecessary data

• Differing levels of granularity
• Parquet: Granularity only at column chunk level because PageIndex is optional
• ORC: Same granularity as the smallest zone maps; co-located with them

Bloom Filter
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Parquet ORC

Bloom Filter Supported per column 
chunk

Supported per smallest 
zone map



• Parquet encoding only uses atomics → duplicated non-atomics → file size > ORC’s

Nested Data Encoding
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Parquet ORC

Nested Data Encoding Dremel Model Length and presence



Columnar Storage 
Benchmark
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● NDV Ratio: fcr = 𝑁 / 𝐷𝑉
● Null Ratio: | {𝑖|𝑎i is null} | / N
● Value Range
● Sortedness: 

● Skewness: 

Column Properties
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• Public BI Benchmark: real-world data and queries from Tableau with 206 tables
• UCI-ML: 622 data sets for ML training
• Yelp: Yelp’s businesses, reviews, and user information
• LOG:  log information of internet search traffic for EDGAR filings through 

SEC.gov
• Geonames: geographical information of all countries
• IMDb: data sets that with basic information, ratings, and reviews for movies in 

a collection

Parameter Distribution in Real-World Data
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• Split into five workloads of bi, classic,
Geo, LOG, and ML

• Core workload was created as a default 
for evaluation

• Selectivity specified based on the
window of data collection

• For example Geo and LOG with smaller
windows utilized lower selectivity

Predefined Workloads
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Experimental Evaluation
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Environment: AWS i3.2x large instance
• 8 Intel Xeon vCPUs, 61GB memory , 1.7TB NVMe SSD storage 
• OS: Ubuntu 20.04 LTS

Data Generation and File Format: Arrow v9.0.0 for test file generation
• Parquet: 1 million rows, dictionary page size limit of 1 MB 
• ORC: 64MB row group size, default NDV-ratio threshold of 0.8
• 20-column table with 1m rows for each workload 

Methodology
• Take the average measurement of 3 runs per test 
• Focus on raw scan performance of Parquet and ORC
• Perform a sequential scan, report the execution time 
• Clear the buffer cache and perform 30 select queries
• Report the average latency of the select queries 

Experiment Setup 
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File Size: Neither format was consistently better 
Scan Time: Parquet performed faster scans due to lightweight integer encoding
Select Time: Parquet had lower average latencies for the select queries, except 
on the geo workload

Benchmark Result Overview 
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Encoding Analysis
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Decoding Speed (Fig 8a)
• Parquet: Faster decoding 

for integer and string 
columns

• ORC: Faster decoding for 
floats, ORC does not apply 
float encoding algorithms 

Compression Ratio
• Parquet: better for 

integers with low/medium 
NDV ratio, floats, integer 
value ranges

• ORC: better for large 
NDV ratio and highly 
sorted integer columns



Compression Ratio
• Ztsd achieves a better compression ratio than Snappy for all data types 

Block Compression
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Scan Time

• Applying Zstd to Parquet only speeds 
up scans on slow storage tiers

• Decompression overhead of Ztsd 
hinders scan performance for faster 
storage devices



Wide-Table Projection
Experiment Data: 

• Table of 10K rows with a varying number of float attributes stored in Parquet and ORC.
Task:

• Randomly selecting 10 attributes to project.

Results: 
• Metadata Parsing: Both Parquet and ORC show 

increasing metadata parsing time as the number 
of features grows.

• Decoding: ORC's data decode time grows more 
rapidly compared to Parquet for wide tables.

Parquet generally handles wide-tables (>4000 
features) projections more efficiently than ORC.
26 Gabriel Sanson

Parquet fasterORC faster



Results:
• None of the four formats achieves good compression with vector embeddings 
• Zarr outperformed in scan time, because of it supports parallel reads. Parquet and ORC 

struggled due to their sequential decoding processes.

 Machine Learning Workloads 
Compression Ratio and Deserialization Performance
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Experiment Data: 
• 30 data sets with vector 

embeddings from the top 
downloaded and top trending 
lists on Hugging Face

Task:
• Measure compression ratio and 

scan time with NumPy arrays for 
embeddings.

Sequential decoding Faster 
because of 
parallelism



Results:
• ORC is better on SSD: because of fine-grained zone maps.
• Parquet is better on S3: because of faster GET requests

 Machine Learning Workloads 
Top-k Similarity Search Performance
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Experiment Data: 
• LAION-5B dataset - open-source 

dataset containing 5 billion 
image-text pairs

Task:
• Perform top-k similarity search 

queries using 100M embeddings 
for nearest neighbors (k=10)



Results: 

• Smaller row groups help with unstructured data (images) but hurt tabular queries.
• Larger row groups help with structured data but slow down image retrieval.

 Machine Learning Workloads 
Storage of Unstructured Data
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Experiment Data: 
• LAION-5B dataset with Parquet 

storing URLs and metadata. 13 GB 
with 219K rows and is stored on 
NVMe SSD

Task:
• Evaluate filter scan queries on 

Parquet data using varying filter 
selectivities (1, 0.1, 0.01, 0.001, and 
0.0001, respectively).



Results: 
• Throughput: ORC-cuDF achieves higher throughput than Parquet-cuDF, leveraging GPU parallelism 

effectively.
• Compression Impact: ORC performs better only for smaller row count.

GPU Decoding
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Experiment Data: 
• Dataset stored in Parquet and ORC 

formats, 32 columns and varying rows
System Used:

● NVIDIA RTX 3090, AMD EPYC 7H12 (128 
cores), 512GB RAM, Intel P5530 NVMe 
SSD.

Task:
• Evaluate GPU decoding efficiency using 

Parquet-cuDF and ORC-cuDF, focusing on 
throughput and compression performance.



Lesson and Future 
Directions
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Lessons Learned:
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1. Dictionary Encoding: Effective for most data types; future formats should use it aggressively.

2. Simple Encoding: Simpler schemes boost decoding performance; avoid complex codec selection overhead.

3. Query Bottleneck: Shifting to CPU; use block compression sparingly unless highly beneficial.

4. Metadata Layout: Centralized and optimized for random access to support wide ML tables.

5. Sophisticated Indexing: Cheaper storage allows for better indexing/filtering to speed up queries.

6. Nested Models: Design for modern in-memory formats to reduce overhead.

7. ML Workload Support: Prioritize wide-table projections, low-selectivity efficiency, and float-specific compression.

8. GPU Decoding: Parallelizable encoding algorithms needed to maximize GPU utilization.

Future Focus:
Enhance parallelism, metadata organization, and GPU compatibility to meet evolving data needs.
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Conclusion
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● Evaluation of Columnar formats
● Tradeoffs tested with Real World data sets to demonstrate 

differences between encoding algorithms
● Experiments were conducted on the metrics of the format to show 

design differences and considerations important for ML workloads 
and modern hardware



Exam Questions 
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1. What compression techniques do both ORC and Parquet use? Which 
techniques are distinct to either ORC or Parquet?

2. Briefly explain the key differences between Parquet and ORC.

3.  What are the benefits of using multiple compression techniques? What 
are the drawbacks? 

4. How does the Number of Distinct Values (NDV) in a dataset affect the 
choice and efficiency of compression techniques in data storage formats 
like Parquet and ORC?



Thank You
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