
C-store: A Column-Oriented DBMS
Authors: Stonebraker et. al.

Michael Ibrahim, Sam Lefforge, Amogh Mantri, Yiling Wu,
Lixiaotian Zong - Group 4

Introduction and Background: Comparisons
● Traditional DBMS (Row Store)

○ Write-optimized
○ Continuous storage of rows/tuples
○ Efficient for Online Transaction Processing applications

● C-Store DBMS (Column Store)
○ Read-optimized
○ Continuous storage of columns
○ Made for querying of large datasets
○ Better for high-read, low-write applications

Amogh Mantri

Introduction and Background: Design Principles
● Takes advantage of balance between CPU and Disk

○ Modern CPU speed growth has outpaced disk bandwidth growth
○ More CPU cycles are better than more disk usage

● Only reads columns required for query processing
○ Irrelevant attributes are ignored

● Storage Optimization
○ Dense packing of values
○ Storage of data in compact format

Amogh Mantri

Introduction and Background: Innovation
● Has a hybrid architecture

○ Writeable Store
○ Readable Store
○ Connected by Tuple Mover

● Stores Overlapping projections
○ Multiple sort orders of same column
○ Uses bitmap indexes and materialized views

● Deployed to grid computing environment (distributed)
○ K-Safety achieved

Amogh Mantri

Data Model
How is data stored in C-Store DBMS?

- Projection: a projection is a data structure including columns sorted on same attribute -> fewer column
& compression -> less space

- Segment: for a specific projection, a segment is a partition of the projection based on the value of the
sorted attribute (image how B Tree works on the indexed column in Row Table) -> faster lookup

Figure 2.1 - Example of transforming a 6 X 4 employee table to 2 projections

Yiling Wu

Data Model
- One table can have multiple projections.

- One projection can include multiple columns, even if columns from another table as long as the join is a

n:1 relationship (i.e. not causing extra rows to the projection).

- Every column should appear in at least one projection.

How to reconstruct the original table for random queries?

Yiling Wu

Data Model
How to reconstruct the original table?

- Storage Key: an integer indicating the relative position of data values in a segment

- Join Index: a mapping relationship (in the format of two columns, SID & Storage Key) indicating how
entries in one projection map with those in another projection to construct a whole row

Figure 2.2 - Example showing reconstruction of original employee table

Yiling Wu

Data Model
- Every column is expected to be stored in multiple projection

-> Expensive to store and maintain Join Indexes

-> Failure Tolerance (K-safe: able to reconstruct the original table even with failure in K nodes.)

The design of a C-Store physical DBMS involves the design of:

Projections / Segments / Storage Key / Join Index

Yiling Wu

Read-Optimized Stores: Encoding Schemes
● Data in the Read-Store is encoded
● Tailoring to properties of the data

○ Self-order vs foreign-order
○ High proportion of distinct values vs.

low proportion of distinct values

Sam Lefforge

Type 1: Self-order, few distinct values
● (v, f, n) triples

○ v = value
○ f = index
○ n = quantity

Sam Lefforge

Type 2: Foreign-order, few distinct values
● (v, b) tuples

○ v = value
○ b = bitmap

Sam Lefforge

Type 3: Self-order, many distinct values
● Represent every value as the delta

of the previous value

Sam Lefforge

Type 4: Foreign-order, many distinct values
● Leave unencoded

Sam Lefforge

Read-Optimized Stores: Join Indexes
● Linking Projections: If there are multiple projections (say, T1 and T2) that cover the same table, a join

index enables linking these projections by providing a mapping.

● Structure of Join Indexes: The join index contains entries that map tuples between segments in different
projections, with each entry containing a segment ID and a storage key pointing to the corresponding
tuple in the other projection.

● The path to reconstruct table: A path is a collection of join indexes originating with a sort order specified
by some projection(Ti). Path passes through zero or more intermediate join indices and ends with a
projection sorted in Ti order.

● Efficiency and Maintenance: Although join indexes facilitate efficient querying, they are costly to store
and update, especially when projections are modified.

● Fault Tolerance (K-Safety): C-Store allows for K-safe configurations, meaning the database can
withstand the loss of up to K nodes and still reconstruct tables through join indexes and projections,
which ensures resilience to node failures.

SIDKey

1 2

1 3

1 1

Name Salary

Bob 10K

Bill 50K

Jill 80K

Name Age

Jill 24

Bob 25

Bill 27

Join index of T1

T1

T2

Lixiaotian Zong

Write-Optimized Stores: General Structure
● Staging area for temporarily storing dynamic data

○ Efficiently handle inserts and updates without sacrificing compression or performance in RS
○ Batch inserts of stable data from WS to RS via Tuple Mover

● Column store
○ Not as efficient as row store for OLTP
○ Avoids the need for a different optimizer (since RS is already a column store)
○ Same projections and join indexes as RS
○ Same horizontal partitioning as RS (there is 1:1 mapping between RS and WS segments)

● Unique storage key is explicitly stored for each new tuple
○ An integer larger than the number of records the largest segment in RS
○ Included in each projection that contains data from the tuple

● Trivial size compared to RS → no compression needed!

Michael Ibrahim

Write-Optimized Stores: Data Storage
● Every column in a projection is represented as a (value, storage key) pair

○ Indexed via a B-tree (1) on the storage key
● Each projection is represented as a (sort key, storage key) pair

○ Indexed via a B-tree (2) on the sort key
● Performing Searches via sort key:

○ Obtain appropriate storage key via B-tree (2)
○ Obtain value from storage key via B-tree (1)

● Join indices
○ Recall: 1:1 mapping between WS and RS segments
○ A join index from a "sender" contains only (segment ID, storage key) of record in "receiver"
○ Join index shares segmentation structure and location of "sender" projection
○ No need for distinction between RS and WS

Michael Ibrahim

Storage Management
● Storage management issue

○ Allocation of segments to nodes in a grid
● C-Store will handle storage management automatically

○ Storage Allocator
● Storage Allocator

○ Performs initial allocation
○ Handles reallocation when load is unbalanced
○ Addressed in further detail in future work by authors

● Large columns (MBs) are stored in individual files
○ Lack of overhead in modern file systems allows avoiding raw device storage

Amogh Mantri

Updates & Transactions: Providing Snapshot Isolation

● Read-only transactions utilize snapshot isolation
○ Access database at some time in recent past
○ Most recent time that can be accessed is High Water Mark (HWM)
○ Oldest time that can be accessed is Low Water Mark (LWM)

● Maintaining the HWM:
○ Time is divided into epochs (can be multiple seconds long)
○ Initial HWM is epoch 0, first current epoch is 1
○ A single site is assigned time authority (TA)
○ Periodically, TA sends end of epoch e message to all sites
○ Sites reply with epoch complete once they finish all current transaction
○ HWM is moved to epoch e

Michael Ibrahim

Updates & Transactions: Locking-Based Concurrency Control

1. Distributed COMMIT Processing

Each transaction has a master that is responsible for assigning units of work corresponding to a transaction to the appropriate sites and
determining the ultimate commit state of each transaction.

When a COMMIT command is received for a transaction, the master waits until all assigned sites (workers) have completed their designated
actions. Only then does it send a commit or abort message to each site.

If a site crashes after receiving a commit directive, the site will reconstruct its state based on updates from other sites in the system, relying on
distributed projections to ensure consistency and data integrity.

Lixiaotian Zong

Updates & Transactions: Recovery
Recovery scenarios:

● No data loss
○ e.g. temporary power outage
○ Replay pending updates

● Catastrophic failure
○ e.g. fire or explosion
○ RS and WS destroyed
○ Reconstruct with data from remote sites
○ Replay pending updates

● Partial damage
○ e.g. system crash during write to WS
○ WS damaged, RS intact
○ Discussed in detail

Sam Lefforge

Efficiently Recovering the WS
● Identify data to be recovered
● Search for available projection segments of lost data
● Ensure segments are stable
● Query and extract necessary data from these segments
● Check if any data has been moved to RS

○ If none has, then the WS has successfully been restored
○ If some has, use tuple mover logs to recover such data

● Once WS is restored, replay updates to align with the current state

Sam Lefforge

Tuple Mover: What Is It?
● Background process that moves tuples from a Writeable

Store(WS) segment to a Readable Store(RS) segment
● Bridge between the WS and RS components of C-Store
● Finds and moves worthy segment pairs

○ Many records in WS with insertion times ≤ LWM
● Performs merge-out process (MOP) to transfer data
● Uses LWM and HWM to make decisions on what data

must be moved

Amogh Mantri

Figure 1. Architecture of C-Store

Tuple Mover: MOP
● First creates new RS segment: RS’for merged data
● Identifies WS records with insertion times ≤ LWM
● Checks:

○ Records deleted before/at LWM → discard
○ Records not deleted or deleted after LWM → transfer

● Updates join indexes for new storage keys
● Maintains Deleted Record Vector
● Reads and merges blocks from RS columns
● Finally cuts over from RS to RS’

Amogh Mantri

C-Store Query Execution
● Query Operators and Plan Format

10 node types : Decompress, Select, Mask, Project, Sort, Aggregation, Concat, Permute, Join, Bitstring Operators (BAnd, BOr, BNot)

Each accepts operands or produces results of type projection (Proj), column(Col), or bitstring (Bits). In addition, C-Store query operators accept
predicates (Pred), join indexes (JI), attribute names(Att), and expressions (Exp) as argument.

● Query Optimization

C-Store operators have the capability to operate on both compressed and uncompressed input. An operator’s execution cost (both in terms of I/O
and memory buffer requirements) is dependent on the compression type of the input. Thus, the cost model is sensitive to the representations of
input and output columns.

The major optimizer decision is which set of projections to use for a given query. The optimizer must decide where in the plan to mask a
projection according to a bitstring.

Lixiaotian Zong

Performance Comparison
- Tested on read-only queries (a subset from the TPC-H benchmark) on a single-site storage setting.

- Queries performed on C-Store / Row Store / Column Store designs. Projections/Schemas designed in a

way that is believed to achieve the best possible performance.

- Benchmarking system: 3.0 Ghz Pentium, RedHat Linux, 2GB Memory, 750 GB disk

Yiling Wu

Figure 9.1 - Sample Queries Figure 9.2 - Projection Design

Performance Comparison
- Space Usage Constrained (2.7GB)

Compared to Row Store: C-Store is 164 times
faster, row-store UNABLE to operate within
constraint

Compared to Column Store: C-Store is 21 times
faster

Yiling Wu

- Lifting Space Usage Constraint with
materialized views

Compared to Row Store: C-Store is 6.4 times faster,
but row-store takes 6 times the space

Compared to Column Store: C-Store is 16.5 times
faster, but column-store requires 1.83 times the
space

Figure 9.4 - Time (in seconds) with space constraint Figure 9.6 - Time (in seconds) without space constraint

Figure 9.3 - Space Usage with constraint Figure 9.5 - Space Usage without constraint

Related Work
● Maintaining data cubes:

○ Slicing and dicing datasets: (Gray et. al, 1997)
○ Building and maintaining aggregates of large datasets: (Kotidis and Roussopoulos, 1999), (Zhao

et al., 1997)
○ Precomputation for regular queries: (Staudt and Jarke, 1996)

● Two different DBMS in one system:
○ Data mirrors for improved query performance: (Ramamurthy et al., 2002)

● Column stores:
○ Entry sequence-based: (Copeland et al., 1988), (Boncz et al., 2004)

● Data compression:
○ Review of techniques: (Roth and Van Horn, 1993)
○ Direct operation on compressed data: (Graefe, 1993), (Westmann et al., 2000)

Michael Ibrahim

Conclusions
The paper introduced the design of “C-Store”, which focuses on “read-mostly” DBMS market.

The innovative contributions embodied in C-Store include:

● A column store representation, with an associated query execution engine.
● A hybrid architecture that allows transactions on a column store.
● A focus on economizing the storage representation on disk, by encoding data values and

dense-packing the data.
● A data model consisting of overlapping projections of tables, unlike the standard fare of tables,

secondary indexes, and projections.
● A design optimized for a shared nothing machine environment.
● Distributed transactions without a redo log or two phase commit.
● Efficient snapshot isolation.

Yiling Wu

References
● (Gray et. al, 1997): Gray et al. DataCube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.

Data Mining and Knowledge Discovery, 1(1), 1997.

● (Kotidis and Roussopoulos, 1999): Yannis Kotidis, Nick Roussopoulos. DynaMat: A Dynamic View Management System for Data

Warehouses. In Proceedings of SIGMOD, 1999.

● (Zhao et al., 1997): Y. Zhao, P. Deshpande, and J. Naughton. An Array-Based Algorithm for Simultaneous Multidimensional

Aggregates. In Proceedings of SIGMOD, 1997. 564

● (Staudt and Jarke, 1996): Martin Staudt, Matthias Jarke. Incremental Maintenance of Externally Materialized Views. In VLDB,

1996.

● (Ramamurthy et al., 2002): Ravishankar Ramamurthy, David Dewitt. Qi Su: A Case for Fractured Mirrors. In Proceedings of

VLDB, 2002.

● (Copeland et al., 1988): George Copeland et. al. Data Placement in Bubba. In Proceedings SIGMOD 1988.

● (Boncz et al., 2004): Peter Boncz et. al.. MonetDB/X100: Hyper-pipelining Query Execution. In Proceedings CIDR 2004.

● (Roth and Van Horn, 1993): Mark A. Roth, Scott J. Van Horn: Database Compression. SIGMOD Record 22(3). 1993.

● (Graefe, 1993): G. Graefe. Query Evaluation Techniques for Large Databases. Computing Surveys, 25(2), 1993.

● (Westmann et al., 2000): Paul Westerman. Data Warehousing: Using the Wal-Mart Model. Morgan-Kaufmann Publishers , 2000.

Michael Ibrahim

Thank you!
Any Questions?

Study Questions
● How does C-Store's column-oriented storage design improve read performance

and storage efficiency when compared to traditional row-oriented DBMS
architectures?

● How does C-Store's hybrid concurrency control using snapshot isolation and
two-phase locking benefit read-mostly workloads?

Amogh Mantri,
Sam Lefforge

