
Pig Latin: A Not-So-Foreign
Language for Data Processing

James Ball, Zeyu Chang, Ryan Ding, Hongzhen Liang, Hima Varshini Parasa

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,

Andrew Tomkins

SIGMOD ACM 08'

• A data processing language developed at Yahoo!

• Has both procedural and declarative aspects

• Compiled by the accompanying Pig system

• Uses the mapReduce system Hadoop in its execution

• Comes with a rich debugging environment

What is Pig Latin?

James Ball

2

A Quick Example Case

Task: Given a table with the name url, and fields (url, category, and pagerank), find
the average pagerank of each category for all urls with a pagerank greater than
0.2, and where the category has greater than 100,000 pages.

SQL Implementation:

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT (*) > 10^6

James Ball

3

A Quick Example Case

Task: Given a table with the Name url, and fields (url, category, and pagerank),
find the average pagerank each category for all urls with a pagerank greater than
0.2, and where the category has greater than 100,000 pages.

Pig Latin Implementation:

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls) > 10^6;

output = FOREACH big_groups GENERATE category, AVG(good_urls.pagerank);

James Ball

4

Pig System
Features and
Motivations

Dataflow Language

• Sequence of high-level data
transformations
o "Easier to work with"

• Order of execution is not necessarily
fixed
o System can optimize in most cases

6

Ryan Ding

Quick Start and Interoperability

• Support for Ad-Hoc Analysis
o Can directly run Pig queries on data

▪ No need for lengthy import processes

▪ With function to parse the data into tuples
▪ Schema is not necessary

o Can format output of Pig queries
▪ Ex. Convert the tuple output into bytes

o Easy to integrate with other applications

• Workload
o Read Only
o Scans (not much indexing, etc)
o Data is discarded on normal basis

7

Ryan Ding

Nested Data Model

• Offers Nested Data Structures
o As opposed to 1NF (atomic column values)

• Closer to how programmers
conceptualize

• Data is often stored in a nested format
on disks (read only)
o Saves compute to break down into 1NF,

recombine

• Better fits design paradigm
o One data transformation per step

• Better support for complex user defined
functions.

8

Ryan Ding

UDFs as First-Class Citizens

• Lots of data analytics involves custom processing
o Spam detection, Search analysis, etc.

• Extensive Support for User Defined Functions
o Can customize the functionality of all processing steps

▪ Grouping, filtering, joining, and per-tuple

▪ One type of UDF which covers everything
• SQL: Scalar for SELECT, Aggregation needs GROUP BY

▪ Input and output can be non-scalar (nested)

9

Ryan Ding

UDFs as First-Class Citizens

• Consider the original example from the Introduction
o Task: Given a table with the Name url, and fields (url, category, and pagerank), find the

average pagerank each category for all urls with a pagerank greater than 0.2, and where the
category has greater than 100,000 pages.

• Say we only want to average the top 10 urls for each category (based on pagerank)…

• top10(urls) takes a set of urls and returns a set of 10 urls
▪ Implemented in Java (initially)

10

Ryan Ding

UDFs as First-Class Citizens

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls) > 10^6;

top_urls = FOREACH big_groups GENERATE category, top10(good_urls)

output = FOREACH big_groups GENERATE category, AVG(top_urls.pagerank);

11

Ryan Ding

Parallelism Required

• Lots of data
o Parallelism is essentially required

• Has only small set of primitives that can be parallelized
o LOAD, FOREACH, etc. (expanded in later sections)

• Does not natively support non-equal joins, correlated subqueries
o Can still be manually implemented through UDFs, but has very limited performance

12

Ryan Ding

Debugging Environment

• Can take a long time to process queries
o Has "novel" debugger

o Prints out Example table after each step which shows structure of output
▪ Expanded in future sections

13

Ryan Ding

Pig Latin Language

Data Model

• 4 types of data
o Atom: single atomic value;

o Tuple: sequence of fields, each can be a
different type;

o Bag: A collection of tuples, can have
duplicates, and each tuple can be a
different structure;

o Map: A collection of key -> value
mappings. Key is required to be atomic.

A tuple with an atom, a bag, and a map.

Zeyu Chang

15

Command: LOAD

• Input:

oThe data file, e.g. "query_log.txt"

oDeserialize function, e.g. "myLoad"

oTuple configuration

• Output:

oA handle variable to the LOAD command

Zeyu Chang

16

• Apply processing to every tuple of a data set

• This could lead to nesting in the processed data

• "FLATTEN" is used to eliminate this nesting

Command: FOREACH

Zeyu Chang

17

• Filters away some of the data base on some condition

• Condition can be arbitrary:
o Comparison operators: ==, !=, eq, neq, >=, etc.

o Logical operators: AND, OR, NOT

o User defined functions

• The following two achieves the same objective:
o real_queries = FILTER queries BY userId neq 'bot';

o real_queries = FILTER queries BY NOT isBot(userId);

Command: FILTER

Zeyu Chang

18

• To group tuples from one or more data sets via some relation

• COGROUP: Generally, outputs a tuple for each group

• GROUP: A special case of COGROUP, where group is perform on only one data
set

• JOIN: Equivalent to performing a cross product after executing COGROUP

Command: COGROUP vs JOIN

Zeyu Chang

19

• Similar commands to SQL
o UNION: the union of two bags

o CROSS: the cross product of two bags

o ORDER (BY): order a bag by specific fields

o DISTINCT: eliminate duplicates from the bag

• ordered_result = ORDER query_revenues BY totalRevenue;

Other commands

Zeyu Chang

20

• Pig Latin allows some
commands to be nested
within a FOREACH
command

Nested operations

Zeyu Chang

21

Command: STORE

• Store a Pig Latin expression sequence into a file

• STORE query_revenues INTO 'myoutput' USING myStore();

o Serialize query_revenues using a custom serializer myStore

o The serialized result is stored to "myoutput"

Zeyu Chang

22

Pig Latin Implementation

• Pig System: An open-source platform (Apache project) that implements Pig
Latin.

• Hadoop Integration: Leverages Hadoop's scalable MapReduce framework.

• Compilation & Execution Process:
o Pig Latin scripts are compiled into logical plan.

o The logical plans are further compiled into MapReduce jobs.

o Compiled MapReduce jobs are executed on a Hadoop cluster.

IMPLEMENTATION

Hongzhen

24

• Pig Interpreter:
o Parses Pig Latin commands as they are issued by the user.

o Handles syntax checking and provides error messages for issues.

o Validates that variables (bags, relations) used are previously defined.

o Builds a logical plan for every bag.

• Logical Plans for Bags:
o Definition: An abstract representation of the data flow to produce bags.

o Example:
▪ Command: c = COGROUP a BY queryString, b BY queryString

▪ Logical plan for c includes a cogroup operation using logical plans of a and b.

• Lazy Execution: Execution is deferred until a STORE command is invoked.

• Platform Independence: Logical plan construction is independent of the execution platform.

Building a Logical Plan

Hongzhen

25

Map-Reduce Plan Compilation

• Each COGROUP operation becomes
its own MapReduce job.

• Map Function: Assigns keys based on
the BY clause(s).

• Reduce Function: Forms grouped
tuples and creates nested bags for
cogroup data.

Hongzhen

26

Map-Reduce Plan Compilation

• Operation Placement:
o FILTER and FOREACH commands from
LOAD to the first COGROUP are
incorporated into the map function.

o Operations between subsequent
COGROUP are pushed into the reduce
function of the preceding COGROUP.

• Limitations:
o Intermediate data must be materialized

between jobs.

o Rigid MapReduce model may not
efficiently handle all Pig Latin operations.

Hongzhen

27

• Avoiding Materialization of Large Nested Bags:
o Algebraic Functions for Aggregation:

▪ Functions structured as a tree of subfunctions operating on data subsets (e.g., COUNT, SUM, MIN,
MAX, AVERAGE, VARIANCE).

▪ Pig utilizes Hadoop's combiner feature for efficient aggregation.

o Handling Non-Algebraic Functions:
▪ Functions like MEDIAN or custom UDFs that are not algebraic require full materialization.

▪ Pig spills large nested bags to disk when they can't fit in memory.

Efficiency With Nested Bags

Hongzhen

28

Other Features
and

Considerations

• Construction of a program in Pig Latin is repetitive, inefficient for large-scale data

• Traditional Debugging method: Sampling – Create a smaller subset of original
data

• Limitations: Difficult to find sample data to test semantics of the program

• Example:

R1 (x,y)

R2 (x,z)

• Hence, Pig Pen: Dynamically constructs side data set

• Advantages: Spot bugs, simplifies writing program incrementally

Debugging Environment – Pig Pen. But, why?

R1 EQUI JOIN R2 might return empty

set, if subset of datasets do not contain

matching values for column 'x'.

Hima Varshini Parasa

30

Pig Pen

Hima Varshini Parasa

31

• LOAD command: Sandbox dataset

• Primary Objectives:

1. Realism: Subset of actual dataset or synthesized from actual data

2. Conciseness: Small as possible, remove redundancies

3. Completeness: Illustrate semantics of command

Generating Sandbox Dataset

Hima Varshini Parasa

32

• Rollup Aggregates: Calculating various aggregates

Example: Counting the number of searches per user and computing the average per-user

count in web crawls

• Temporal Analysis: COGROUP command in Pig is particularly useful for this task as it

groups search queries from different time periods, facilitating custom processing.

Example: Understanding how search query distributions change overtime

• Session Analysis: Natural abstraction and manipulation of sessions

Example: Calculate metrics such as average session length, number of clicks before

leaving a website, and variations in click patterns over time

Use-cases

Hima Varshini Parasa

33

Why is Pig better than OLAP?

• Scalability and Flexibility: Directly compute aggregates over large distributed files

without the need for prior curation.

• Ease of Incorporation of Custom Processing: Easy integration of custom processing

steps, such as IP-to-geo mapping and n-gram extraction.

• Efficiency with Large Datasets: Orchestrates a sequence of multiple map-reduce jobs.

• Natural Data Representation: Manipulate complex data structures/nested data like user

sessions.

Hima Varshini Parasa

34

Related Work

Pig Latin vs. Other Platforms

• Dynamo: Focused on transactional key-value storage, not batch analytics like Pig.

• Dryad: More high-level than Dryad's low-level DAG model. Pig Latin could potentially compile to Dryad jobs.

• DryadLINQ: Similar high-level language, but Pig Latin has a more procedural style.

• MapReduce: More flexible than MapReduce's rigid two-step structure. Pig Latin allows chaining multiple

operations.

• Sawzall: More flexible than Sawzall's fixed map+aggregate structure. Pig Latin supports arbitrary UDFs and

operations like joins.

• NESL: Pig Latin adds data combination operations (e.g. join, cogroup) on top of nested data model.

Hima Varshini Parasa

35

Future Work
"Safe" Optimizer:

• Implement optimizations that guarantee performance benefits

Improved User Interfaces

• Develop a "boxes-and-arrows" GUI for visual program specification

• Enhance collaboration features (e.g., sharing program fragments, UDFs)

External Functions Support

• Enable UDFs in scripting languages (e.g., Perl, Python)

• Implement lightweight serialization/deserialization layer

Unified Development Environment

• Integrate control structures (loops, conditionals) into Pig Latin

• Embed Pig Latin into established languages (e.g., Perl, Python) for remote execution through packages

• Create a single environment for:

• Main program development

• Pig Latin commands

• UDF writing

Hima Varshini Parasa

36

Summary

• Developed by Yahoo! in 2006, became Apache top-level project in 2010

• Purpose: High-level platform for analyzing large datasets, bridging SQL and MapReduce

• Key Features:

• Pig Latin: Simplified scripting language for data analysis

• Compiles to MapReduce jobs, runs on Hadoop

• Supports complex data types and user-defined functions

•Current Status:

•Latest stable release: v0.17.0 (May 2018)

•Open-source, relevant in Hadoop ecosystem

•Competitors: Google BigQuery, Amazon Redshift, Apache Hive, Apache Spark

Hima Varshini Parasa

37

Study Questions

1) Convert the following SQL query to a Pig Latin script. The SQL query retrieves the names and total sales

of each product category from a sales table, grouped by category.

Hima Varshini Parasa

38

SELECT category, SUM(amount) as total_sales

FROM sales

GROUP BY category;

2) For the below web crawl data, where each record includes url and visit_duration (in seconds), write a

Pig Latin script that categorizes each visit based on the visit_duration and outputs the url,
visit_duration, and category (Long, Medium, Short) for each visit.

http://example.com, 450
http://example.org, 200
http://example.net, 50
http://example.edu, 600

Thank You!
Questions?

	Slide 1: Pig Latin: A Not-So-Foreign Language for Data Processing
	Slide 2: What is Pig Latin?
	Slide 3: A Quick Example Case
	Slide 4: A Quick Example Case
	Slide 5: Pig System Features and Motivations
	Slide 6: Dataflow Language
	Slide 7: Quick Start and Interoperability
	Slide 8: Nested Data Model
	Slide 9: UDFs as First-Class Citizens
	Slide 10: UDFs as First-Class Citizens
	Slide 11: UDFs as First-Class Citizens
	Slide 12: Parallelism Required
	Slide 13: Debugging Environment
	Slide 14: Pig Latin Language
	Slide 15: Data Model
	Slide 16: Command: LOAD
	Slide 17: Command: FOREACH
	Slide 18: Command: FILTER
	Slide 19: Command: COGROUP vs JOIN
	Slide 20: Other commands
	Slide 21: Nested operations
	Slide 22: Command: STORE
	Slide 23: Pig Latin Implementation
	Slide 24: IMPLEMENTATION
	Slide 25: Building a Logical Plan
	Slide 26: Map-Reduce Plan Compilation
	Slide 27: Map-Reduce Plan Compilation
	Slide 28: Efficiency With Nested Bags
	Slide 29: Other Features and Considerations
	Slide 30: Debugging Environment – Pig Pen. But, why? 
	Slide 31
	Slide 32: Generating Sandbox Dataset
	Slide 33: Use-cases
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Thank You! Questions?

