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• A data processing language developed at Yahoo!

• Has both procedural and declarative aspects

• Compiled by the accompanying Pig system

• Uses the mapReduce system Hadoop in its execution

• Comes with a rich debugging environment

What is Pig Latin?
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A Quick Example Case

Task: Given a table with the name url, and fields (url, category, and pagerank), find 
the average pagerank of each category for all urls with a pagerank greater than 
0.2, and where the category has greater than 100,000 pages.

SQL Implementation:

SELECT category, AVG(pagerank)

FROM urls WHERE pagerank > 0.2

GROUP BY category HAVING COUNT (*) > 10^6

James Ball
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A Quick Example Case

Task: Given a table with the Name url, and fields (url, category, and pagerank), 
find the average pagerank each category for all urls with a pagerank greater than 
0.2, and where the category has greater than 100,000 pages.

Pig Latin Implementation:

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls) > 10^6;

output = FOREACH big_groups GENERATE category, AVG(good_urls.pagerank);

James Ball
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Pig System 
Features and 
Motivations



Dataflow Language

• Sequence of high-level data 
transformations
o "Easier to work with"

• Order of execution is not necessarily 
fixed
o System can optimize in most cases
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Quick Start and Interoperability

• Support for Ad-Hoc Analysis
o Can directly run Pig queries on data

▪ No need for lengthy import processes

▪ With function to parse the data into tuples
▪ Schema is not necessary

o Can format output of Pig queries
▪ Ex. Convert the tuple output into bytes

o Easy to integrate with other applications

• Workload
o Read Only
o Scans (not much indexing, etc)
o Data is discarded on normal basis
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Nested Data Model

• Offers Nested Data Structures
o As opposed to 1NF (atomic column values)

• Closer to how programmers 
conceptualize

• Data is often stored in a nested format 
on disks (read only)
o Saves compute to break down into 1NF, 

recombine

• Better fits design paradigm
o One data transformation per step

• Better support for complex user defined 
functions. 
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UDFs as First-Class Citizens

• Lots of data analytics involves custom processing
o Spam detection, Search analysis, etc.

• Extensive Support for User Defined Functions 
o Can customize the functionality of all processing steps

▪ Grouping, filtering, joining, and per-tuple

▪ One type of UDF which covers everything
• SQL: Scalar for SELECT, Aggregation needs GROUP BY

▪ Input and output can be non-scalar (nested)
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UDFs as First-Class Citizens

• Consider the original example from the Introduction
o Task: Given a table with the Name url, and fields (url, category, and pagerank), find the 

average pagerank each category for all urls with a pagerank greater than 0.2, and where the 
category has greater than 100,000 pages.

• Say we only want to average the top 10 urls for each category (based on pagerank)…

• top10(urls) takes a set of urls and returns a set of 10 urls
▪ Implemented in Java (initially)
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UDFs as First-Class Citizens

good_urls = FILTER urls BY pagerank > 0.2;

groups = GROUP good_urls BY category;

big_groups = FILTER groups BY COUNT(good_urls) > 10^6;

top_urls = FOREACH big_groups GENERATE category, top10(good_urls)

output = FOREACH big_groups GENERATE category, AVG(top_urls.pagerank);
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Parallelism Required

• Lots of data
o Parallelism is essentially required

• Has only small set of primitives that can be parallelized
o LOAD, FOREACH, etc. (expanded in later sections)

• Does not natively support non-equal joins, correlated subqueries
o Can still be manually implemented through UDFs, but has very limited performance
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Debugging Environment

• Can take a long time to process queries
o Has "novel" debugger

o Prints out Example table after each step which shows structure of output
▪ Expanded in future sections
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Pig Latin Language



Data Model

• 4 types of data
o Atom: single atomic value;

o Tuple: sequence of fields, each can be a 
different type;

o Bag: A collection of tuples, can have 
duplicates, and each tuple can be a 
different structure;

o Map: A collection of key -> value 
mappings. Key is required to be atomic.

A tuple with an atom, a bag, and a map.

Zeyu Chang
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Command: LOAD

• Input:

oThe data file, e.g. "query_log.txt"

oDeserialize function, e.g. "myLoad"

oTuple configuration

• Output:

oA handle variable to the LOAD command

Zeyu Chang
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• Apply processing to every tuple of a data set

• This could lead to nesting in the processed data

• "FLATTEN" is used to eliminate this nesting

Command: FOREACH

Zeyu Chang
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• Filters away some of the data base on some condition

• Condition can be arbitrary:
o Comparison operators: ==, !=, eq, neq, >=, etc.

o Logical operators: AND, OR, NOT

o User defined functions

• The following two achieves the same objective:
o real_queries = FILTER queries BY userId neq 'bot'; 

o real_queries = FILTER queries BY NOT isBot(userId);

Command: FILTER

Zeyu Chang
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• To group tuples from one or more data sets via some relation

• COGROUP: Generally, outputs a tuple for each group

• GROUP: A special case of COGROUP, where group is perform on only one data 
set

• JOIN: Equivalent to performing a cross product after executing COGROUP

Command: COGROUP vs JOIN

Zeyu Chang
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• Similar commands to SQL
o UNION: the union of two bags

o CROSS: the cross product of two bags

o ORDER (BY): order a bag by specific fields

o DISTINCT: eliminate duplicates from the bag

• ordered_result = ORDER query_revenues BY totalRevenue;

Other commands

Zeyu Chang
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• Pig Latin allows some 
commands to be nested 
within a FOREACH 
command

Nested operations

Zeyu Chang

21



Command: STORE

• Store a Pig Latin expression sequence into a file

• STORE query_revenues INTO 'myoutput' USING myStore();

o Serialize query_revenues using a custom serializer myStore

o The serialized result is stored to "myoutput"

Zeyu Chang
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Pig Latin Implementation



• Pig System: An open-source platform (Apache project) that implements Pig 
Latin.

• Hadoop Integration: Leverages Hadoop's scalable MapReduce framework.

• Compilation & Execution Process: 
o Pig Latin scripts are compiled into logical plan.

o The logical plans are further compiled into MapReduce jobs.

o Compiled MapReduce jobs are executed on a Hadoop cluster.

IMPLEMENTATION

Hongzhen

24



• Pig Interpreter:
o Parses Pig Latin commands as they are issued by the user.

o Handles syntax checking and provides error messages for issues.

o Validates that variables (bags, relations) used are previously defined.

o Builds a logical plan for every bag.

• Logical Plans for Bags:
o Definition: An abstract representation of the data flow to produce bags.

o Example: 
▪ Command: c = COGROUP a BY queryString, b BY queryString

▪ Logical plan for c includes a cogroup operation using logical plans of a and b.

• Lazy Execution: Execution is deferred until a STORE command is invoked.

• Platform Independence: Logical plan construction is independent of the execution platform.

Building a Logical Plan

Hongzhen
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Map-Reduce Plan Compilation

• Each COGROUP operation becomes 
its own MapReduce job.

• Map Function: Assigns keys based on 
the BY clause(s).

• Reduce Function: Forms grouped 
tuples and creates nested bags for 
cogroup data.

Hongzhen
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Map-Reduce Plan Compilation

• Operation Placement:
o FILTER and FOREACH commands from 
LOAD to the first COGROUP are 
incorporated into the map function.

o Operations between subsequent 
COGROUP are pushed into the reduce 
function of the preceding COGROUP.

• Limitations:
o Intermediate data must be materialized 

between jobs.

o Rigid MapReduce model may not 
efficiently handle all Pig Latin operations.

Hongzhen
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• Avoiding Materialization of Large Nested Bags:
o Algebraic Functions for Aggregation:

▪ Functions structured as a tree of subfunctions operating on data subsets (e.g., COUNT, SUM, MIN, 
MAX, AVERAGE, VARIANCE).

▪ Pig utilizes Hadoop's combiner feature for efficient aggregation.

o Handling Non-Algebraic Functions:
▪ Functions like MEDIAN or custom UDFs that are not algebraic require full materialization.

▪ Pig spills large nested bags to disk when they can't fit in memory.

Efficiency With Nested Bags

Hongzhen
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Other Features 
and 

Considerations



• Construction of a program in Pig Latin is repetitive, inefficient for large-scale data

• Traditional Debugging method: Sampling – Create a smaller subset of original 
data

• Limitations: Difficult to find sample data to test semantics of the program

• Example:

R1 (x,y)

R2 (x,z)

• Hence, Pig Pen: Dynamically constructs side data set

• Advantages: Spot bugs, simplifies writing program incrementally

Debugging Environment – Pig Pen. But, why?

R1 EQUI JOIN R2 might return empty 

set, if subset of datasets do not contain 

matching values for column 'x'.

Hima Varshini Parasa
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Pig Pen

Hima Varshini Parasa
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• LOAD command: Sandbox dataset

• Primary Objectives: 

1. Realism: Subset of actual dataset or synthesized  from actual data

2. Conciseness: Small as possible, remove redundancies

3. Completeness: Illustrate semantics of command

Generating Sandbox Dataset

Hima Varshini Parasa
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• Rollup Aggregates: Calculating various aggregates 

Example: Counting the number of searches per user and computing the average per-user 

count in web crawls

• Temporal Analysis: COGROUP command in Pig is particularly useful for this task as it 

groups search queries from different time periods, facilitating custom processing.

Example: Understanding how search query distributions change overtime

• Session Analysis: Natural abstraction and manipulation of sessions

Example: Calculate metrics such as average session length, number of clicks before 

leaving a website, and variations in click patterns over time

Use-cases

Hima Varshini Parasa
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Why is Pig better than OLAP?

• Scalability and Flexibility: Directly compute aggregates over large distributed files 

without the need for prior curation.

• Ease of Incorporation of Custom Processing: Easy integration of custom processing 

steps, such as IP-to-geo mapping and n-gram extraction.

• Efficiency with Large Datasets: Orchestrates a sequence of multiple map-reduce jobs.

• Natural Data Representation: Manipulate complex data structures/nested data like user 

sessions.

Hima Varshini Parasa
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Related Work

Pig Latin vs. Other Platforms

• Dynamo: Focused on transactional key-value storage, not batch analytics like Pig. 

• Dryad: More high-level than Dryad's low-level DAG model. Pig Latin could potentially compile to Dryad jobs. 

• DryadLINQ: Similar high-level language, but Pig Latin has a more procedural style. 

• MapReduce: More flexible than MapReduce's rigid two-step structure. Pig Latin allows chaining multiple 

operations. 

• Sawzall: More flexible than Sawzall's fixed map+aggregate structure. Pig Latin supports arbitrary UDFs and 

operations like joins. 

• NESL: Pig Latin adds data combination operations (e.g. join, cogroup) on top of nested data model.

Hima Varshini Parasa
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Future Work
"Safe" Optimizer:

• Implement optimizations that guarantee performance benefits

Improved User Interfaces

• Develop a "boxes-and-arrows" GUI for visual program specification

• Enhance collaboration features (e.g., sharing program fragments, UDFs)

External Functions Support

• Enable UDFs in scripting languages (e.g., Perl, Python)

• Implement lightweight serialization/deserialization layer

Unified Development Environment

• Integrate control structures (loops, conditionals) into Pig Latin

• Embed Pig Latin into established languages (e.g., Perl, Python) for remote execution through packages

• Create a single environment for: 

• Main program development

• Pig Latin commands

• UDF writing

Hima Varshini Parasa
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Summary

• Developed by Yahoo! in 2006, became Apache top-level project in 2010 

• Purpose: High-level platform for analyzing large datasets, bridging SQL and MapReduce 

• Key Features: 

• Pig Latin: Simplified scripting language for data analysis

• Compiles to MapReduce jobs, runs on Hadoop

• Supports complex data types and user-defined functions

•Current Status: 

•Latest stable release: v0.17.0 (May 2018)

•Open-source, relevant in Hadoop ecosystem

•Competitors: Google BigQuery, Amazon Redshift, Apache Hive, Apache Spark 

Hima Varshini Parasa
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Study Questions

1) Convert the following SQL query to a Pig Latin script. The SQL query retrieves the names and total sales 

of each product category from a sales table, grouped by category.

Hima Varshini Parasa
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SELECT category, SUM(amount) as total_sales

FROM sales

GROUP BY category;

2) For the below web crawl data, where each record includes url and visit_duration (in seconds), write a 

Pig Latin script that categorizes each visit based on the visit_duration and outputs the url, 
visit_duration, and category (Long, Medium, Short) for each visit.

http://example.com, 450
http://example.org, 200
http://example.net, 50
http://example.edu, 600



Thank You! 
Questions?


	Slide 1: Pig Latin: A Not-So-Foreign Language for Data Processing
	Slide 2: What is Pig Latin?
	Slide 3: A Quick Example Case
	Slide 4: A Quick Example Case
	Slide 5: Pig System  Features and  Motivations
	Slide 6: Dataflow Language
	Slide 7: Quick Start and Interoperability
	Slide 8: Nested Data Model
	Slide 9: UDFs as First-Class Citizens
	Slide 10: UDFs as First-Class Citizens
	Slide 11: UDFs as First-Class Citizens
	Slide 12: Parallelism Required
	Slide 13: Debugging Environment
	Slide 14: Pig Latin Language
	Slide 15: Data Model
	Slide 16: Command: LOAD
	Slide 17: Command: FOREACH
	Slide 18: Command: FILTER
	Slide 19: Command: COGROUP vs JOIN
	Slide 20: Other commands
	Slide 21: Nested operations
	Slide 22: Command: STORE
	Slide 23: Pig Latin Implementation
	Slide 24: IMPLEMENTATION
	Slide 25: Building a Logical Plan
	Slide 26: Map-Reduce Plan Compilation
	Slide 27: Map-Reduce Plan Compilation
	Slide 28: Efficiency With Nested Bags
	Slide 29: Other Features  and  Considerations
	Slide 30: Debugging Environment – Pig Pen. But, why? 
	Slide 31
	Slide 32: Generating Sandbox Dataset
	Slide 33: Use-cases
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Thank You!  Questions?

