
Bigtable: A Distributed Storage
System for Structured Data

Huijie Pan, Ray Hung, Akhila, David Liu, Nandha
Sundaravadivel

What is Bigtable?

● Distributed storage system for managing structured data at massive scale

● Designed to scale to petabytes of data across thousands of servers

● Key features:
○ Handles structured data

○ Wide applicability (web indexing to Google Earth)

○ High performance and availability

○ Simple data model

Why Bigtable?

● Problem being solved:
○ Need to handle diverse workloads

○ Must scale horizontally

○ Require high performance for both:

■ Large sequential reads/writes

■ Random reads/writes

● Real usage examples:
○ Google Analytics

○ Google Earth

○ Personalized Search

Data Model Overview

● Key points:
○ Think of it as a giant sorted map

○ Data is indexed by: (row key, column key, timestamp) → value

○ Real example: Storing web pages and their references

Example is from Bigtable: A Distributed Storage System for Structured Data

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

Row Keys: The First Dimension

● Row key: "com.cnn.www" (reversed URL)

● Rows are sorted lexicographically

● Why reverse URLs?

○ Domains like com.cnn.* are grouped together
○ Enables efficient domain-specific queries

● Row keys enable range scans
● Each row is dynamically partitioned into tablets

Column Families: Grouping Related Data

● Two column families in example:
○ "contents:" - stores actual web page content
○ "anchor:" - stores incoming links

● Key Properties:
○ Must be created before storing data
○ Access control at family level
○ Same family typically contains similar type of data
○ Example: All anchors stored in "anchor:" family
○ Different families can have different compression settings

Column Qualifiers: Dynamic Columns

● In the example:
○ "contents:" has qualifier "html"
○ "anchor:" has qualifiers "cnnsi.com" and "my.look.ca"

● Key points:
○ Qualifiers can be created on the fly
○ Can have huge number of columns
○ Format: family:qualifier
○ Enables flexible schema
○ Example: Each linking site gets its own qualifier

Timestamps: Built-in Versioning

● From example:
○ Contents has versions at t3, t5, t6
○ Anchors have single versions at t8, t9

● Key features:

○ Multiple versions of same cell
○ Automatic garbage collection
○ Can be set by client or system
○ Enables time-travel queries
○ Configurable version retention

Data Model Summarize:

 So if you want to:

● Find all CNN pages: Scan rows starting with "com.cnn"

● Get latest version of CNN homepage: Look up (com.cnn.www, contents:html) with latest timestamp

● See who links to CNN: Look at all qualifiers in the anchor family

● See how CNN's page changed: Look at different timestamps of contents:html

● Find when SI linked to CNN: Check timestamp t9 of anchor:cnnsi.com

Data Model Benefits

 This Model is powerful because

● It's sparse - you don't waste space on empty cells

● It's flexible - new columns (qualifiers) can be added anytime

● It's versioned - you can track changes over time

● It's grouped logically - related data stays together

● It's efficient for both random access and scans

BigTable API

Figure from Bigtable: A Distributed Storage System for Structured Data

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

BigTable API

Figure from Bigtable: A Distributed Storage System for Structured Data

https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

BigTable Building Blocks

Slide adapted from BigTable: A System for Distributed Structured Storage By Jeff Dean

● Google File System (GFS)
○ Store persistent state such as log and data files

● Scheduler
○ schedules jobs involved in BigTable serving

● Distributed Lock service - Chubby
○ master election, location bootstrapping, discover tablet servers, store BigTable schema and

access control lists

● MapReduce
○ BigTable can be input and/or output for MapReduce computations

https://static.googleusercontent.com/media/research.google.com/en//people/jeff/bigtable-uw-2005.pdf

Took from BigTable: A System for Distributed Structured Storage By Jeff Dean

https://static.googleusercontent.com/media/research.google.com/en//people/jeff/bigtable-uw-2005.pdf

Google SSTable File Format

Diagram from SSTable database or big ideas behind the scene

● used internally to store Bigtable data

https://d9nich.medium.com/sstable-database-or-big-ideas-behind-the-scene-1d449a12fb44

Distributed Lock Service - Chubby

● Five active replicas, one of which is master
● Uses the Paxos algorithm to keep its replicas consistent
● Provide namespace that can be used as lock with atomic read/write
● Each Chubby client maintains a session with a Chubby service.
● BigTable uses Chubby for

○ master election

○ location bootstrapping

○ discover tablet servers and finalize tablet server deaths

○ store BigTable schema and access control lists

Implementation
- Tablet location

Three-Level Hierarchy for efficient
tablet location:

● Chubby file (root location).
● Root tablet (stores locations of

METADATA tablets).
● METADATA tablets (store user

tablet locations).

Implementation - Tablet Assignment

● Role of the Master Server
○ Monitor live Tablet Servers
○ Track active servers and manage tablets
○ Load balancing

● Tablet Server Registration with Chubby
○ Unique lock to register tablet server
○ On the event of lock loss, stops serving tablets.

● Detecting and Handling Server Failures
○ Periodic polling on the servers by master
○ Master acquires failed server’s lock -> Deletes -> Moves impacted tablets to unassigned pool

● Reassigning Unassigned Tablets
○ Master sends tablet load request to assign a server to tablets in the pool
○ Maintain high availability
○ Minimally disruptive during reassignment

Compactions

Tablet state represented as set of immutable compacted SSTable files, plus tail of
log (buffered in memory)

• Minor compaction:

– When in-memory state fills up, pick tablet with most data and write contents to
SSTables stored in GFS

• Separate file for each locality group for each tablet

• Major compaction:

– Periodically compact all SSTables for tablet into new base SSTable on GFS

• Storage reclaimed from deletions at this point

Refinements - Locality Groups

● Column families can be grouped into locality groups
● Example: The METADATA table uses an in-memory locality group for the

location column family

Refinements - Compression

● Compression can be enabled or disabled per locality group
● Compression is applied to individual SSTable blocks
● Google uses a custom two-pass compression scheme:

○ Bentley and McIlroy algorithm for compressing long common strings across a large window
○ a fast compression algorithm for compact storage

● This compression approach achieves high speeds:
○ Encoding: 100-200 MB/s
○ Decoding: 400-1000 MB/s

● Achieves high compression ratios; e.g., 10-to-1 reduction in Webtable data.
● Designed for speed without sacrificing significant space savings.

Refinements - Contd.,

Caching for Read Performance
● Scan Cache: For frequently accessed key-value pairs.
● Block Cache: For blocks of data near recently read data.

Bloom Filters
● Reduce disk accesses for read operations
● Check if SSTable might contain data for a row/column pair

Commit-Log Implementation
● One commit log per tablet server.
● Combines group commit optimization
● Parallel recovery process sorts logs by tablet to reduce read time on recovery

Exploiting Immutability.
● Immutable SSTables simplify data access and concurrency control.
● Enables quick tablet splits by allowing child tablets to share parent SSTables.

Evaluation

● Write Benchmark
○ Sequential: row keys are stored in contiguous manner from 0 to R-1
○ Random: row keys were generated and hashed to distribute across key space

● Read benchmark
○ Sequential/Random: rows are accessed sequentially/randomly
○ Mem: data in the benchmark is served from memory instead of from disk

● Scan
○ Read using BigTable API to scan all values in a row range
○ Reduce the number of RPC

Observations

● Read Performance
○ Random read is the slowest since it often require fetching a 64KB block for each 1KB read
○ Reading from memory reduces the overhead of fetching 64KB block from GFS
○ Sequential read allows for caching of large data blocks

● Write Performance
○ Both sequential and random writes performs better than reads since we append all writes to a

single commit log and stream the writes as a group to GFS
● Scans

○ Really fast since server can return a large number of values for a single RPC

Scaling

● Increase in performance as we increase the number of tablet servers
○ Not linearly, limited by network and load balancing constraints

● Random read has the worst scaling due to the overhead of reading 64KB
block for every 1 KB read

Applications

● Google Analytics
○ Site tracking reports like the number of unique visitors each day or page view per URL each

day
○ Utilizes Bigtable to store Raw Click Table (200 TB), the row key is a tuple of website name and

session start time
○ Summary Table (20 TB) - each summaries are generated by periodic mapreduce jobs from

raw click table
● Google Earth

○ Store preprocessing table (70 TB) with raw satellite image and related data for preprocessing
■ Use batch processing to clean and consolidate the image into final serving data

○ Serving Table (500 GB) indexed preprocessed data in GFS
■ Hosted across hundred of tablet servers for high throughput and low latency (> 10,000

query / second)
● Personalized Search

○ User data table: stores each user’s data in big table, identified by user id
■ Store all user interactions in the columns
■ Generate user profiles using mapreduce and use it to personalized live search results

Lessons

● Distributed Systems can Fail in the Craziest Ways
○ I.e. Clock skews, memory/network corruptions, hardware maintenance

● Clear Feature Scope
● Simplicity is Key

○ Code Simplicity
○ Dependency Simplicity

Related Works

● The Boxwood Project: Software Infrastructure for Large Scale Datastores
○ MacCormik et al., 2004

● Various work on distributed file systems
○ Can (Ratnasamy et al., 2001), Chord (Stoica et al., 2001), Tapestry (Zhao et al., 2001), and

Pastry (Rowstron et al., 2001)
● Similar Large-Scale Industry Parallel Databases

○ Oracle Real Application Cluster DB (Oracle.com), IBM DB2 Parallel Edition (Baru et al., 1995)

Recent Developments

● Available on Google Cloud for external clients
● Multi Region Distribution
● Data Model Flexibility

○ JSON, Images, etc.
● (cloud.google.com)

Conclusions

● Bigtable: A distributed system for storing structured data at Google
○ Performance and high availability at scale

● Production use since 2005, 60 production users a year later
○ Still used today internally and available on Google Cloud Platform

● Further Questions/Comments
○ Cost to serve?

Study Question 1

Consider a system storing social media posts where each post has multiple
comments, likes, and shares. Using Bigtable's data model, design a schema that
would efficiently store this data. Explain:

● How would you structure the row keys to enable efficient queries for a user's
posts?

● What column families would you create and why?
● How would you use column qualifiers to handle comments and likes?
● How would timestamps be useful in this scenario?

Compare your design choices with the web page example from the paper,
explaining the similarities and differences in your approach.

Study Question 2

Imagine you're designing a system to store and manage all videos and comments
for a video-sharing platform like YouTube. Consider Bigtable's key design
decisions:

● Using a distributed architecture with a single master and multiple tablet
servers

● Creating a sorted, distributed, persistent multidimensional map
● Providing a simple data model instead of a full relational model
● Using a distributed file system as the storage layer

For each of these choices:

● Explain what problem it solves in the context of video sharing
● Discuss what trade-offs it introduces
● Analyze how it impacts scalability and performance

