
Bao: Making Learned Query
Optimization Practical

Authors: Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska

Proceedings of the 2021 International Conference on Management of Data (SIGMOD '21)

Presented By: Anirudh Bharadwaj Krishna, Divij Mishra, Jonathan Li Xu, Khushi Talesra, Richik Vivek Sen

1

Introduction

• Query optimization is a critical task for database management systems

• It is essential for guaranteeing effective database performance and responsiveness

• Cardinality estimation and cost modeling, two fundamental components of query optimization, remain challenging to
solve

Problems with existing ML based Optimizers

• Long Training Time: Impractically long training times and large amounts of data to surpass traditional methods

• Inability to adjust to data workload and changes: Difficulty in adapting to changes in data or workload, often
requiring costly retraining

• Tail catastrophe: Fail catastrophically on rare queries, especially with sparse training data

• Black-box decision: Opaque, black-box decisions, making it harder for DBAs to understand or influence query
optimization

• Integration cost: High integration costs, lacking full support for standard SQL and vendor-specific features

2 | Khushi Talesra

Bao (Bandit Optimizer): Enhancing Query Optimization

• Bao is the first learned optimizer which overcomes these problems

• It works alongside an existing query optimizer (e.g., PostgreSQL’s

optimizer) to improve its performance, rather than replacing or

eliminating the traditional optimizer

• PostgreSQL may choose a less efficient join strategy (e.g., loop join) in

 some cases

• Bao learns a mapping between queries and optimal execution strategies via

 query hint sets and thus guides traditional optimizers

• Bao adapts to data and schema changes, reduces tail latency, and improves query performance using Thompson

sampling, without the need for extensive retraining

3 | Khushi Talesra

Figure1: Disabling loop join can improve or harm query
performance in PostgreSQL

Key features of Bao Optimizer
• Short Training Time

• Robustness to Schema, Data, and Workload Changes

• Better Tail Latency

• Interpretability and Easier Debugging

• Low Integration Cost

• Extensibility

Downsides of Bao
• Longer optimization time

• Limited flexibility

• Best for longer queries

4 | Khushi Talesra

System Model
• Generate Query Plans:

Bao uses the existing query optimizer to create

 multiple query plans based on different sets of

hints (like disabling loop joins or forcing index usage).

• Estimate run time:

Each query plan is turned into a vector tree. These

vector tree are then fed into Bao’s model, a tree

convolution neural network which predicts the quality (e.g., execution time) for each plan.

• Selecting Query Plan:

o Bao selects query plans using Thompson Sampling, a technique that balances exploration and exploitation.

o It explores new query plans to find better ones while exploiting known good plans.

o This approach allows Bao to learn and improves its query optimization over time.

5 | Khushi Talesra

Figure 2: Bao System Model

System Model

6 | Khushi Talesra

• Feedback Loop:

o After executing a plan, Bao learns from the performance (e.g., execution time) and adds this experience to its
model

o Bao periodically retrains its predictive model using collected experience

o This helps in improving the accuracy of future plan selections

• Assumptions and Limitations:

o Bao assumes that all hints result in semantically equivalent query plans

o Bao applies hints to the entire query

o Fine-grained actions, like adjusting individual joins are possible but not explored due to the high overhead
involved

o To ensure faster learning, a smaller action space is chosen, as its size directly impacts the convergence time of
reinforcement learning algorithms

Selecting Query Hints - Query Hints
• Query hints are special (optionally user-defined) directives that the DB optimizer must account
for while creating the query plan

• For e.g.
◦ SET ENABLE_NESTLOOP = False; -> Discourages the planner from using nested-loop joins

◦ SET ENABLE_SEQSCAN = False; -> The planner uses index scans instead of sequential full table scans

• Multiple query hints enabled -> query set

• The user must specify all possible hint sets that Bao should optimize over

• Bao's goal: for each query, select the appropriate query hint set

7 | Divij Mishra

Selecting Query Hints – CMABs
• CMAB – Contextual Multi-Armed Bandits

oMulti-Armed Bandits:

▪ Bao sees the same query hint sets at every query – over multiple trials, learns the best query hint sets
(MAB problem)

o Contextual:

▪ There's no single best query hint set, depends on the query (contextual MAB)

• Thompson Sampling

o Generally, want to choose our best guess for the model (exploitation), but sometimes, intentionally
choose bad models to discover better models later (exploration)

oMore formally, sample parameters according to our guess for the underlying probability distribution

o Bao - Thompson sampling is implemented using bootstrapping for the predictive model (next slide)

8 | Divij Mishra

gambling bad

Selecting Query Hints – Predictive Model
• For each query hint set, the base optimizer generates a query plan -> looks like a tree!

• Bao uses a Tree Convolutional Neural Network (TCNN) to capture relationships within the tree and predict the query
plan's performance.

9 | Divij Mishra

Selecting Query Hints – Training Loop
•Training loop:

o New query comes in

o For each query hint set (~ 50 sets in the paper), the base optimizer generates a query tree plan

o Bao estimates each plan's performance using TCNN – selects the plan with lowest cost and executes it

o Bao adds the selected plan and actual cost to its dataset

•Thompson sampling: Every n (~ 100) queries, retrain TCNN on a bootstrapped sample of the previous k (~ 2000) queries.

10 | Divij Mishra

PostgreSQL Integration
Why PostgreSQL?

o Bao may be used with any database system

o PostgreSQL provides a hooks system (callback mechanism to call custom functions)
o Code does not need to be recompiled

Usability Features

o Per-query activation

o Active vs. Advisor mode

o Triggered exploration

11 | Jonathan Xu

PostgreSQL Integration
Per-query Activation

o Bao sits upon the existing PostgreSQL optimizer
o Easy to activate or deactivate Bao on per-query basis

o Activated: Bao will use Thompson sampling to select query hints

o Deactivated: PostgreSQL is used

o Why Disable Bao? (SET enable_bao TO [on/off])
o Short queries may execute in less time than it takes for Bao's optimizer to run

o DBA may have already set hints or a query plan

o Bao can still learn from query executions when disabled

12| Jonathan Xu

PostgreSQL Integration
Active vs. Advisor mode

o Active Mode
o Automatically applies optimizations that

are selected when Bao is active

o Learns based off query performance

o Advisor Mode
o Does not apply the optimizations, but will

suggest them

o The EXPLAIN query adds expected
performance, hint set recommended, and
predicted improvement

o Learns based off query performance

13| Jonathan Xu

Figure 6: Example output from Bao's advisor mode

PostgreSQL Integration
Triggered exploration

o Problem: Query regression occurs when a selected optimization decreases the performance of
a query vs what was chosen before
o Bao actively explores new query plans, meaning it can be more erratic

o Solution: give DBAs more control when running queries
o DBAs may mark queries as performance critical

o A query marked as critical triggers Bao to periodically execute the query with each hint set and save the
performance to experience set

o Upon retraining, Bao ensures the new model will select the fastest hint set for each critical experience

o The model is retrained every time it incorrectly predicts a critical experience

14| Jonathan Xu

Related Work
1. Early Efforts in Query Optimization (Leo)

What Leo Did:

Adjusted histogram estimators incrementally based on repeated query executions.

Focused only on improving cardinality estimates (predicting query result sizes) rather than full
query execution plans.

How Bao Differs:

Bao goes beyond improving cardinality estimation—it actively adjusts the execution strategies
for queries (e.g., disabling certain operators like nested loops or hash joins).

Unlike Leo, Bao doesn’t need repeated executions of the same query to improve. It learns on-
the-fly from diverse queries.

15 | Anirudh

Related Work
2. Machine Learning for Cardinality Estimation

(Deep Learning , Query-Driven , Monte Carlo Integration , and CRN)

What They Did:

Focused on accurately predicting cardinalities to improve query plans. These methods rely heavily on
supervised learning, unsupervised models, or statistical techniques like Monte Carlo sampling.

While improving cardinality accuracy, they did not directly focus on improving query performance
(e.g., latency or cost).

How Bao Differs:

Bao combines cardinality estimation with real-world execution feedback (e.g., query performance
and execution times). It doesn’t just predict cardinalities—it evaluates entire query execution
strategies.

Bao uses reinforcement learning, which adjusts query plans dynamically, rather than relying on pre-
trained models.

16 | Anirudh

Related Work
Reinforcement Learning for Query Optimization (Neo) and Broader Applications (Elastic Clusters,
Job Scheduling, Physical Design)

What Prior Work Did

Reinforcement Learning for Query Optimization:
◦ Showed RL could outperform traditional optimizers like PostgreSQL with enough training.

◦ Neo: Optimized query latency using deep RL but required 24 hours of training and struggled with schema or
workload changes.

◦ Adaptive Query Processing: Adjusted query plans during execution but worked only with specific adaptive
databases.

Broader RL Applications:
◦ Used RL for managing server resources (elastic clusters), task scheduling, or physical database design.

◦ Focused on system-wide problems like resource management, not query optimization.

17 | Anirudh

Related Work
5. Machine Learning for Other Database Applications

(Index Structures , Data Matching, Query Representation)

What They Did:
◦ Applied ML to auxiliary database tasks like indexing, finding matching records, or representing queries

in numerical formats.

◦ These methods helped optimize database components indirectly but didn’t address query plan
optimization.

How Bao Differs:
◦ Bao directly optimizes query execution plans rather than peripheral tasks.

◦ It works on the critical optimization layer that determines query latency, throughput, and cost.

18 | Anirudh

Related Work
6. Datasets and Evaluation

(IMDb, Stack, Corp)

How Prior Work Evaluated Their Systems:
◦ Many related works used static workloads or pre-determined datasets that didn’t reflect real-world

variability in workloads, schema, or data.

How Bao Differs:
◦ Bao was tested on dynamic workloads, data, and schema changes (e.g., Stack and Corp datasets) to

show its adaptability.

◦ Bao integrates with real-world systems like PostgreSQL, whereas prior works often built stand-alone
prototypes or controlled environments.

19 | Anirudh

Bao's Distinctive Advantages Over Previous Works

Integrated Approach:
◦ Bao enhances traditional query optimizers instead of replacing them, making it easier to adopt in existing

systems like PostgreSQL.

Fast Learning:
◦ Bao’s reinforcement learning-based approach requires much less training time and adapts dynamically, unlike

prior work that often-needed significant training or retraining.

Focus on Real-World Performance:
◦ Bao directly improves latency, tail performance, and overall cost for diverse workloads, addressing practical

challenges ignored by some prior works.

Adaptability:
◦ Bao can handle changing workloads, data, and schema, unlike static models or systems like Neo that struggle

in dynamic environments.

20 | Anirudh

Experiments
Three carefully selected datasets representing real
scenarios:

◦ IMDb (7.2 GB):
▪ 5000 queries

▪ Dynamic workload, static data/schema

▪ Augmented Join Order Benchmark

◦ Stack (100 GB):
▪ 5000 queries

▪ Dynamic workload & data

▪ Real StackExchange data over 10 years

◦ Corp (1 TB):
▪ 2000 queries

▪ Dynamic workload & schema

▪ Real corporate dashboard workload

Testing Environments:

• Google Cloud: N1-4 VM + Tesla T4 GPU

• VM: 4 CPU cores, 15GB RAM

• All costs measured include GPU training time

21 | Richik

Is Bao Practical? - Cost & Performance

22 | Richik

PostgreSQL Comparison:

◦ ~50% reduction in both cost and latency

◦ Consistent across all datasets

◦ Includes all training overhead

◦ Successfully handles Workload changes (IMDb), Data
changes (Stack), Schema changes (Corp)

Commercial System Comparison:

◦ ~20% improvement in performance

◦ Notable achievement given maturity of commercial system

◦ Cost savings don't include commercial licensing fees

Is Bao Practical? - Hardware Impact & Tail Latency

23 | Richik

Hardware Scaling:

◦ Benefits increase with larger VMs for PostgreSQL

◦ More consistent across VM types for commercial system

◦ N1-16 shows best improvements

Tail Latency Improvements:

◦ - 99th percentile latency on N1-8:

▪ PostgreSQL: 130 seconds

▪ With Bao: 20 seconds

◦ Most gains from handling problematic queries

◦ Consistent improvements across VM types

◦ Especially effective for workloads following 80/20 rule

Is Bao Practical? - Training Time & Convergence

24 | Richik

Quick Convergence:

◦ Matches PostgreSQL within 2 hours

◦ Exceeds baseline after ~3 hours

◦ Maintains performance through workload changes

◦ Much faster than previous approaches:

▪ Neo: 24 hours

▪ DQ: Even longer

Training Overhead:

◦ GPU can be attached/detached as needed

◦ ~3 minutes training time for 5000 queries

◦ Can be scheduled during low-load periods

What Hints Make the Biggest Difference?

Most Impactful Hint Sets:

◦ Disable nested loop join: 35% improvement
▪ Helps when cardinality is underestimated

◦ Disable index scan & merge join: 22%

◦ Disable nested loop join, merge join & index
scan: 16%

◦ Disable hash join: 10%
▪ Helps when cardinality is overestimated

◦ Disable merge join: 10%

Important Note:

◦ No single hint set consistently outperforms
PostgreSQL

◦ Combination and context-awareness is key

25 | Richik

Bao's ML Model Performance

Model Comparison:

- Neural network significantly outperforms:

• Random Forest

• Linear Regression

- Justifies architectural complexity

Learning Progress:

- Initial Q-error around 3

- Steadily improves with experience

- Maintains good decisions despite initial inaccuracy

26 | Richik

Major Experimental Conclusions
Practicality Demonstrated Through:

◦ Quick training (hours vs days)

◦ Robust to workload/data/schema changes

◦ Significant cost & performance improvements

◦ Better tail latency handling

Hint Selection Intelligence:

◦ Context-aware hint application

◦ No single "best" hint set

◦ Most gains from few key combinations

Architecture Validation:

◦ Neural network complexity justified

◦ Minimal regression risks

27 | Richik

Conclusion
Bao- a reinforcement learning-based bandit optimizer that enhances traditional query
optimizers by steering them toward better execution strategies.

Fast Learning and Practical Performance:

Bao achieves performance comparable to advanced open-source and commercial optimizers
with only one hour of training.

Improved Latency:

Bao effectively reduces both median latencies (how long most queries take) and tail latencies
(how long the slowest queries take).

Handles Dynamic Environments:

Bao performs well even under dynamic workloads, changing data, and evolving database
schemas.

28 | Anirudh

Future Work
Testing in Cloud Systems:

◦ The team plans to evaluate Bao in cloud environments, particularly in multi-tenant systems where
resources like disk, RAM, and CPU are shared and often scarce.

◦ Focus will be on improving overall resource utilization.

Integrating with Traditional Optimizers:
◦ Investigate if Bao’s predictive model can be used as a cost model for traditional query optimizers.

◦ This could combine the strengths of machine learning with established optimization techniques for
better query performance.

29 | Anirudh

2 Study Questions
1. What is query regression? How do the authors mitigate query regression from occurring with

Bao, given that it explores to train?

2. How are query plans generated in Bao? How does Bao estimate their runtimes?

30 | Divij & Jonathan

	Slide 1: Bao: Making Learned Query Optimization Practical Authors: Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska Proceedings of the 2021 International Conference on Management of Data (SIGMOD '21)
	Slide 2: Introduction
	Slide 3: Bao (Bandit Optimizer): Enhancing Query Optimization
	Slide 4: Key features of Bao Optimizer
	Slide 5: System Model
	Slide 6: System Model
	Slide 7: Selecting Query Hints - Query Hints
	Slide 8: Selecting Query Hints – CMABs
	Slide 9: Selecting Query Hints – Predictive Model
	Slide 10: Selecting Query Hints – Training Loop
	Slide 11: PostgreSQL Integration
	Slide 12: PostgreSQL Integration
	Slide 13: PostgreSQL Integration
	Slide 14: PostgreSQL Integration
	Slide 15: Related Work
	Slide 16: Related Work
	Slide 17: Related Work
	Slide 18: Related Work
	Slide 19: Related Work
	Slide 20: Bao's Distinctive Advantages Over Previous Works
	Slide 21: Experiments
	Slide 22: Is Bao Practical? - Cost & Performance
	Slide 23: Is Bao Practical? - Hardware Impact & Tail Latency
	Slide 24: Is Bao Practical? - Training Time & Convergence
	Slide 25: What Hints Make the Biggest Difference?
	Slide 26: Bao's ML Model Performance
	Slide 27: Major Experimental Conclusions
	Slide 28: Conclusion
	Slide 29: Future Work
	Slide 30: 2 Study Questions

