
Authors: Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, Neoklis Polyzotis

The Case For Learned
Index Structures

1

Presenters: Tommy Skodje, David Keefe, Tiffany Ma, Nikki Van Handel

Background/Overview

• Indexing is used in databases to increase the
speed of data retrieval

• Examples: B-Trees (covered in class),
hash-maps, bloom filters

• Problem with indexes: Index efficiency scales
with CPU and memory speed

• Has slowed progress as of late due to
Moore's Law no longer holding

• An inefficiency: They do not take advantage
of patterns in data

3 - David

Background and Motivation

Background and Motivation

• The authors argue that specialized indexes that reflect patterns in the data can
be created using machine learning models

• Existing indexes can be replaced with ML models with similar semantic
guarantees

• Using the distribution of the data, learned indexes can perform lookups faster
and require less space to store

4 - David

Related Work

• B+-Trees (discussed in class) and other tree indexes
o FAST – Uses SIMD (Single Instruction Multiple Data) processing to take advantage of GPU

compute power, like an ML model.

o Tries/radix trees for text data

o BF-Trees – A B+-Tree with a Bloom Filter on each leaf node

• Learning Hash Functions – Learning a locality-sensitive hash (LSH) function to
build an Approximate Nearest Neighbor (ANN) index.

• Perfect Hashing – Tries to avoid conflicts, but the size of the hashing function
grows with the size of the data.

• Mixture of experts – Multi-network architectures where layers are replaced
with NN and improve computation speeds through introducing sparsity.

This paper aims to expand on this related work by learning the data
distribution. The authors aim to use an ML model as the index itself

5 - David

Overview

• Range Indexes and RM (Recursive-Model) Indexes
oRelated to B-Trees

• Point Indexes
oRelated to Hash-Maps

• Existence Indexes
oRelated to Bloom Filters

• Evaluation
oDatasets: web-server logs, map dataset, log-normal distribution

oMetrics: index size, lookup time, model execution time

6 - David

Range Index

Range Index

• B-Tree – A tree that maps a look-up key
to a position in a sorted array
o Guarantee: The record's key is the

first key greater than or equal to the
lookup key

• Common practice to only index the first
key of a page as a space-saving
measure
o Therefore, there is some level of "error" in

each lookup, which is equal to the page
size

• Error is analogous to error in a
regression tree in machine learning!

• As page size error resembles model
error, we can replace a B-Tree with a
model

Tommy

8 - Tommy

Model Complexity

• Each traversal of a level in a B-Tree can be thought of as "gaining precision"
o The chance of finding a "positive result" (the matching record) increases the further

traversal progresses

o Reducing the search space at each level

• LogbaseB(N) nodes need to be traversed, with B being the branching factor of
the tree
o Have to add time for traversing a page with binary search (~50 cycles)

• Main timesaver of the model comes at the page level
o Binary search is slow and hard to parallelize. Meanwhile, CPUs can handle 8-16 SIMD

operations per cycle.

• More timesaving opportunity comes with SIMD processing and GPUs!

9 - Tommy

Range Indexes as CDF Models

• A model that predicts a position in a sorted
array will model the Cumulative Distribution
Function (CDF).

• B-Trees work like this too! They are models that
"learn" the position of the data during
construction

• P = F(Key) * N

o P = position estimate

o F(Key) = CDF to estimate the likelihood of
observing a key less than or equal to the
lookup key

o N = Number of keys

10 -
Tommy

A First, Naïve Learned Index

• 200M web-server log records

• Neural network with ReLU activation functions
o 32 neurons/layer

• Input: timestamps

• Labels (things to predict): positions in the sorted array

• Result: Worse performance than B-Trees. Why?
o Tensorflow overhead

o The model has trouble being accurate for individual data instances

o B-Trees utilize the cache extremely well

11 -
Tommy

Recursive-Model Index

Learning Index Framework

• Inputs: Index specification

• Framework:
1. Index configuration generation

2. Index optimization
1. Model Choice

2. Page Size

3. Search Strategies

3. Automatic Testing

• Usage
• C++ index operations based on

model weights.

13 - Nikki

Index Synthesis

Inference Model

Model

Weights

Record

data

Key Position

Recursive-Model Index

• Problem: How can a learned model
match the accuracy of a B Tree?

• Solution: Recursive Regression
• Choose model the next model based on

prior model output – “expert selection”

• At each stage,

• Prior stages learn data “shape” –
distribution

• Final stage predicts position.

• Train k-th model by loss:

14 - Nikki

Stage 1
Model

Model Model

Stage 2

Stage L

Model

...

Model Model

Stage 3

Model Model

Model Model Model Model

key

position

Hybrid Index

15 - Nikki

Train the top-node model

Pick the model for the next

stage

Replace models with B trees

if error > threshold

L=0

L=L+1

Add keys to the next model

Post

Worst case guarantee: B-Tree accuracy

Search Strategies

• Last mile search: Finding exact
position from model prediction

• Model Biased Search (default)
• Like binary but centered about predicted

position.

• Biased Quaternary Search
• Save computation time

16 - Nikki Stanford Seminar, US, Stanford Seminar - The Case for Learned Index Structures.(Oct 18 2018). Accessed: Nov 19
2024. [Online Video]. Available: https://www.youtube.com/watch?v=NaqJO7rrXy0

Stage L

Min-error Max-error

All keys

[Source]

Binary Search

Quaternary Search

https://www.mathwarehouse.com/programming/gifs/binary-vs-linear-search.php

Monotonicity

• Monotonic: varying in such a way that
it either never decreases or never
increases.

• Forcing monotonicity guarantees
correct accurate error bounds

• Non-monotonic models may make
use of exponential search.

Training

17 - Nikki

Implementation

M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and A. Van Esbroeck. Monotonic
calibrated interpolated look-up tables. The Journal of Machine Learning Research, 17(1):3790–3836, 2016.

• 200M records training takes a few
seconds to train for RMI

• More complex models require training
on the order of minutes.
• Stochastic gradient descent may

converge quickly for simple neural nets.
• Hyperparameter search performed with

grid search.

• Convergence criterion may be set
relatively large.

Results: RMI

• Compared performance to a two
stage optimized B-Tree

18 - Tiffany

• Additional compressions are possible
for both Btrees but even more for NN!

• Alternative baselines compared

String Indexing

• Many databases require strings to be
indexed

• Tokenize strings to into feature
vectors using ASCII character values
o All vectors set to length N, longer vectors

truncated, smaller vectors filled with 0's

• Similar neural network structure used,
with input being a vector instead of a
single value

19 - David

Numerical Index String Index

𝑥 ∈ ℝ 𝑥 ∈ ℝ𝑁

…

pos pos

Point Index

Hash-Model Index

• Primary challenge with hash maps is
avoiding collisions

• Hash functions do not consider data
distribution, often leading to high
occurrence of collisions

• A model can learn the CDF, mapping
keys more uniformly across the
output space according to the
distribution

• End goal is to reduce collision
occurrence

21 - David

Evaluation – Point Index

• Traditional hash functions lead to equal collision occurrence across datasets

• Point indexes can perform better on datasets with more learnable CDFs

• Hash-Model Index reduced collisions significantly across 3 datasets

22 - David

Existence Index

Existence Index

• Crucial for determining if an element exists within a data set

• Bloom filters – space efficient probabilistic data structure

• Primary use – verifying if a key is present in cold storage, e.g. SSTables

20 - Tiffany

https://cassandra.apache.org/doc/stable/cassandra/operating/bloom_filters.html

Existence Index – Bloom Filter Basics

• Core components:

o Bit array of size m to store bits indicating
the presence of elements

o Hash functions (n=k) that map elements to
positions in the bit array

• Process:

o Insertion is performed by setting bits to 1 at
positions returned by hash functions

o Membership check is performed by
checking if any bits are 0 (=absent)

• Characteristics:

o Guarantees no false negatives, but false
positives are possible

25 - Tiffany

Existence Index - Challenges

• Latency and Space Trade-offs
o Cold storage access latency allows for more complex models.

• Example: For 1 billion records, around 1.76 GB is needed.

• For a 0.01% False Positive Rate (FPR), approximately 2.23 GB is required.

• Ongoing research to reduce memory consumption without sacrificing performance

• Optimization Goal: Minimize index space and false positives.

• Modeling Techniques
o Possibility of leveraging learned models for more efficient existence indexes

26 - Tiffany

Existence Index – Learned Bloom Filters

• Approach:

• Unlike traditional indexes, learned Bloom filters use machine learning to predict
key presence.

• The model differentiates keys from non-keys by learning their distributions.

• Key Advantage: Potential to optimize for specific query patterns, observed from
historical data

27 - Tiffany

Existence Index – Learned Filter Methods

• Classification as a Solution:
o Treat existence as a binary classification task (key or non-key).

o Models like Recurrent Neural Networks (RNN) or Convolutional Neural Networks (CNN) can
classify keys with minimal log loss.

• Overflow Bloom Filter:
o Used to handle false negatives by setting a threshold (τ) for classification accuracy

28 - Tiffany

Evaluation - Existence Index

• Goal: Maximize collisions among non-
keys, minimize collisions between keys
and non-keys.

• Mechanism: Learned model maps values
to bit positions, improving space
efficiency and accuracy

• Case Study: Applied to blacklist phishing
URLs using a dataset of 1.7M URLs.

• Results:
o Achieved a significant reduction in memory

usage compared to standard Bloom filters.
o Maintained desired FPR while reducing

false negatives using a smaller model size

29 - Tiffany

Conclusion

Conclusions

• Contributions:
o Introduced how machine learning models like neural networks can be used to replace

traditional index structures (e.g., B-Trees, Bloom Filters, Hash-maps)
o Presented recursive model index (RMI) and hybrid approaches, balancing complexity and

accuracy for practical use

• Limitations:
o Paper suggests high theoretical performance with appends and inserts, however, no

benchmarking is given.
o Performance dependency on data distribution; irregular or complex patterns need exploration.

• Future work:
o Extend the exploration of learned indexes to incorporate a broader range of machine learning

models beyond linear models and neural networks.
o Develop learned indexes for multi-dimensional data, leveraging the ability of neural networks

and other models to capture complex high-dimensional relationships.
o Investigate the application of learned models in other database operations, such as sorting

and join algorithms.

31 - Tiffany

Current Work

• Derivatives
• Learning Multi-Dimensional

Indexes
• ALEX: An Updatable Adaptive

Learned Index
• Partitioned Learned Bloom Filters

• Block Range Indexes (BRINs) -
Splits values in a table into
blocks, then summarizes the data
in that block. Reduces data
volume, but doesn't take
advantage of data structure like
learned indexes

32 - Tommy Abdullah Al-Mamun, Hao Wu, Walid G. Aref: A Tutorial on Learned Multi-dimensional Indexes. ACM
SIGSPATIAL Conference, pp. 1-4, Nov. 2020.

https://dl.acm.org/doi/abs/10.1145/3318464.3380579
https://dl.acm.org/doi/abs/10.1145/3318464.3380579
https://dl.acm.org/doi/abs/10.1145/3318464.3389711
https://dl.acm.org/doi/abs/10.1145/3318464.3389711
https://proceedings.neurips.cc/paper_files/paper/2023/hash/7b2e844c52349134268e819a9b56b9e8-Abstract-Conference.html

Study Questions

• What were the main reasons for poor
performance of the authors' first naïve
learned index?

• How/Why can the CDF of a data
distribution be used to model an index
structure?

33

Resources

Lectures by the authors:

• Alex Beutel and Ed Chi: Seminar at
Standford

• Tim Kraska at Sigmod 2018

34

https://www.youtube.com/watch?v=NaqJO7rrXy0
https://www.youtube.com/watch?v=NaqJO7rrXy0
https://www.youtube.com/watch?v=MM33CvATm_M&t=1021s

	Slide 1: The Case For Learned Index Structures
	Slide 2: Background/Overview
	Slide 3: Background and Motivation
	Slide 4: Background and Motivation
	Slide 5: Related Work
	Slide 6: Overview
	Slide 7: Range Index
	Slide 8: Range Index
	Slide 9: Model Complexity
	Slide 10: Range Indexes as CDF Models
	Slide 11: A First, Naïve Learned Index
	Slide 12: Recursive-Model Index
	Slide 13: Learning Index Framework
	Slide 14: Recursive-Model Index
	Slide 15: Hybrid Index
	Slide 16: Search Strategies
	Slide 17: Implementation
	Slide 18: Results: RMI
	Slide 19: String Indexing
	Slide 20: Point Index
	Slide 21: Hash-Model Index
	Slide 22: Evaluation – Point Index
	Slide 23: Existence Index
	Slide 24: Existence Index
	Slide 25: Existence Index – Bloom Filter Basics
	Slide 26: Existence Index - Challenges
	Slide 27: Existence Index – Learned Bloom Filters
	Slide 28: Existence Index – Learned Filter Methods
	Slide 29: Evaluation - Existence Index
	Slide 30: Conclusion
	Slide 31: Conclusions
	Slide 32: Current Work
	Slide 33: Study Questions
	Slide 34: Resources

