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Introduction to DBMS Tuning
● DBMS performance depends significantly on optimal configuration

○ Impacts throughput and latency
○ Misconfiguration may lead to data loss

● Configuration consists of hundreds of “knobs”
○ Buffer Pool Size, Checkpoint Frequency, Thread Pool Size, Replication Delay, 

… etc.
● Configuration factors are complex

○ Complexity of interaction is “beyond what humans can reason”
● Yet, DBMSs traditionally are manually tuned
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DBMS Manual Tuning
● Manually tuning is performed by Database Admin (DBA)
● Common for DBA to use “trial and error” approach

○ Measure performance of a sample workload
○ Update knob configurations (usually 1 knob at a time)
○ Repeat until satisfactory performance

● Expensive
○ Nearly 50% of DBMS ownership cost comes from personnel (salary, training, etc)
○ DBAs spend ~25% of time on database tuning

● Challenging
○ Many knobs are not independent
○ Value for some knobs are continuous
○ Successful configurations are application dependant
○ New knobs are introduced with DBMS updates
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DBMS Tuning Challenges

Knob Dependencies

● Changing one knob may affect the 
benefits of another

● Finding the optimal configuration is 
NP-hard

Continuous Knob Settings 

● Many possible settings for a knob
● Irregular performance impact
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DBMS Tuning Challenges

Workload dependant configuration success

● Best configuration for workload can be the 
worst for another

● Learnings from tuning one DBMS may not 
apply to others

New knobs introduced with DBMS updates

● DBAs must stay up to date with new releases
● 3x Postgres and 6x MySQL knobs since 

original release
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Automatic DBMS Configuration Tools

● Automatic DBMS tuning tools have deficiencies
○ Many limited to specific DBMS systems
○ Require manual setups from DBA

■ Database Copying
■ Knob Mapping
■ Training Process Guidance

● OtterTune resolves these limitations
○ DBMS agnostic
○ Fully automated: No required DBA interaction during tuning
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OtterTune: Applying Machine Learning to DBMS Tuning

● OtterTune 
○ Selects the most important knobs
○ Maps new workloads to known workloads, allowing experience transfer
○ Recommends knob settings to improve a target objective

● Achieves 58–94% lower latency compared to default settings or 
configurations generated by other tuning advisors

● Generates configurations within 94% of expert DBAs in under 
60 minutes
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● OtterTune has two main parts: A controller (client-side) and a tuning manager.
a. The tuning manager stores data in OtterTune’s repository.

● OtterTune begins its tuning process by observing the current DBMS configuration in 
time blocks called “Observation Periods”. During such periods, the efficiency of the 
DBMS is recorded.
a.  Observation periods can be fixed length (better for OLTP queries) or variable 

length (better for OLAP).
● After an observation period ends, OtterTune’s controller stores the DMBS metrics. 

Unlike other systems, this process doesn’t need the DBA’s input.
● OtterTune then attempts to understand the significance of the metrics and begins step 

2: recommending ideal knob configurations.
● OtterTune has another trick up its sleeve: the controller gives the DBA an estimate of 

how much better the new configuration is compared to the current one.

System Overview
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●  We are assuming that OtterTune has administrative permission to shut down or modify 
the DBMS.
a. Restarting the DBMS may be necessary to employ new knob configurations.

●  There is a workaround. Many DBMS have dynamic knob changing features that allows 
knobs to be changed without restarting the system.

●  If certain knobs are off-limits, the DBA can manually choose which knobs can be 
modified with a blacklist. OtterTune will keep its hands away from these blacklisted 
knobs.

Assumptions and Limitations
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● Does a configuration perform well? Internal runtime metrics DBMS might help.
● Problem: OtterTune collects all metrics and stores them in key/value pairs because it 

doesn’t know which are useful.
a. A good naming scheming can help alleviate this problem, but distinguishing metric 

types (e.g. Postgres) is hard. A potential solution is to only use sum-scalar values 
to make OtterTune DBMS-agnostic.  

● To get to the important details, OtterTune needs to prune the metric data to reduce the 
amount of processing needed for knob optimization.

Workload Characterization
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● There are too many metrics. Pruning is needed. Use factor analysis (FA) and 
k-means clustering.

● FA reduces the number of necessary metric/knob combinations.
● In K-means, each cluster represents on metric. Similar metrics are clustered.
● With FA and k-means, the MySQL and Postgres metrics are reduced by 93% 

and 82% respectively.

How do we Prune?
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Importance of Identifying Key Configuration Knobs

Purpose of Knob Selection:

● Enhance DBA's target objective function
● Reduce the configuration space by eliminating non-impactful knobs

Impact of Knobs on Performance:

● Discover both positive and negative correlations
● Example: Memory allocation for buffer pool affects latency

Benefits of Pruning Knobs:

● Limits the number of DBMS configurations to consider
● Improves tuning efficiency and effectiveness
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Feature Selection with Lasso Regression

Why Lasso Over OLS:

● Addresses high variance and overfitting in high-dimensional settings
● Performs feature selection by shrinking irrelevant coefficients to zero

How Lasso Works:

● Applies L1 penalty to regression coefficients
● Encourages sparsity, selecting only the most relevant knobs

Implementation in OtterTune:

● Incorporates polynomial features to detect nonlinear dependencies
● Continuously runs in the background, handling large datasets efficiently
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Handling Dependencies and Incremental Knob Selection

Detecting Knob Dependencies:

● Use polynomial features to identify interactions between knobs
● Example: Buffer pool memory allocation interacts with log buffer size

Incremental Knob Selection:

● Dynamically increase the number of knobs used over time
● Balances optimization time with configuration space complexity

Benefits of Incremental Approach:

● Ensures comprehensive search without excessive computational overhead
● Proven to yield better configurations compared to static knob counts
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Overview of Automated Tuning Process

Core Components of OtterTune:

● Non-redundant metrics set
● Most impactful configuration knobs
● Repository of historical tuning data

Iterative Tuning Process:

● Continuous data analysis
● Configuration recommendation loop

Two-Step Analysis Framework:

● Step 1: Workload Mapping
● Step 2: Configuration Recommendation
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Step 1 – Workload Mapping

Objective:

● Match target workload with similar repository workload

Process:

● Construct set S of N matrices for non-redundant metrics
● Compute Euclidean distances across metrics
● Calculate average distance scores to identify best match

Data Normalization:

● Apply decile binning to ensure metrics are comparable
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Step 2 – Configuration Recommendation

Gaussian Process (GP) Regression:

● Models configuration space with confidence intervals
● Balances exploration and exploitation

Handling Uncertainty:

● Increase variance for untested configurations
● Add ridge terms to manage noise

Optimization Strategy:

● Use gradient descent to find local optima
● Initialization set: top-performing and random configurations
● Quick convergence (10–20 seconds per period)
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Evaluating OtterTune – A Breakdown

1. Defining Experimental Workloads
○ Diverse, controlled scenarios to test OtterTune’s effectiveness

2. Bootstrapping with initial Training Data
○ Prime Ottertune with a bit of the “knob-tuning”/feature space

3. Empirical Performance of OtterTune
○ DBMSs for evaluation: MySQL, PostgreSQL, and Actian Vector

○ All algorithms & experiments executed with TensorFlow and scikit-learn
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● YCSB: Yahoo! Cloud Serving Benchmark

○ 6 simple transactions involving random 
access of tuples from a Zipfian distribution

○ Single table w/ 10 columns & 18 million rows 
( ~18 GB of data)

● Primary measurements (OLTP): Throughput and 
P99 latency over a 5-minute workload runtime

Evaluating OtterTune – Experimental Workloads (1)
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Row Index

Row Index

**Zipfian distribution 
concentrates randomized access 

to a handful of tuples/rows**



Evaluating OtterTune – Experimental Workloads (1)

● TPC-C: simulation of a wholesale supply chain comprised of warehouses

○ Encapsulates real-world hierarchical and customer-centric data

○ OtterTune sets W = 200 ;  ~18 GB of data ;  5 OLTP Transactions
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Table Schema (9 tables)



Evaluating OtterTune – Experimental Workloads (1)
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● Wikipedia (OLTP Benchmark): Mocks the website’s MediaWiki backend

○ Consists 8 transactions involving articles, revisions, and user watchlists

○ Contains 11 tables w/ large, complex secondary indexes and foreign keys

○ Database of 100k articles;  ~ 20 GB in size
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Evaluating OtterTune – Experimental Workloads (1)
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● TPC-H: Models a decision support 
system, OLAP-like environment

○ 22 queries of varying complexity

■ Mocks situation where little is 
known about the queries

○ 8 tables in 3NF schema

● Primary measurement (OLAP): Total 
workload execution time



Evaluating OtterTune – Initial Training Data (2)
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● Recall: OtterTune requires previous DB tuning data to operate properly
○ This initial data should not align exactly with the tested workloads

● Solution: Curate different permutations of the workloads
○ 15 variants of YCSB w/ different workload mixtures

○ 4 groups of queries from TPC-H which encapsulate the overall workload

● Parameter sweep over all knobs and possible values;  ~ 30k trials per DBMS
○ OtterTune tracks performance metrics of the DBMS over each setting

○ Initial training data is reset after each experiment



Evaluating OtterTune – Empirical Performance (3)
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● Incremental Knob Selection performs best across all DBMS

○ It is best to begin with a few features to optimize first, then gradually expand the 
feature space for even more optimization



Evaluating OtterTune – Empirical Performance (3)
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● OtterTune outperforms existing 
tuning tool, iTuned

○ iTuned samples on the current 
workload for initialization, rather 
than requiring previous tuning 
sessions



Evaluating OtterTune – Empirical Performance (3)
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● Execution Time Breakdown

TPC-C TPC-H

Vector has very long reload 
times because all data needs 
to be reloaded into memory on 
restart (but workload takes ~5 
seconds to execute)

OLTP workloads were 
expected to be 5 minutes 
to align with OtterTune’s 
observation period

Increased preparation 
time for Postgres due to 
vacuum command to 
reclaim stale storage 
between runs



Evaluating OtterTune – Empirical Performance (3)
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● OtterTune is on par with–if not, better than–Human DBAs

○ Effectiveness seen on both MySQL and PostgreSQL

○ However, OtterTune optimizes purely for latency reduction and throughput

■ e.g. DBA sets the max # of Postgres log files to be 16-64, but OtterTune sets this to 
540, fully neglecting the cost of recovery time in blind favor of I/O performance



Related Work: Existing Solutions

Physical design: indexing, partitioning schemas, views, etc.

Auto tune DBMSs’ config knobs

1) Rule-based approaches
2) ML-based approaches
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Related Work: Rule-based Approaches

Predefined set of rules/ heuristics

- System specific
- Limited scope (only target a specific group of knobs)
- Requires manual intervention

IBM DB2, Oracle, BestConfig, etc.
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Related work: ML-based approaches

iTuned

- Pro: improving both latency or throughput
- Con: cannot transfer learned insights from previous tuning sessions
- Requires significantly more time for training

Uses Gaussian Process (GP) models to optimize configurations but starts each 
tuning session with stochastic sampling (e.g., Latin Hypercube Sampling), 
requiring substantial time to populate its models.

-> non-reusable config -> no transfer learning -> inefficient when applied to new 
workloads

31(Cheng
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Follow-up Work: ML-based approaches

DNN - Ottertune (2019) 

Gaussian Process models do not perform well on larger data sets and 
high-dimensional feature vectors.

-> use deep neural network (DNN)

instead of the Gaussian models

32(Cheng
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Conclusion

improves both latency and throughput without comprising either.

33(Cheng
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Conclusion

Unlike previous tuning tools, OtterTune 

- reuses training data gathered from previous tuning sessions. 
- uses a combination of supervised and unsupervised machine learning 

methods to 

(1) select the most impactful knobs, 

(2) map previously unseen database workloads to known workloads, and 

(3) recommend knob settings.

34(Cheng
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Questions

- Stopping/starting criteria?
- As workload shifts over time, how to detect when it has changed to the point 

where tuning is needed? 
- What about multi-objective optimization? (for example, tradeoff between 

latency and recovery)
- How does OtterTune's performance compare to DB-specific tuning tools 

such as PgTune for PostgreSQL or MyTune for MySQL? Are there any 
benchmarks or evaluations available that highlight OtterTune's advantages or 
limitations in comparison to these tools?
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