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What is Auto-Tables

● Automatically converts complex, non-relational tables into standard 
relational formats for easy querying, using predefined transformations 
without needing user input

● Key Features:
○ Set of predefined transformation operators
○ Computer-vision inspired model architecture
○ Automatic table relationalization
○ Efficient and Fast

Hanqi Hua 2



Why Auto-Tables

● Sampled hundreds of user spreadsheets (in Excel) and web tables 
(from Wikipedia)

● Around 30-50% tables do not conform to the relational standard
● Require complex manual table-restructuring transformations before 

these tables can be queried easily using SQL-based tools.
● Prevalent at a very large scale (millions of tables like these)
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Why Auto-Tables E.g.

Hanqi Hua 4



Why Auto-Tables E.g.
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Why Auto-Tables concl.

● Both technical and non-technical users complain about the difficulty of 
doing manual transformations
○ Many questions on Excel & Tableau forums and StackOverflow

● Auto-Tables: 
○ Automatically synthesize pipelines with multi-step transformations
○ Over 70% of success rate on test cases at interactive speeds
○ Without requiring any input from users
○ Effective tool for both technical and non-technical users to 

prepare data for analytics
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Table Restructuring Operators

● Eight table restructuring operators cover most scenarios of relationalizing 
tables

● Need to predict exactly which operation + what parameter values
● Need a “None” operator to represent tables that don’t need transformation.
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Problem Statement

● Generate a series of operators & parameters that relationalizes the table
● Parameter spaces can be large

○ Table with 50 columns can have 50x50=2500 combinations for start_idx, end_idx
○ This increases multiplicatively for multi-step transformations.  25002 = ~6M
○ Need to predict exact transformation and parameters.  Cannot be off! 

■ transpose(), stack(“2015”, “2020”)
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Architecture Overview

Offline

1. Training data generation using inverse operators
2. Input-only synthesis model training
3. Reranking model for outputs from step 2

Online

1. Generate outputs using input-only synthesis model
2. Use reranking model with outputs from step 1 to determine most likely final table
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Architecture Overview
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Semi Supervised Training Data Generation

● Main challenge: not enough existing labeled training data for CV model
● Leverage inverse operators to generate high volume of training data

○ Inverse of “transpose” is “transpose”
○ Inverse of “wide-to-long” is [“stack”, “split”, “pivot”]

● Data augment from existing relational tables.
○ Cropping - randomly sample contiguous blocks of rows or columns
○ Shuffling - randomly reordering rows or columns

● 15k Relational Tables * 20 augmentations
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Semi Supervised Training Data Generation
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Input-only Synthesis

After obtaining large amounts of training data in the form of 
(T ,Op ) using self-supervision, we now describe our 
“input-only” model that takes T as input, to predict a 
suitable transformation Op ,  and it has two parts:

1. Model architecture
2. Training and inference
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Model architecture
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Model architecture
1. Table embedding layers capture information about:
● “syntactic feature” (e.g., data-type,string-length, punctuation, etc.) using syntactic 

feature extractor
● “semantic features” (e.g., people-names, company-names, etc.) using pretrained 

sentence BERT

2. Dimension reduction layers:

● Using two convolution layers with 1 ×1 kernels, to reduce the dimensionality from 423 
to 64 and then to 32, to produce a 𝑛 × 𝑚 × 32 tensor.
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Model architecture
3. Feature extraction layers:

● Using convolution filters similar to CNN with 1x2 and 1x1 convolution filters followed by 
average-pooling, in both row and column directions, to represent rows/columns/header.

Example:

4. Output layers: Use two fully connected layers followed by softmax 
classification to produce a 270 dimensions output vector that encodes 
both the predicted operator type, and its parameters for a given 𝑇.
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Training and inference
Training time: Loss Function is the summation of cross-entropy loss

Inference time: Synthesizing transformations
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Training and inference

● O*
p gives us the most likely one-step transformation given 𝑇. And 

tables may require multiple transformation steps for our task.

● To synthesize multi-step transformations,  one possible solution is 
consider only the top-1 choice at each step, but it’s not optimal.

● Therefore, we consider top-k choices at each step to find the most 
likely multi-step transformations overall. 

● We perform the beam search on the most likely top-𝑘 steps, to get 
the most likely operator and parameters sequence.
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Input/Output Reranking

● Challenge: sometimes input characteristics alone are not sufficient to predict 
the best transformation

● Solution: Use both input table T and output table M(T) to re-rank 
transformations to predict the best transformation
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Input/Output Reranking Model

● Step 1: Input-only synthesis model generates a set of top-k likely transformations.
● Step 2: For each transformation, apply it to the input table T to generate the output tables.
● Step 3: Convert each output table into a feature vector (using embedding and feature extraction).
● Step 4: Concatenate feature vectors of all top-k transformations and use fully connected layers to 

generate re-ranking scores.
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Experiments

● Performed extensive evaluation of the algorithms using real test data
● Experimental Setup:

○ Data Sources:
■ Forums, Jupyter Notebooks, Excel/Web Tables

○ Benchmark:
■ Total of 244 test cases (26 require multi-step transformation)
■ Each case has an input table, the ground-truth transformation, and the expected output 

table that is relational
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Evaluation

Quality: Hit@K

Efficiency: Latency of synthesis using wall-clock time
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Results

Different table representations SQL-by-example
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Related work

● By-example transformation using program synthesis
○ “Row-to-row” transformations (e.g. TDE  and FlashFill )
○ “Table-to-table” transformations (e.g., Foofah, PATSQL, QBO, and Scythe)
○ Orthogonal to Auto-tables

● Computer vision models for object detection
○ Algo in Auto-Tables inspired by CNN-architectures for object detection
○ But specifically designed for table transformation task.

● Representing tables using deep models
○ E.g., TaBERT, Tapas, Turl, etc.
○ Focus on natural-language (NL) aspects of tables, and tailor to NL-related tasks
○ Not suited for table-transformation task

● Database schema design
○ Decompose one large table into multiple smaller tables (3NF, BCNF, etc.)
○ Reconstruction in Auto-Tables is always single-table to single-table
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Conclusion

Auto-Tables: 

● Synthesize transformations to relationalize tables 
● Use compute-vision-inspired algorithms
● Obviate the need for users to provide input/output examples
● Efficient and fast

Future Work:

● Extend the functionality to a broader set of operators
● Explore the applicability of this technique on other classes of transformations.
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Study Questions

1. How does Auto-Tables’ use of self-supervision and computer vision 
techniques contribute to its ability to transform tables without requiring user 
examples?

2. What are the key challenges in transforming non-relational tables to relational 
formats, and how does Auto-Tables address these challenges compared to 
traditional methods?
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