Auto-Tables: Synthesizing Multi-Step Transformations to Relationalize Tables without Using Examples

Peng Li, Yeye He, Cong Yan, Yue Wang, Surajit Chaudhuri Published: 01 July 2023 Published in PVLDB Volume 16, Issue 11

Presented by Evan Yuchen Zhu, Hangtian Zhu, Hanqi Hua, Minzhi Wang, Peter James Feng

What is Auto-Tables

- Automatically converts complex, non-relational tables into standard relational formats for easy querying, using predefined transformations without needing user input
- **Key Features:**
	- Set of predefined transformation operators
	- Computer-vision inspired model architecture
	- Automatic table relationalization
	- Efficient and Fast

Why Auto-Tables

- Sampled hundreds of user spreadsheets (in Excel) and web tables (from Wikipedia)
- Around **30-50%** tables do not conform to the relational standard
- Require complex manual table-restructuring transformations before these tables can be queried easily using SQL-based tools.
- Prevalent at a very large scale (**millions** of tables like these)

Why Auto-Tables E.g.

(a) Stack: transforming homogeneous columns into rows.

The colored columns in input are homogeneous and should collapse together.

(b) Wide-to-long: transforming repeating column groups into rows. The colored col-groups in input have repeating patterns and should collapse.

Why Auto-Tables E.g.

(c) Transpose: transforming rows to columns and vice versa. The colored rows in input have homogeneous content in the horizontal direction.

- 8 Link: https://www.finn.no/bap/forsale/ad.html?finnkode=155541389
- 9 Found: 21-Oct-19 10:22:46
- 10 Title: Panasonic Lumix G 25mm F1.4 ASPH
- 11 Price: 3200 kr
- 12 Link: https://www.finn.no/bap/forsale/ad.html?finnkode=161066674

(d) Pivot: transforming repeating row groups into columns.

The colored rows in input have repeating patterns that should become cols.

Why Auto-Tables concl.

- Both technical and non-technical users complain about the difficulty of doing manual transformations
	- Many questions on Excel & Tableau forums and StackOverflow
- Auto-Tables:
	- Automatically synthesize pipelines with multi-step transformations
	- Over **70%** of success rate on test cases at interactive speeds
	- Without requiring any input from users
	- Effective tool for both technical and non-technical users to prepare data for analytics

Table Restructuring Operators

- Eight table restructuring operators cover most scenarios of relationalizing tables
- Need to predict exactly which operation + what parameter values
- Need a "None" operator to represent tables that don't need transformation.

Table 1: AUTO-TABLES DSL: table-restructuring operators and their parameters to "relationalize" tables. These operators are common and exist in many different languages, like Python Pandas and R, sometimes under different names.

Problem Statement

DEFINITION 1. Given an input table T , and a set of operators $O = \{stack, transpose, pivot, ...\}$, where each operator $O \in O$ has a parameter space $P(O)$. Synthesize a sequence of multi-step transformations $M = (O_1(p_1), O_2(p_2), \ldots, O_k(p_k))$, with $O_i \in \mathbf{O}$ and $p_i \in P(O_i)$ for all $i \in [k]$, such that applying each step $O_i(p_i) \in$ M successively on T produces a relationalized version of T .

- Generate a series of operators & parameters that relationalizes the table
- Parameter spaces can be large
	- Table with 50 columns can have 50x50=2500 combinations for *start_idx*, *end_idx*
	- \circ This increases multiplicatively for multi-step transformations. 2500² = \sim 6M
	- Need to predict **exact** transformation and parameters. Cannot be off!
		- transpose(), stack("2015", "2020")

Architecture Overview

Offline

- 1. Training data generation using inverse operators
- 2. Input-only synthesis model training
- 3. Reranking model for outputs from step 2

Online

- 1. Generate outputs using input-only synthesis model
- 2. Use reranking model with outputs from step 1 to determine most likely final table

Architecture Overview

Figure 5: Architecture overview of AUTO-TABLES

Semi Supervised Training Data Generation

- Main challenge: not enough existing labeled training data for CV model
- Leverage **inverse operators** to generate high volume of training data
	- Inverse of "transpose" is "transpose"
	- Inverse of "wide-to-long" is ["stack", "split", "pivot"]
- Data augment from existing relational tables.
	- Cropping randomly sample contiguous blocks of rows or columns
	- Shuffling randomly reordering rows or columns
- 15k Relational Tables * 20 augmentations

Figure 6: Leverage inverse operators to generate training data. In order to learn-to-synthesize operator O , we can start from any relational table R, apply its inverse operator O^{-1} to obtain $O^{-1}(R)$. Given $T = O^{-1}(R)$ as an input table, we know O must be its ground-truth transformation, because $O(O^{-1}(R)) = R$.

Semi Supervised Training Data Generation

Algorithm 1: Auto-gen training examples

```
input : DSL operators O, large collections of relational tables R
   output : Training table-label pairs: (T, O_p)1 E \leftarrow \{\}2 foreach O in O do
       foreach R in R do
 3
            foreach R' in Augment(R) // Crop rows and columns
 4
             do
 5
                 p \leftarrow sample valid parameter from space P(O)6
                 O_{p'}^{-1} \leftarrow construct the inverse of O_p7
                T \leftarrow O_{p'}^{-1}(R')8
                E \leftarrow E \cup \{(T, O_p)\}\9
10 return all training examples E
```
Input-only Synthesis

After obtaining large amounts of training data in the form of (*T* , $O_p^{}$) using self-supervision, we now describe our "input-only" model that takes *T* as input, to predict a suitable transformation *O p ,* and it has two parts:

- 1. **Model architecture**
- 2. **Training and inference**

Model architecture

Model architecture

- 1. Table embedding layers capture information about:
- "*syntactic feature*" (e.g., data-type,string-length, punctuation, etc.) using syntactic feature extractor
- "*semantic features*" (e.g., people-names, company-names, etc.) using pretrained sentence BERT
- 2. Dimension reduction layers:
- Using two convolution layers with 1 \times 1 kernels, to reduce the dimensionality from 423 to 64 and then to 32, to produce a $n \times m \times 32$ tensor.

Model architecture

- 3. Feature extraction layers:
- Using convolution filters similar to CNN with 1x2 and 1x1 convolution filters followed by average-pooling, in both row and column directions, to represent rows/columns/header.

4. Output layers: Use two fully connected layers followed by softmax classification to produce a 270 dimensions output vector that encodes both the predicted operator type, and its parameters for a given T .

Training and inference

Training time: Loss Function is the summation of cross-entropy loss

$$
Loss(T) = L(O, \hat{O}) + \sum_{p_i \in P, \hat{p}_i \in \hat{P}} L(p_i, \hat{p}_i)
$$

$$
L(y, \hat{y}) = -\sum_{i=1}^{n} y_i log(\hat{y}_i)
$$

Inference time: Synthesizing transformations

$$
Pr(O_P|T) = Pr(O) \cdot \prod_{p_i \in P} Pr(p_i)
$$

$$
O_P^* = \underset{O,P}{\text{arg max}} Pr(O_P|T)
$$

Hangtian Zhu 17

Training and inference

- \bullet \circ \circ gives us the most likely one-step transformation given T. And tables may require multiple transformation steps for our task.
- To synthesize multi-step transformations, one possible solution is consider only the top-1 choice at each step, but it's not optimal.
- Therefore, we consider top-k choices at each step to find the most likely multi-step transformations overall.
- We perform the beam search on the most likely top- k steps, to get the most likely operator and parameters sequence.

Input/Output Reranking

- Challenge: sometimes input characteristics alone are not sufficient to predict the best transformation
- Solution: Use both input table *T* and output table *M(T)* to re-rank transformations to predict the best transformation

Input/Output Reranking Model

- **Step 1**: Input-only synthesis model generates a set of top-k likely transformations.
- **Step 2**: For each transformation, apply it to the input table *T* to generate the output tables.
- **Step 3**: Convert each output table into a feature vector (using embedding and feature extraction).
- **Step 4**: Concatenate feature vectors of all top-k transformations and use fully connected layers to generate re-ranking scores.

Evan Zhu 20

Experiments

- Performed extensive evaluation of the algorithms using real test data
- **● Experimental Setup:**
	- **○ Data Sources:**
		- Forums, Jupyter Notebooks, Excel/Web Tables
	- **○ Benchmark:**
		- Total of 244 test cases (26 require multi-step transformation)
		- Each case has an input table, the ground-truth transformation, and the expected output table that is relational

Evaluation

Quality: Hit@K

$$
Hit@k(T) = \sum_{i=1}^k \mathbf{1}(\hat{M}_i(T) = M_g(T))
$$

Efficiency: Latency of synthesis using wall-clock time

Table 3: Quality comparison using Hit@k, on 244 test cases

Different table representations SQL-by-example

Table 4: Synthesis latency per test case

Table 5: Ablation Studies of AUTO-TABLES

Table 6: Sensitivity to different semantic embeddings.

Related work

- By-example transformation using program synthesis
	- "Row-to-row" transformations (e.g. TDE and FlashFill)
	- "Table-to-table" transformations (e.g., Foofah, PATSQL, QBO, and Scythe)
	- Orthogonal to Auto-tables
- Computer vision models for object detection
	- Algo in Auto-Tables inspired by CNN-architectures for object detection
	- But specifically designed for table transformation task.
- Representing tables using deep models
	- E.g., TaBERT, Tapas, Turl, etc.
	- Focus on natural-language (NL) aspects of tables, and tailor to NL-related tasks
	- Not suited for table-transformation task
- Database schema design
	- Decompose one large table into multiple smaller tables (3NF, BCNF, etc.)
	- Reconstruction in Auto-Tables is always single-table to single-table

Conclusion

Auto-Tables:

- Synthesize transformations to relationalize tables
- Use compute-vision-inspired algorithms
- Obviate the need for users to provide input/output examples
- Ffficient and fast

Future Work:

- Extend the functionality to a broader set of operators
- Explore the applicability of this technique on other classes of transformations.

Study Questions

- 1. How does Auto-Tables' use of self-supervision and computer vision techniques contribute to its ability to transform tables without requiring user examples?
- 2. What are the key challenges in transforming non-relational tables to relational formats, and how does Auto-Tables address these challenges compared to traditional methods?