
Milvus: A Purpose-Built Vector 
Data Management System
SIGMOD 2021

Jianguo Wang*, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo, 
Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng
Zhang, Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, Charles Xie

Zilliz & Purdue University

Presented By:

Puxuan Wang, Anubhav Mathur, Tanmay Sutar, Ignacio B Di Leva



 Agenda

• Introduction & System Design

• Heterogeneous Computing for Milvus

• Advanced Query Filtering

• System Implementation

• Applications

• Evaluation

• Related Work

• Conclusion



• The exponential growth of high-dimensional vector data, driven by 
unstructured data such as images, videos, and text, has significantly 
increased the demand for efficient vector data management. 

• With 80% of global data projected to be unstructured by 2025, a robust 
vector data management system is essential.

3 | Puxuan Wang

Motivation



4 | Puxuan Wang

Challenges

Performance challenges

Functionality constraints

Distributed System challenges

Systems like Facebook Faiss and 

Microsoft SPTAG lack support for 

distributed data management and dynamic 

updates.

Advanced query processing capabilities, 

such as attribute filtering and multi-vector 

queries, are rarely supported.

Handling large-scale and dynamic vector 

data efficiently is often infeasible.



Milvus

• Full support for billion-scale data, dynamic 
vector data, and distributed architecture.

• GPU optimizations for enhanced performance 
and compatibility with modern computing 
platforms.

• Comprehensive query processing capabilities, 
including attribute filtering and multi-vector 
queries.

5 | Puxuan Wang



System Design

• Query Engine: Optimized for modern CPUs with 
reduced cache misses and SIMD instruction 
utilization, it supports vector similarity search, 
attribute filtering, and multi-vector queries.

• GPU Engine: Accelerates computations with 
multi-GPU support and hybrid indexing, 
integrating CPU and GPU strengths.

• Storage Engine: Implements dynamic vector 
data management using the LSM-tree structure 
and supports various storage solutions like 
Amazon S3, HDFS, and local file systems.

6 | Puxuan Wang



Heterogeneous 
Computing for Milvus



Vector Quantization

• Process that simplifies high-dimensional 
vectors by mapping them to codewords from 
a predefined codebook (K-Means)

• The data space is divided into clusters 
(e.g., with centroids c0, c1, c2).

• Each vector (e.g., v0, v1, … ,v9) is mapped 
to the nearest centroid of the cluster it 
belongs to.

8 | Anubhav Mathur



Querying in Quantization based Indexes

• Find Closest Centroids (Coarse Search):

• The query vector q is compared to the centroids to 
identify the nearest nprobe  clusters.

• nprobe  controls the balance between search accuracy and 
speed

• Search Within Clusters (Fine Search):

• After identifying relevant clusters, the query searches 
within the vectors of those clusters using the fine 
quantizer's representation.

• Different indexes use different fine quantizers:

• IVF_FLAT: Keeps the original vectors for 
comparisons.

• IVF_SQ8: Compresses the vector values (e.g., 4-
byte floats into 1-byte integers).

• IVF_PQ: Splits each vector into sub-vectors and 
applies quantization within each

9 | Anubhav Mathur

q: Return top k similar vectors



Inefficient Use of CPU Cache in Query Processing

• Faiss Approach: Threads process one query at a time, streaming the entire dataset through CPU caches.

• Data cannot be reused for subsequent queries.

Key Issues:

1. Frequent Cache Misses:

• L3 cache (10s of MB) is underutilized as data is repeatedly loaded from main memory.

• High latency due to excessive memory access.

2. Underutilized Multi-Core CPUs:

• Threads only process individual queries, leaving CPU cores underloaded, especially for small query 
batches.

10 | Anubhav Mathur



Milvus Cache Aware Optimization

• Partitioning Data Vectors:

• Dataset is divided into chunks (b=n/t) and assigned to 
threads.

• Each thread loads its data chunk into L3 cache, reusing it 
across multiple queries to reduce memory access.

• Query Blocking:

• Queries are grouped into blocks (s) that fit entirely into L3 
cache.

• All queries in a block reuse the same cached data vectors.

• Heap Per Query Per Thread:

• Each thread maintains a separate heap for every query in the 
block.

• Heaps store the top-k results for each query.

• After processing, these per-thread heaps are merged to 
produce the final top-k results per query.

11 | Anubhav Mathur



Milvus GPU Optimizations

12 | Anubhav Mathur

Optimization Problem in Faiss Milvus Solution Benefits

Supporting Larger k
Faiss supports k ≤ 1024 

only.

Round-based query 

processing to support k > 

1024.

Enables applications like 

video surveillance and 

recommendation systems 

requiring k > 1024.

Multi-GPU Support
GPU count must be 

declared at compile time.

Dynamic GPU selection with 

segment-based scheduling.

Flexible deployment on 

servers with varying GPU 

resources.



GPU and CPU Co-Design in Milvus

13 | Anubhav Mathur

• CPU is better for:

• Tasks with scattered I/O, such as scanning 
vectors within buckets.

• Handling smaller query batch sizes where GPU 
overhead is significant.

• GPU is better for:

• Parallel computation-intensive tasks, such as 
comparing queries against centroids.

• Processing large query batch sizes, where data 
transfer overhead is amortized.

Milvus proposes SQ8H (Hybrid IVF_SQ8): A hybrid 

algorithm that dynamically partitions the query workload 

between GPU and CPU.

• GPU handles centroid comparisons (Step 1), and 

CPU handles bucket scanning (Step 2) for small 

query batches.

• For large query batches, the entire workload is 

processed on the GPU with efficient data transfers.



Advanced Query Filtering



It considers attribute constraints (Ca) and vector constraints (Cv) 
where Ca is within a range [p1, p2].1. Attribute Filtering

Strategy A: attribute-first-vector-full-

scan

• Uses Ca to get entities

• Scans these entities to get top-k 

results

• Only useful when Ca is highly 

selective.

Strategy B: attribute-first-vector-

search

• Uses Ca to get entities

• makes bitmap of resultant entity 

IDs. 

• Checks Cvs against bitmap to get 

top-k results.

• Suitable when Ca or Cv is 

moderately selective.

Strategy C: vector-first-attribute-full-

scan

• Uses Cv to get entities

• Scans these entities to check for 

Ca.

• Only useful when Cv is highly 

selective.

Strategy D: cost-based

• Estimates cost of strategies A,B 

and C and picks the least cost 

strategy.

15 | Tanmay Sutar



Strategy E: Partition 
based strategy for 
Attribute Filtering

• Divides the dataset into partitions based on frequently 
searched attributes.

• Example: Dataset split into 5 partitions for price 
ranges:

P0 [1-100], P1 [101-200], P2 [201-300], etc.

• For each query, only search partitions whose ranges 
overlap with the query's attribute filter.

• If a partition is fully covered by the query range, skip 
attribute checks and focus only on vector search.

• Partitions are created offline based on historical data.

• The number of partitions (ρ) is user-configurable

16 | Tanmay Sutar



Vector Fusion Approach Iterative Merging Approach

• Iteratively query top-𝑘' vectors for 
each q.v_i on D_i.

• NRA algorithm is used over results to 
determine top-𝑘 entities.

• If top-𝑘 results are not fully determined, 
increase k'.

• No reliance on getNext() for efficient 
indexing.

• Adaptive k' to control the number of 
steps.

2. Multi-Vector Queries: 

• Concatenate vectors for each 

entity: [e.v0,e.v1,...,e.vμ−1] 

[e.v0 ,e.v1 ,...,e.vμ−1 ].

• Aggregate query vectors using g, e.g., 

weighted 

sum: [w0×q.v0,w1×q.v1,...,wμ−1×q.vμ−1][w0 ×

q.v0 ,w1 ×q.v1 ,...,wμ−1 ×q.vμ−1 ].

• Search aggregated query vector against 

concatenated vectors in dataset.

17 | Tanmay Sutar



System Implementation



Asynchronous Process

• Offloads write requests and index 
building to background

• This makes it responsive to new 
queries and inputs while also 
processing past data in the 
background.

Snapshot Isolation

• Milvus manages dynamic data 
following the LSM-style: new data 
inserted to memory first and then 
flushed to disk as immutable 
segments.

• Each segment has multiple versions 
and a new version is generated 
whenever the data or index in that 
segment is changed.

System Implementation

19 | Tanmay Sutar



Distributed System

System Implementation

20 | Tanmay Sutar

• Shared-Storage Architecture: Separates computing and storage for elasticity, 
leveraging Amazon S3 for high-availability storage.

• Three-Layer Design:

• Storage Layer: Stores data on S3.

• Computing Layer: Stateless layer with a single writer for updates and 
multiple readers for queries.

• Coordinator Layer: Handles metadata, sharding, and load balancing 
using Zookeeper for high availability.

• Optimizations for Performance:

• Logs (not raw data) are sent to storage to reduce network overhead.

• Local caching on SSDs and memory minimizes frequent S3 access.

• Scalability and Reliability:

• Kubernetes manages instances for auto-scaling and crash recovery.

• Write-ahead logging ensures data consistency during writer crashes.



Applications



Applications

• Image Search: Images are converted to 
vectors using deep learning, such that similar 
images tend to produce similar vectors. 
Images are stored with their vectors so that 
one can query to obtain similar images.

• Chemical Structure Analysis: Chemical 
structures are encoded to high-dimensional 
vectors, and with vector similarity queries, 
one can find similar chemical structures that 
can help understand a particular structure.

22 | Ignacio Di Leva

Source: https://github.com/milvus-io/bootcamp



Evaluation



Evaluation: Comparison with Prior Systems

24 | Ignacio Di Leva

• Evaluation metrics: recall to evaluate the accuracy 
of some top-k queries, as well as throughput 
(Queries Per Second) of randomized queries.

• Competitors: Two open source systems, Jingdong 
Vearch and Microsoft SPTAG, as well as three 
anonymized commercial ones (Systems A, B, C).

• Datasets: Based on public datasets SIFT1B and 
Deep1B, but truncated to facilitate building indexes 
on prior systems.

• Result: Milvus is the most performant at each recall 
threshold.



Evaluation: Optimizations

25 | Ignacio Di Leva

• Cache-Aware Design: The authors 
analyze the impact of their cache-aware 
implementation against the original 
implementation in Faiss and confirmed 
the speedup.

• SIMD Optimizations: The authors added 
AVX512 SIMD support, which isn’t fully 
supported in Faiss, and confirmed the 
speedup for large amounts of data.

• Hybrid Algorithm SQ8H: The authors 
show that their hybrid algorithm is better 
than SQ8 in full-CPU or full-GPU, 
highlighting the benefits of 
heterogeneous computing.



Related Work



Related Work and Key Difference of Milvus

• Vector similarity search has already been extensively studied in both approximate search 
and exact search variants. Milvus focuses on approximate search.

• Prior works on approximate search can be classified into four categories:
• LSH-based: Uses Locality Sensitive Hashing for Approximate Nearest Neighbor.
• Tree-based: Uses data structures like k-d trees and random projection trees.
• Graph-based: Uses approximation graphs to find the nearest neighbors in an original 

graph.
• Quantization-based: Explored in presentation, includes Faiss and some Milvus 

indexes.

• A key difference between the related work and the Milvus work is that Milvus is a vector 
data management system, and it is composed of many engines (query, GPU, storage); it is 
more than one index or one search algorithm. It is also the first scalable system that 
specializes in vectors.

27 | Ignacio Di Leva



Conclusion



Conclusion

• Milvus addresses the problem of searching large-scale vector data, which has 
applications in data science and AI applications.

• The work identifies issues in systems that are not specialized or not prepared 
for large-scale vector data input. It proposes and implements a solution using 
many computing techniques.

• The authors show applications of their vector data management system and 
performance improvements over prior systems.

29 | Ignacio Di Leva



Study Questions



Study Questions

31

1. How does Milvus address the limitations of GPU memory and PCIe 
bandwidth in its GPU and CPU co-design, and why is the hybrid SQ8H 
algorithm effective for balancing computation and I/O between GPU and 
CPU?

2. What does it mean for Milvus to be cache-aware? How does Milvus 
leverage the L3 cache for its processing in CPU?



Thank You


	Slide 1: Milvus: A Purpose-Built Vector Data Management System SIGMOD 2021
	Slide 2:   Agenda 
	Slide 3: Motivation
	Slide 4: Challenges
	Slide 5: Milvus
	Slide 6: System Design
	Slide 7: Heterogeneous Computing for Milvus
	Slide 8: Vector Quantization
	Slide 9: Querying in Quantization based Indexes
	Slide 10: Inefficient Use of CPU Cache in Query Processing
	Slide 11: Milvus Cache Aware Optimization
	Slide 12: Milvus GPU Optimizations
	Slide 13: GPU and CPU Co-Design in Milvus
	Slide 14: Advanced Query Filtering
	Slide 15: Attribute Filtering
	Slide 16: Strategy E: Partition based strategy for Attribute Filtering
	Slide 17: 2. Multi-Vector Queries:  
	Slide 18: System Implementation
	Slide 19: System Implementation
	Slide 20: System Implementation
	Slide 21: Applications
	Slide 22: Applications
	Slide 23: Evaluation
	Slide 24: Evaluation: Comparison with Prior Systems
	Slide 25: Evaluation: Optimizations
	Slide 26: Related Work
	Slide 27: Related Work and Key Difference of Milvus
	Slide 28: Conclusion
	Slide 29: Conclusion
	Slide 30: Study Questions
	Slide 31: Study Questions
	Slide 32: Thank You

