
Resource Management in
Aurora Serverless

Paper by Amazon Web Services

Authors - Bradley Barnhart, Marc Brooker, Daniil Chinenkov, Tony Hooper, Jihoun Im, Prakash
Chandra Jha, Tim Kraska, Ashok Kurakula, Alexey Kuznetsov, Grant McAlister, Arjun

Muthukrishnan, Aravinthan Narayanan, Douglas Terry, Bhuvan Urgaonkar, Jiaming Yan

Presented by Avinash S Atluru, Aditya Chaurasia, Chang Che, Jinghao Miao, Wesley Gao

1

Background & Motivation

2

• Definition: An on-demand, autoscaling relational database service with MySQL
and PostgreSQL compatibility.

• Primary Benefit: Eliminates the need for customers to manage database
capacity, reducing both costs and complexity.

• Capacity Management: Utilizes Aurora Capacity Units (ACUs), allowing dynamic
scaling between user-defined minimum and maximum limits.

Introduction to Aurora Serverless

3 Chang Che

• Traditional Database Scaling Issues

• Users must provision fixed resources, leading to inefficiencies.

• Over-provisioning during low demand, and performance issues at peak times.

• User Demand: Growing need for flexible, cost-efficient, and self-managing
databases.

Problem and Motivation

4 Chang Che

• Aurora Serverless Solution

• Scales resources up and down as needed, reducing costs and ensuring

performance stability across workload variations.

• Scaling Approach:

• Granular Scaling: Adjusts in small ACU increments.

• Usage-Based Charging: Pay only for what is used.

• Efficiency and Availability: System ensures high host utilization and fast
resource adjustments to handle workload surges.

Why Aurora Serverless?

5 Chang Che

Related Work

6

• Heracles, Sharc, Pythia

• Use Approaches like “colocating CPU- vs. memory- vs. network-intensive workloads” to

optimize resource allocation; however, they often lack the needed for real-time adaptation.

• Modellus

• Use approaches like queueing theory and control methods to optimize resources. Aurora

Serverless uses recent demand data rather than long-term predictions, which achieves better

simplicity and accuracy.

• Remus, Sandpiper

• Live migration as a method for resource management has been discussed in these research,

but its complexity has limited its practical deployment. Aurora Serverless overcomes these

limitations, providing a scalable solution that adjusts resources flexibly based on demand.

Aurora VS other database services

7 Chang Che

Overview

8

● Fleet-Wide Management:

○ Ensures balanced resource utilization with host allocations and migrations

● Host Level Management:

○ Manages resources for individual instances on a single host

● In-Place Scaling:

○ Dynamically adjusts instance resource allocations (ACUs) to meet changing demands without

downtime.

● Boundary Management:

○ Ensures efficient resource usage by adjusting reserved ACUs based on observed trends

● Regulated Scale-Up:

○ A token bucket mechanism controls the rate of instance scaling.

○ Prevents fast-growing instances from saturating hosts, ensuring smooth resource allocation and

allowing time for live migrations.

What is Aurora Serverless Accomplishing?

9 Avinash
Atluru

The Aurora Serverless
Capacity Bounds

10

● Aurora Serverless dynamically adjusts the necessary resources (such as CPU,

memory, and throughput) to match demand

● Resources are measured by Aurora Capacity Units (ACUs)

○ Combination of 2GB of memory, corresponding CPU (0.25 vCPU), networking, and storage

throughput

● Capacity Bounds (the range)

○ Minimum of 0.5 ACUs

○ Maximum of 128 ACUs

● Goal: Ensuring consistent performance, cost-efficiency, and responsiveness

Aurora Serverless Capacity Bounds

11 Wesley Gao

Aurora Serverless Capacity Bounds: ACUs and Scaling

● Given a boundary range, ACUs are scaled up or down based on the demand
from the client

● Scaled how?
○ Granularity - Aurora Serverless adjusts the capacity in larger steps instead of tiny

increments
■ Helps avoid frequent adjustments that may be costly to the client, optimizing cost and

performance stability

● Example:
○ If an increased workload is experienced, then AS will not automatically increase the ACUs

until a certain threshold is reached

● Customer charges are calculated at 1-second granularity, offering a pay-as-you-
go experience

12 Wesley Gao

● Main factors that were considered by the authors when designing AS were:
1. Pay-as-you-go

a. how close to a fully pay-as you-go experience can we offer the customer?

2. Quick resume
a. how efficiently and quickly can we resume a customer that returns after a period of

inactivity?

3. Utilization
a. at how high a utilization level can we operate our infrastructure?’

● Trade-offs:
○ Fully pausing databases save costs but slows resumption
○ Setting a minimum ACU allows for cost savings while also being able to quickly resume

Aurora Serverless Capacity Bounds: Design Factors

13 Wesley Gao

From ASv1 to ASv2

14

Session Transfer

ASv1 ?

Relaunch Needed

Find Quiet Point

Session NOT supported!

Features NOT added!

Only 2x or 0.5x scaling

Influence User Experience

Temporary Tables

Cost-Efficient OR Fast Response

15 Jinghao Miao

Scale IN-PLACE

ASv2 ?

Relaunch Not Needed

Scale Simultaneously

No Session Transfer

No Feature Difference

Scale by ±0.5 ACUs

Can’t feel it

Cost-Efficient AND Fast Response

16 Jinghao Miao

Memory/CPU Hot (un)plug

ASv2 !

Live Migration of Instance

Virtual Machine Arch

Scalability

ASv1 really helped!

17 Jinghao Miao

Fleet Wide Resource
Management

18

● Heat Metrics:

○ Hosts are monitored for resource usage along multiple dimensions: CPU, memory, network

bandwidth, and I/O.

○ A host is flagged as hot if its aggregate reserved ACUs exceed a predefined threshold

● 3-Stage Heuristics for Instance Selection:

○ Stage 1: Filtering:

■ Exclude instances unsuitable for migration (e.g., those recently migrated)

○ Stage 2: Ranking

■ Score instances based on resource usage and migration cost, prioritizing high-impact

migrations.

○ Stage 3: Selection

■ Choose the instance that balances heat reduction and migration efficiency.

■ Uses two scores: one relative to the ACUs and one that linearly aggregates the resource

metrics

Live Migration-Based Dynamic Instance Re-Packing

19
Avinash
Atluru

● Destination Host Selection:

○ Filters:

■ Ensure the host has sufficient capacity and supports migration.

○ Ranking:

■ Prioritize hosts with minimal failures and better resource balance.

○ Scoring:

■ Optimize load balancing across resources in host (CPU, memory, etc.).

● First score determines the heat on the host after adding the instance

● Second score determines the overall balance of resources on the host

● Unbalanced Load Strategy:

○ The protocol intentionally aims for unevenly distribution among the hosts such so some

hosts have enough headroom for serving as live migration destinations

Live Migration-Based Dynamic Instance Re-Packing

20
Avinash
Atluru

Example

21
Avinash
Atluru

● Follows same three step process to choose the host for the new instance

● Problem the team faced was determining the resource needs of the new instance

without having much knowledge on the instance itself

○ Aurora automatically chooses the minimum amount of resources as specified by the

customer’s min and max thresholds

○ The system will automatically scale from the minimum if the instance requires

additional resources

○ Underestimating was seen to be better than overestimating since Aurora scales up

faster than it scales down preventing wasted resources

New Instance Placement

22
Avinash
Atluru

● Demand Prediction and Threshold-Based Scaling:

○ The fleet manager employs fleet-level demand prediction to trigger additional hosts

● Threshold Levels:

○ The system triggers additional procurement upon a fleet utilization exceeding a predetermined

threshold.

● Fleet Size Limitations

○ Larger fleets lead to higher overhead for data collection, processing, and decision-making, which

can affect system performance and scalability.

○ Fleet size is deliberately kept below a threshold that allows the entire fleet’s health to be monitored

and computed using a single heat management server.

Fleet Size Adjustment

23
Avinash
Atluru

Resource Management
within Host

24

Instance Manager

● A library encapsulating serverless resource

management functionality.

● One per instance

● Manages:

○ Data collection: Monitors engine-

specific resource usage (e.g., buffer

pool size, memory, CPU).

○ Scaling policies: Dynamic in-place

scaling and boundary management.

○ Resource limits: Enforces scaling

boundaries using mechanisms like

cgroups and resource on/offlining.

25

Aditya Chaurasia

● Data Collection

○ Collects engine and OS metrics every

second for fine-grained responsiveness.

○ Buffer pool size estimate - Estimated by

engine

○ Other usage statistics - Guest OS

Enabling Mechanisms

● Virtualization

○ Instances run in secure VMs using the

Nitro system for low IO latency and

scalable CPU/memory provisioning.

○ Provides strong isolation between

instances for security.

26

Aditya Chaurasia

● Efficient Memory Scale-Up

○ Collects engine and OS metrics every

second for fine-grained responsiveness.

○ Key Mechanisms

■ Memory Offlining: Dynamically

releases memory back to the host.

■ Cold Page Identification: Frees or

swaps out infrequently used pages.

■ Free Page Reporting: Reports 2MB

free blocks for hypervisor

reclamation.

■ Compaction: Coalesces 4KB free

pages into 2MB blocks for efficiency.

Enabling Mechanisms - continued

● Boundary enforcement

○ Ensures instance is allocated resource

based on “boundary” established by

scaling policies.

○ 2 mechanisms to manage instance

CPU/memory allocations

■ Cgroups: Enforces precise CPU and

memory quotas.

■ CPU/Memory On-Offlining:

● Adds/removes vCPUs or memory

to handle spikes.

● Reclaims unused memory

efficiently (2MB blocks).

27

Aditya Chaurasia

● Boundary Management

○ Dynamically adjusts the resource allocation boundary based on its recent usage patterns

○ Ensures reserved ACU stays slightly above current usage for quick scaling.

○ Key Considerations

■ Agile Growth Detection

● Monitors memory, CPU, network, and IO every second.

● Allocates more resources if current usage exceeds limits, up to the customer-defined

maximum.

■ Regulated Growth

● Controlled scale-up rate to avoid overwhelming hosts and enable live migration.

● Scale-down is cautious to prepare for potential workload spikes.

● Token Bucket system employed

Policies

28

Aditya Chaurasia

● In-place scaling

○ Provides rapid scale-up without disruption, ensuring sufficient resources are allocated for

growing demands.

○ Employs conservative scaling down to avoid premature resource release.

○ Process

■ Deciders: Assess resource-specific needs (e.g., memory, CPU, network, storage).

■ Combining Deciders: Single projection derived by taking the maximum need across all deciders.

Policies - continued

29

Aditya Chaurasia

Empirical Observations and
Evaluation

30

● Authors analyzed data from two fleets over different time periods:
○ Fleet 1 in us-east-1 and Fleet 2 in us-west-2

○ Both fleets used real-world observations and simulations

● Wanted to measure two key metrics:
○ Operational efficiency: focuses on how well servers are utilized
○ Customer experience: measures how elastic and responsive the system is when scaling

● Specific metrics given:
○ Scale up events satisfied in-place vs. via live migration

■ Fewer migrations is indicative of better placement strategies

○ Hosts that are deemed “hot” during scale-ups
■ For hot hosts, their max ACU is temporarily limited to avoid overloading

○ Impact on workload due to remedial actions

Datasets and metrics of interest

31 Wesley Gao

● Fleet 1
○ 16,440,024 scale-up events across 33,792 total instances

○ Live migrations: only 2,923 scale-up events needed one or more live migrations
○ Single migrations: 52% of those needing migrations only required one

○ 198 cases of hot hosts breaches

● Fleet 2
○ 8,151,229 scale-up events across 12,467 total instances

○ Live migrations: only 1,214 scale-up events needed one or more live migrations
○ Single migrations: 55% of those needing migrations only required one

○ 48 cases of hot hosts breaches

● Observations between the two fleets show that Aurora Serverless repacking

and placement strategies are effective

Customer experience observations

32 Wesley Gao

● Baseline Method:

○ Concentrate instances on fewer hosts.

○ Increases host utilization but limits spare capacity for migration.

○ Requires more migrations to address heat.

● Aurora Serverless Strategy

○ Deliberately leaves some hosts lightly loaded.

○ Reduces migration frequency.

● Comparison

○ Aurora Serverless requires 82% fewer migrations in Fleet 1 and 57% fewer migrations in Fleet

2 compared to the baseline.

○ Aurora Serverless requires 10% fewer utilization of hosts in Fleet 1 and 12% in Fleet 2,

increasing system flexibility.

Comparison against an alternative re-packing strategy

33 Chang Che

● An instance that scaling up was satisfied in-place

● Timeline

○ Heat scaling up at around 35 time units

○ Reach the threshold at around 41 time units, the

migration starts.

○ Migration ends around 50 time units

● Observation

○ The live migration is efficient and ensures resource

availability without significant performance drops.

A close look at a migration-assisted scale up

34 Chang Che

Lessons & Takeaways

35

Start Simplest

Lessons and Takeaways

ONLY add based on needs

Reactive Predictive

Fleet-wide + Host-level

Specialized OS kernels

36 Jinghao Miao

Conclusions

37

Token Buckets: Controllable!

Conclusions

Reactive!

Fleet-wide + Host-level

Live Migration

About future…

38 Jinghao Miao

Predictive!

About future…

+ Reactive!

Resource Combination

Machine Learning…

39 Jinghao Miao

Study Questions

40

How does Aurora
Serverless dynamically
manage resource
allocation within a host
while ensuring predictable
elasticity and minimal
resource contention?

41

What trade-offs are
involved in balancing high
host utilization with
seamless scale-up in
Aurora Serverless, and
how are these trade-offs
addressed by
mechanisms like live
migration and regulated
growth?

	Slide 1: Resource Management in Aurora Serverless
	Slide 2: Background & Motivation
	Slide 3: Introduction to Aurora Serverless
	Slide 4: Problem and Motivation
	Slide 5: Why Aurora Serverless?
	Slide 6: Related Work
	Slide 7: Aurora VS other database services
	Slide 8: Overview
	Slide 9: What is Aurora Serverless Accomplishing?
	Slide 10: The Aurora Serverless Capacity Bounds
	Slide 11: Aurora Serverless Capacity Bounds
	Slide 12: Aurora Serverless Capacity Bounds: ACUs and Scaling
	Slide 13: Aurora Serverless Capacity Bounds: Design Factors
	Slide 14: From ASv1 to ASv2
	Slide 15: ASv1 ?
	Slide 16: ASv2 ?
	Slide 17: ASv2 !
	Slide 18: Fleet Wide Resource Management
	Slide 19: Live Migration-Based Dynamic Instance Re-Packing
	Slide 20: Live Migration-Based Dynamic Instance Re-Packing
	Slide 21: Example
	Slide 22: New Instance Placement
	Slide 23: Fleet Size Adjustment
	Slide 24: Resource Management within Host
	Slide 25: Instance Manager
	Slide 26: Enabling Mechanisms
	Slide 27: Enabling Mechanisms - continued
	Slide 28: Policies
	Slide 29: Policies - continued
	Slide 30: Empirical Observations and Evaluation
	Slide 31: Datasets and metrics of interest
	Slide 32: Customer experience observations
	Slide 33: Comparison against an alternative re-packing strategy
	Slide 34: A close look at a migration-assisted scale up
	Slide 35: Lessons & Takeaways
	Slide 36: Lessons and Takeaways
	Slide 37: Conclusions
	Slide 38: Conclusions
	Slide 39: About future…
	Slide 40: Study Questions
	Slide 41

