
MapReduce:

Simplified Data Processing

on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
Google Inc.
OSDI 2004

Presented by
Drumil Deliwala, Xin He, Yunsong Liu, Yue Cheng Tsang, Yifan Zhao

AGENDA

Introduction + Programming Model

Implementation

Refinements

Performance + Experience

Related Work

Conclusions

Yue Cheng Tsang 2

INTRODUCTION

What is MapReduce?
A programming model created by Google to simplify large-scale data processing

Problem It Solves
Managing massive data, such as web docs and logs, across many machines is

complex
Traditional methods need careful handling of parallel tasks, failures, and data

sharing

Yue Cheng Tsang 3

INTRODUCTION

Key Idea

• Splits large data processing into smaller tasks

• Handles distribution and errors automatically

• Runs tasks across many machines in parallel

Impact

• Scales to thousands of machines, processing terabytes daily

• Widely used across Google for data mining, machine learning, and indexing

Yue Cheng Tsang 4

PROGRAMMING MODEL
Model

• User defines two main functions: Map
and Reduce

o Map: breaks data into key/value
pairs

o Reduce : combines values for each
unique key from Map output

Execution Flow

• Split Data -> Map Phase -> Shuffle ->
Reduce Phase

Handling Failures

• Failed tasks are automatically re-run on
other machines

Yue Cheng Tsang 5

Figure 1: Execution overview

PROGRAMMING MODEL
Example: Word Count

• Map:

Input: (file, content)
"Hello world hello"
Output:
(hello, 1)
(world, 1)
(hello, 1)

• Reduce:

Input: (hello, [1,1])

Output: (hello, 2)

Input: (world, [1])

Output: (world, 1)

Types

• Map: map (k1,v1) → list(k2,v2)

k1,v1: input key-value pairs

k2,v2: intermediate output key-value pairs

• Reduce: reduce (k2,list(v2)) → list(v2)

k2: intermediate key

 list(v2): list of all values associated with that key

 output: merged list of values

Yue Cheng Tsang 6

IMPLEMENTATION

Xin He 7

1. EXECUTION OVERVIEW

1. Splitting and Initialization:

MapReduce splits input into chunks, with a master assigning
tasks to workers.

2. Map Execution:

Workers parse data, apply the Map function, and save results
to disk in partitions.

3. Data Retrieval:

Reduce workers fetch and sort intermediate data by keys.

4. Reduce Execution:

Reduce function processes keys and writes final output files.

5. Completion:

Master signals job completion, producing R output files.

Xin He 8

Figure 1: Execution overview

The master tracks task status (idle, in-progress, completed) and assigned workers,

along with locations of intermediate data.

As map tasks complete, it updates reduce workers for efficient data access.

Xin He 9

2. MASTER DATA STRUCTURES

• Worker Failure:

o The master pings workers to monitor status.

o If a worker fails, tasks are reassigned;

o map tasks are redone, while reduce tasks remain as their output is in a global file system.

• Master Failure:

o Master failure typically aborts the job,

o though checkpoints enable recovery if used, and clients can retry.

• Failure Semantics:

o MapReduce ensures consistent results with deterministic functions,

o using temporary files for sequential consistency despite failures.

Xin He 10

3. FAULT TOLERANCE

• Local Data Storage :

o Data blocks are stored on local machine disks.

• Optimized Scheduling:

o Master assigns tasks to machines with or near the data.

• Reduced Network Load:

o Local processing minimizes network usage.

Xin He 11

4. LOCALITY

• Task Subdivision and Load Balancing:

o Map and reduce phases are split into many small tasks,

o usually more than the number of workers,

o for better load balancing and quick reassignment after failures.

• Practical Limits:

o M and R values depend on master memory,

o with common task sizes of 16-64 MB and

o R often matching the worker count.

Xin He 12

5. TASK GRANULARITY

• Straggler Management:
The master launches backup copies for slow tasks (stragglers)
near job completion, reducing delays with minimal extra
resources.

Xin He 13

6. BACKUP TASK

REFINEMENTS

Yifan Zhao 14

• Enhancement to the core MapReduce
framework

• Address efficiency, flexibility, and anomaly
handling

• Optimize performance for large-scale data
processing

REFINEMENT

A. PARTITIONING FUNCTION

• Default: Hash function for balanced data distribution

• Custom partitioning option for specific data organization

o Example: Grouping URLs by host

• Benefit: Efficient data management and load balancing

Yifan Zhao 15

REFINEMENT

B. COMBINER FUNCTION

• Purpose : Local aggregation to
reduce data sent to Reduce phase

o Example: Word count with partial sums on
each map node

• Impact: Lowers network traffic,
reduces load on reducers

• Key Benefit: Enhanced efficiency
in cases with redundant data

Yifan Zhao 16

Figure 1: Execution overview

REFINEMENT

C. STATUS INFORMATION

• Real-time monitoring of job progress and worker performance

• Key metrics: Task completion, input/output rates, worker status

• Value: Enables efficient job management and timely intervention

Yifan Zhao 17

REFINEMENT

D. COUNTERS

• Track occurrences of specific events during execution

• Custom counters for metrics

• Example: Counting records by language in text processing

• Benefit: Quality control, performance tuning, and debugging
insights

Yifan Zhao 18

REFINEMENT

E. OTHERS

• Ordering Guarantees: Sorted processing within each partition

• Input/Output Types: Support for various formats, including databases

• Side Effects: Auxiliary file outputs, consistency not guaranteed

• Skipping Bad Records: Skip problematic records to ensure job
completion

Yifan Zhao 19

PERFORMANCE + EXPERIENCE

Drumil Deliwala 20

TESTING SETUP

• Grep program and Sort program

• Testing cluster

o ~1800 machines

o 4GB memory

o Two 160GB disks

o Gigabit Ethernet link

• Test Data – 1TB of data as 100-byte records

• Parameters – 15000 Map tasks, 4000 Reduce tasks

Drumil Deliwala 21

PERFORMANCE

➢ Input rate increases as Map tasks begin and then
decreases as tasks finish

➢ Input rate increases as Reduce tasks fetch intermediate
KV pairs, falls when Reduce tasks are in progress, and
rises again when earlier Reduce tasks finish and new
Reduce data.

➢ Input rate increases when the completed Reduce tasks
write to output

Total time = 891s (similar to the best benchmark
performance at the time)

Drumil Deliwala 22

Figure 3: Data transfer rates over time for
different executions of the sort program

OTHER TESTS AND INDICATORS

• Backup tasks disabled ---> 44% higher
execution time

• 200 Machine failures ---> only 5% overhead

• Ease of use

o Sort program took <50 lines of user code

o Wide adoption at Google

o Rewrite of the Google search engine
indexing system using MapReduce

Drumil Deliwala 23

RELATED WORKS

• Google File System(GFS), a distributed storage for storing large
datasets; Bigtable, a distributed database optimized for storing
structured data.

• Hadoop (2006): open-source project that fills MapReduce's gaps in
underlying storage and cluster management components; the distributed
storage component is inspired by GFS.

• Dryad (Microsoft Research, 2007): a more general version of
MapReduce. Instead of fixed Map & Reduce programs, Dryad can have a
Directed Acyclic Graph (DAG) of programs.

Yunsong Liu 24

CONCLUSION

• Simplified large-scale data processing through a clean abstraction for
parallelization

• Enabled processing of petabytes of data on commodity hardware clusters

• Proved highly scalable and fault-tolerant, becoming the foundation for
modern big data systems

Yunsong Liu 25

STUDY QUESTIONS

• Question 1: Why was the MapRe duce mo de l co nside re d
g ro undbre aking fo r larg e - s cale data pro ce s sing at the time it was
intro duce d?

• Question 2 : How do e s the MapRe duce mo de l achie ve fault
to le rance , and why is re - e xe cution cho s e n ove r traditional
che ckpointing me tho ds ?

26

Q & A

Thank you!

27

	Slide 1
	Slide 2: agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Programming Model
	Slide 6: Programming Model
	Slide 7: Implementation
	Slide 8: Execution Overview
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Refinements
	Slide 15: Refinement A. Partitioning Function
	Slide 16: Refinement B. Combiner Function
	Slide 17: Refinement C. Status Information
	Slide 18: Refinement D. Counters
	Slide 19: Refinement e. Others
	Slide 20: Performance + EXPERIENCE
	Slide 21: TESTING SETUP
	Slide 22: Performance
	Slide 23: Other tests and Indicators
	Slide 24: Related works
	Slide 25: Conclusion
	Slide 26: STUDY QUESTIONS
	Slide 27: Q & a

