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INTRODUCTION

What is MapReduce?
A programming model created by Google to simplify large-scale data processing

Problem It Solves
Managing massive data, such as web docs and logs, across many machines is 

complex
Traditional methods need careful handling of parallel tasks, failures, and data 

sharing
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INTRODUCTION

Key Idea

• Splits large data processing into smaller tasks

• Handles distribution and errors automatically

• Runs tasks across many machines in parallel

Impact

• Scales to thousands of machines, processing terabytes daily

• Widely used across Google for data mining, machine learning, and indexing
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PROGRAMMING MODEL
Model

• User defines two main functions: Map 
and Reduce

o Map: breaks data into key/value 
pairs

o Reduce : combines values for each 
unique key from Map output

Execution Flow

• Split Data -> Map Phase -> Shuffle -> 
Reduce Phase

Handling Failures

• Failed tasks are automatically re-run on 
other machines
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Figure 1: Execution overview 



PROGRAMMING MODEL
Example: Word Count

• Map:

Input: (file, content)
"Hello world hello"
Output:
(hello, 1)
(world, 1)
(hello, 1)

• Reduce:

Input: (hello, [1,1])

Output: (hello, 2)

Input: (world, [1])

Output: (world, 1)

Types

• Map:  map (k1,v1) → list(k2,v2)

k1,v1: input key-value pairs

k2,v2: intermediate output key-value pairs

• Reduce: reduce (k2,list(v2)) → list(v2)

k2: intermediate key

    list(v2): list of all values associated with that key

        output: merged list of values
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IMPLEMENTATION
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1. EXECUTION OVERVIEW

1. Splitting and Initialization:

MapReduce splits input into chunks, with a master assigning 
tasks to workers.

2.    Map Execution:

Workers parse data, apply the Map function, and save results 
to disk in partitions.

3.    Data Retrieval:

Reduce workers fetch and sort intermediate data by keys.

4.    Reduce Execution:

Reduce function processes keys and writes final output files.

5.   Completion:

Master signals job completion, producing R output files.
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Figure 1: Execution overview 



The master tracks task status (idle, in-progress, completed) and assigned workers, 

along with locations of intermediate data. 

As map tasks complete, it updates reduce workers for efficient data access.
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2. MASTER DATA STRUCTURES



• Worker Failure:

o The master pings workers to monitor status. 

o If a worker fails, tasks are reassigned; 

o map tasks are redone, while reduce tasks remain as their output is in a global file system.

• Master Failure:

o Master failure typically aborts the job, 

o though checkpoints enable recovery if used, and clients can retry.

• Failure Semantics:

o MapReduce ensures consistent results with deterministic functions, 

o using temporary files for sequential consistency despite failures.
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3. FAULT TOLERANCE



• Local Data Storage :

o Data blocks are stored on local machine disks.

• Optimized Scheduling:

o Master assigns tasks to machines with or near the data.

• Reduced Network Load:

o Local processing minimizes network usage.
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4. LOCALITY



• Task Subdivision and Load Balancing:

o Map and reduce phases are split into many small tasks, 

o usually more than the number of workers, 

o for better load balancing and quick reassignment after failures.

• Practical Limits:

o M and R values depend on master memory, 

o with common task sizes of 16-64 MB and 

o R often matching the worker count.
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5. TASK GRANULARITY



• Straggler Management:
The master launches backup copies for slow tasks (stragglers) 
near job completion, reducing delays with minimal extra 
resources.
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6. BACKUP TASK



REFINEMENTS

Yifan Zhao  14

• Enhancement to the core MapReduce 
framework

• Address efficiency, flexibility, and anomaly 
handling

• Optimize performance for large-scale data 
processing



REFINEMENT

A. PARTITIONING FUNCTION

• Default: Hash function for balanced data distribution

• Custom partitioning option for specific data organization

o Example: Grouping URLs by host

• Benefit: Efficient data management and load balancing
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REFINEMENT

B. COMBINER FUNCTION

• Purpose : Local aggregation to 
reduce data sent to Reduce phase

o Example: Word count with partial sums on 
each map node

• Impact: Lowers network traffic, 
reduces load on reducers

• Key Benefit: Enhanced efficiency 
in cases with redundant data
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Figure 1: Execution overview 



REFINEMENT

C. STATUS INFORMATION

• Real-time monitoring of job progress and worker performance

• Key metrics: Task completion, input/output rates, worker status

• Value: Enables efficient job management and timely intervention
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REFINEMENT

D. COUNTERS

• Track occurrences of specific events during execution

• Custom counters for metrics

• Example: Counting records by language in text processing

• Benefit: Quality control, performance tuning, and debugging 
insights
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REFINEMENT

E. OTHERS

• Ordering Guarantees: Sorted processing within each partition

• Input/Output Types: Support for various formats, including databases

• Side Effects: Auxiliary file outputs, consistency not guaranteed

• Skipping Bad Records: Skip problematic records to ensure job 
completion
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PERFORMANCE + EXPERIENCE
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TESTING SETUP

• Grep program and Sort program

• Testing cluster

o ~1800 machines

o 4GB memory

o Two 160GB disks

o Gigabit Ethernet link

• Test Data – 1TB of data as 100-byte records

• Parameters – 15000 Map tasks, 4000 Reduce tasks
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PERFORMANCE

➢ Input rate increases as Map tasks begin and then 
decreases as tasks finish

➢ Input rate increases as Reduce tasks fetch intermediate 
KV pairs, falls when Reduce tasks are in progress, and 
rises again when earlier Reduce tasks finish and new 
Reduce data.

➢ Input rate increases when the completed Reduce tasks 
write to output

Total time = 891s (similar to the best benchmark 
performance at the time)
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Figure 3: Data transfer rates over time for 
different executions of the sort program



OTHER TESTS AND INDICATORS

• Backup tasks disabled ---> 44% higher 
execution time

• 200 Machine failures ---> only 5% overhead

• Ease of use

o Sort program took <50 lines of user code

o Wide adoption at Google

o Rewrite of the Google search engine 
indexing system using MapReduce
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RELATED WORKS

• Google File System(GFS), a distributed storage for storing large 
datasets; Bigtable, a distributed database optimized for storing 
structured data.

• Hadoop (2006): open-source project that fills MapReduce's gaps in 
underlying storage and cluster management components; the distributed 
storage component is inspired by GFS. 

• Dryad (Microsoft Research, 2007): a more general version of 
MapReduce. Instead of fixed Map & Reduce programs, Dryad can have a 
Directed Acyclic Graph (DAG) of programs. 
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CONCLUSION

• Simplified large-scale data processing through a clean abstraction for 
parallelization

• Enabled processing of petabytes of data on commodity hardware clusters

• Proved highly scalable and fault-tolerant, becoming the foundation for 
modern big data systems
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STUDY QUESTIONS 

• Question 1: Why was  the  MapRe duce  mo de l co nside re d 
g ro undbre aking  fo r larg e - s cale  data pro ce s sing  at the  time  it was  
intro duce d?  

• Question 2 : How do e s  the  MapRe duce  mo de l achie ve  fault 
to le rance , and why is  re - e xe cution cho s e n ove r traditional 
che ckpointing  me tho ds ?  
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Q & A

Thank you!
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