
CS 6400 A

Database Systems

Concepts and Design

Lecture 9

09/18/24

Agenda

1. B+-Tree cost model

2. Hashing

2

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.3: Hash Tables

3

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. B+-Tree cost model

4

B+ Tree: High Fanout = Smaller & Lower IO

So why does B+ tree work?

As compared to binary search trees, B+ Trees have

high fanout (between d+1 and 2d+1)

This means that the depth of the tree is small →

getting to any element requires very few IO operations!

○ Also can often store most or all of the B+ Tree in main

memory!

The fanout is defined as the

number of pointers to child

nodes coming out of a node

Note that fanout is dynamic
- we’ll often assume it’s

constant just to come up

with approximate eqns!

B+ Trees in Practice

Typical order: d=100. Typical fill-factor: 67%.

○ average fanout = 133

Top levels of tree sit in the buffer pool:

○ Level 1 = 1 page = 8 KB

○ Level 2 = 133 pages = 1 MB

○ Level 3 = 17,689 pages = 133 MB

Typically, only

pay for one IO!

Fill-factor is the percent of

available slots in the B+

Tree that are filled; is

usually < 1 to leave slack

for (quicker) insertions

Simple Cost Model for Search

Suppose:

○ f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)

○ N = the total number of pages we need to index

○ F = fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N / F pages!

○ We have the fill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

○ h=1 → Just the root node- room to index f pages

○ h=2 → f leaf nodes- room to index f2 pages

○ h=3 → f2 leaf nodes- room to index f3 pages

○ …

○ h → fh-1 leaf nodes- room to index fh pages!

→ We need a B+ Tree of

height h = logf
N

F
!

Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:

○ We can store 𝑳𝑩 levels of the B+ Tree in memory

○ where 𝑳𝑩 is the number of levels such that the sum of all the levels’ nodes fit in the buffer:

■ 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓𝐿𝐵−1 = σ𝑙=0
𝐿𝐵−1𝑓𝑙

In summary: to do exact search:

○ We read in one page per level of the tree

○ However, levels that we can fit in buffer are free!

○ Finally we read in the actual record

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The IO cost is that of loading additional leaf nodes we need to access + the IO

cost of loading each page of the results- we phrase this as “Cost(OUT)”

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where 𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙

2. Hashing

10

Indexing vs hashing

● Indexing (including B+ trees) is good for range lookups

● Hashing is good for equality-based point lookups

11

SELECT *

FROM Movies

WHERE title = ‘Ponyo’;

SELECT *

FROM Movies

WHERE year >= 2000;

Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1

● Blocks contain records and are stored in secondary storage

● Complexity:
● O(1) operation complexity

● O(n) storage complexity

12

key h(key)

...
...

Hash table: Design Decisions

Hash Function
● How to map a large key space into a smaller domain of array offsets

● Trade-off between fast execution vs. collision rate

Hashing Scheme
● How to handle key collisions after hashing

● Trade-off between allocating a large hash table vs. extra steps to location/insert keys

13
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash function

● For any input key, return an integer representation of that key.
● Output is deterministic

● Example:
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi % B)

● This function is not idea since there might be many collisions

● We do NOT want to use a cryptographic hash function (e.g., SHA-256) for

DBMS hash tables

● In general, we only care about the hash function’s speed and collision rate.

● Current SOTA: xxHash

14
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://xxhash.com/

Static hash table

● The number of buckets is fixed

● Often used during query execution because they are faster than dynamic

hashing schemes.

● If the DBMS runs out of storage space in the hash table, it has to rebuild

a larger hash table (usually 2x) from scratch, which is very expensive!

Examples
● Linear Probing Hashing

● Robinhood Hashing (not covered)

● Cuckoo Hashing

15
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

Single giant table of slots

Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookups

Example: Google's absl::flat_hash_map

16
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://abseil.io/tips/136

Linear Probing Hashing

17
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

18
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

19
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

20
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

21
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

22
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Q: What would happen in this case?

Linear Probing Hashing

23
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

24
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing - Delete

25
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the

emptied cell, but are stored in a position later than the emptied cell.

Two solutions:

● Tombstone

● Movement (less common)

Linear Probing Hashing

26
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

27
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

28
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

Linear Probing Hashing

29
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

Linear Probing Hashing

30
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

• Reuse the slot for new

keys

Linear Probing Hashing

31
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

• Set a marker to indicate

that the entry in the slot is

logically deleted.

• Reuse the slot for new

keys

Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds
● On insert, check every table and pick one with a free slot

● If no table has a free slot, evict the element from one of then and then re-hash it to

find a new location

● In rare cases, we may end up in a cycle. If this happens, we can rebuild using

larger hash tables

32

Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Look-ups and deletions are ~O(1)

because only one location per hash

table is checked.

Cuckoo Hashing

33
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

34
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

35
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

36
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

37
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

38
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Dynamic hash table

● The previous hash tables require the DBMS to know the number of

elements it wants to store.
● Otherwise it needs to rebuild the table to resize

● Dynamic hash tables incrementally resize the hash table on demand

without needing to rebuild the entire table.

Examples
● Chained Hashing

● Extensible Hashing

● Linear Hashing

39
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Chained Hashing

● Maintain a linked list of buckets for each slot in the

hash table.

● Resolve collisions by placing all elements with the

same hash key into the same bucket.
● To determine whether an element is present, hash to its bucket

and scan for it.

● Insertions and deletions are generalizations of lookups.

40

0

1

2

3

d

e

c

a

Chained Hashing

● Add g where h(g) = 1

41

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

42

0

1

2

3

d

e

c

a

g

Chained Hashing

● Remove c where h(c) = 1

43

0

1

2

3

d

e

g

a

Q: What can go wrong with

chained hashing?

Extendible Hashing

Chained-hashing approach that splits buckets incrementally instead of letting

the linked list grow forever.
● Long chains of blocks -> many disk I/Os

Multiple slot locations can point to the same bucket chain.

Reshuffle bucket entries on split and increase the number of bits to examine.
● Data movement is localized to just the split chain.

44

Extensible hash table

● Use first i bits of hash value to locate block
○ i grows over time

45

h(key):

00101100

i = 3

Extensible hash table

● Use level of indirection where buckets are pointers to blocks

46

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1Global depth

Local depth

Extensible hash table

● Add 0010

47

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1

Extensible hash table

● Add 0010

48

1001

1100

0001 1

1

0

1

Buckets Data blocks

i = 1 0010

Extensible hash table

● Add 1010

49

0001 1

0010

0

1

i = 1

Buckets Data blocks

1001

1100

1

Extensible hash table

● Add 1010

50

1001

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

May need to repeat splitting

until there is space

Extensible hash table

● Add 1010

51

1001

1010

0001 1

2

1100 2

0010

0

1

i = 1

Buckets Data blocks

Extensible hash table

● Add 1010

52

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

Extensible hash table

● Add 1000

53

1001

1010

0001 1

2

1100 2

0010

Buckets Data blocks

00

01

i = 2

10

11

Q: What will happen in this case?

Extensible hash table

● Add 1000

54

0001 1

1000

1001

3

0010

1010 3

1100 2

Buckets Data blocks

00

01

i = 2

10

11

Extensible hash table

● Add 1000

55

0001 1

1000

1001

3

0010

000

i = 3

001

010

011

100

101

110

111

1010 3

1100 2

Buckets Data blocks

Extensible hashing summary

If bucket array fits in memory, lookup is always 1 disk I/O

Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive
○ Splitting can occur frequently if the number of records per block is small

○ At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly

56

Linear hashing

The hash table maintains a pointer that tracks the next bucket to split.
● When any bucket overflows, split the bucket at the pointer location.

Use multiple hashes to find the right bucket for a given key.

Can use different overflow criterion:
○ Space Utilization

○ Average Length of Overflow Chains

57

Linear hash tables

● Use last i bits of hash value to locate block

● Hash table grows linearly

58

1111

0000i = 1

n = 2

r = 3
1010

0

1

Policy: limit r ≤ 1.7n

buckets

bits used

records

Linear hash tables

● Add 0101

59

1111

0000

1010
0

1

i = 1

n = 2

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

Violation

Linear hash tables

● Add 0101

60

1111

0000

1010
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

10

Linear hash tables

● Add 0101

61

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

Linear hash tables

● Add 0101

62

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

1111 stays here because

there is no 11 bucket yet

Linear hash tables

● Add 0001

63

1111

0000
00

01

i = 2

n = 3

r = 4

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

101010

Linear hash tables

● Add 0001

64

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

0001

Use overflow block

Linear hash tables

● Add 0001

65

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10No violation

0001

Use overflow block

Linear hash tables

● Continuing with example, add 0111.

What happens here?

66

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

buckets

bits used

records

0101

1010
10

0001

Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations

● Compared to extensible hashing, there is no array of buckets

● However, there can be a long chain of overflow blocks

67

Mostly

empty

...Mostly

full

Multidimensional Indexes (14.4)

All the index structures discussed so far are one

dimensional
○ Assume a single search key, and they retrieve

records that match a given search key value.

○ The key can contain multiple attributes

Examples:
○ KD-tree, R-tree

68

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Agenda
	Slide 3: Reading Materials
	Slide 4: 1. B+-Tree cost model
	Slide 5: B+ Tree: High Fanout = Smaller & Lower IO
	Slide 6: B+ Trees in Practice
	Slide 7: Simple Cost Model for Search
	Slide 8: Simple Cost Model for Search
	Slide 9: Simple Cost Model for Search

	Hash Tables
	Slide 10: 2. Hashing
	Slide 11: Indexing vs hashing
	Slide 12: Hash table
	Slide 13: Hash table: Design Decisions
	Slide 14: Hash function
	Slide 15: Static hash table
	Slide 16: Linear Probing Hashing
	Slide 17: Linear Probing Hashing
	Slide 18: Linear Probing Hashing
	Slide 19: Linear Probing Hashing
	Slide 20: Linear Probing Hashing
	Slide 21: Linear Probing Hashing
	Slide 22: Linear Probing Hashing
	Slide 23: Linear Probing Hashing
	Slide 24: Linear Probing Hashing
	Slide 25: Linear Probing Hashing - Delete
	Slide 26: Linear Probing Hashing
	Slide 27: Linear Probing Hashing
	Slide 28: Linear Probing Hashing
	Slide 29: Linear Probing Hashing
	Slide 30: Linear Probing Hashing
	Slide 31: Linear Probing Hashing
	Slide 32: Cuckoo Hashing
	Slide 33: Cuckoo Hashing
	Slide 34: Cuckoo Hashing
	Slide 35: Cuckoo Hashing
	Slide 36: Cuckoo Hashing
	Slide 37: Cuckoo Hashing
	Slide 38: Cuckoo Hashing
	Slide 39: Dynamic hash table
	Slide 40: Chained Hashing
	Slide 41: Chained Hashing
	Slide 42: Chained Hashing
	Slide 43: Chained Hashing
	Slide 44: Extendible Hashing
	Slide 45: Extensible hash table
	Slide 46: Extensible hash table
	Slide 47: Extensible hash table
	Slide 48: Extensible hash table
	Slide 49: Extensible hash table
	Slide 50: Extensible hash table
	Slide 51: Extensible hash table
	Slide 52: Extensible hash table
	Slide 53: Extensible hash table
	Slide 54: Extensible hash table
	Slide 55: Extensible hash table
	Slide 56: Extensible hashing summary
	Slide 57: Linear hashing
	Slide 58: Linear hash tables
	Slide 59: Linear hash tables
	Slide 60: Linear hash tables
	Slide 61: Linear hash tables
	Slide 62: Linear hash tables
	Slide 63: Linear hash tables
	Slide 64: Linear hash tables
	Slide 65: Linear hash tables
	Slide 66: Linear hash tables
	Slide 67: Linear hashing summary
	Slide 68: Multidimensional Indexes (14.4)

