Database Systems
Concepts and Design

Lecture 9
09/18/24

Agenda

1. B+-Tree cost model

2. Hashing

Reading Materials

Database Systems: The Complete Book (2nd edition) | 2
e Chapter 14.3: Hash Tables DATABASE

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. B+-Tree cost model

B+ Tree: High Fanout = Smaller & Lower |O

So why does B+ tree work?

As compared to binary search trees, B+ Trees have
high fanout (between d+1 and 2d+17)

This means that the depth of the tree is small >
getting to any element requires very few O operations!

o Also can often store most or all of the B+ Tree in main
memory!

The fanout is defined as the
number of pointers to child
nodes coming out of a node

Note that fanout is dynamic
- we'll often assume it's
constant just to come up
with approximate egns!

B+ Trees Iin Practice

Typical order: d=100. Typical fill-factor: 67%.
Fill-factor is the percent of

o average fanout = 133 available slots in the B+
Tree that are filled; is
usually < 1 to leave slack

Top levels of tree sit in the buffer poal: _ , ,
for (quicker) insertions

o Level1= 1page = 8KB
o Level2= 133 pages= 1MB
o Level3=17,689 pages = 133 MB

Typically, only
pay for one |O!

Simple Cost Model for Search

Suppose:

o f=fanout, which isin[d+1, 2d+1] (we’ll assume it's constant for our cost model...)
o N =the total number of pages we need to index
o F =fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N/ F pages!
o We have thefill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

h=1 - Just the root node- room to index f pages
h=2 - f leaf nodes- room to index f2 pages

h=3 - f2 |eaf nodes- room to index f3 pages > We need a B+ Tree of

. N
h = f*1 leaf nodes- room to index fM pages! helg hth = [logf F\ '

© O O O O

Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:
o We can store Lg levels of the B+ Tree in memory
o where Ly is the number of levels such that the sum of all the levels’ nodes fit in the buffer:
m B>1+f+-+fll=Y1r

In summary: to do exact search:

N
o We read in one page per level of the tree |O Cost: [logf ;} — LB +
o However, levels that we canfit in buffer are free!

’ where B = Yz f!

Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The 10 cost is that of loading additional leaf nodes we need to access + the IO
cost of loading each page of the results- we phrase this as “Cost(OUT)”

|O Cost: [logf %} — L +

where B = Y zp!

2. Hashing

Indexing vs hashing

e Indexing (including B+ trees) is good for range lookups
e Hashing is good for equality-based point lookups

SELECT *
FROM Movies
WHERE year >= 2000,

SELECT *
FROM Movies
WHERE title = ‘Ponyo’;

11

Hash table

e A hash function h takes a key and returns a block number from O to B - 1
e Blocks contain records and are stored in secondary storage
e Complexity:

® O(1) operation complexity
® (O(n) storage complexity

key — h(key) ———

12

Hash table: Design Decisions

Hash Function
® How tomap a large key space into a smaller domain of array offsets
® Trade-off between fast execution vs. collision rate

Hashing Scheme

® How to handle key collisions after hashing
® Trade-off between allocating a large hash table vs. extra steps to location/insert keys

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

13

Hash function

e For any input key, return an integer representation of that key.
® Qutput is deterministic

e Example:
® Given a key that is a string, return the sum of the characters x; modulo B (i.e., 2x, % B)
® This function is not idea since there might be many collisions

e \We do NOT want to use a cryptographic hash function (e.g., SHA-256) for
DBMS hash tables

e In general, we only care about the hash function’s speed and collision rate.

e Current SOTA: xxHash

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

14

https://xxhash.com/

Static hash table

e The number of buckets is fixed

e Often used during query execution because they are faster than dynamic
hashing schemes.

e |fthe DBMS runs out of storage space in the hash table, it has to rebuild
a larger hash table (usually 2x) from scratch, which is very expensive!

Examples
® Linear Probing Hashing

® Robinhood Hashing (not covered)
® (Cuckoo Hashing

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

15

Linear Probing Hashing

Single giant table of slots

Resolve collisions by linearly searching for the next free slot in the table.

e To determine whether an element is present, hash to a location in the index and scan for it.
e Has to store the key in the index to know when to stop scanning
e Insertions and deletions are generalizations of lookups

Example: Google's absl::flat hash _map

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

16

https://abseil.io/tips/136

Linear Probing Hashing

hash(key)

Alval <key>|<value>

mmbnj
v

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

17

Linear Probing Hashing

hash(key)

| | O] O | >

> B|val

Alval

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

18

Linear Probing

hash(key)

— Alval

| try| O] Of | >

Hashing

B|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

19

Linear Probing Hashing

hash(key)

— Alval)

| | O O & >

B|val

C|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

20

Linear Probing Hashing

hash(key)

o—T" C|val)

| | O] O] 9] >

B| val

Alval

D|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

21

Linear Probing Hashing

hash(key) B|val
A
g > Alval
D./ Clval
E D|val
F

Q: What would happen in this case?

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

22

Linear Probing Hashing

hash(key) slval
A
g > Alval
D CIval
E D|val
F E|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

23

Linear Probing Hashing

hash(key) B|val
A

g Alval

D Clval

E D|val
o
= —————— |

F|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

24

Linear Probing Hashing - Delete
It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the
emptied cell, but are stored in a position later than the emptied cell.

Two solutions:
e Tombstone
e Movement (less common)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

25

Linear Probing Hashing

hash(key) B|val

Delete mp

— Alval

D|val

| | O O = >

E|val

Flval

26
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

hash(key) vl
A

g Alval
D

E D|val

F E|val

F|val

27
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

hash(key) B|val
A « Set a marker to indicate
B that the entry in the slot is
C Alval logically deleted.

Find ip| Dé—T"L__ R
E D|val
F E|val
F|val

28
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Linear Probing Hashing

hash(key) B|val

Alval

) -

| | O O S| >

E|val

F|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Set a marker to indicate
that the entry in the slot is
logically deleted.

29

Linear Probing Hashing

hash(key) % N B|val
A
lé Alval
D 8
E D|val
F E| val
Put » G F|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Set a marker to indicate
that the entry in the slot is
logically deleted.

Reuse the slot for new
keys

30

Linear Probing Hashing

hash(key) % N B| val
A

g Alval

D G|val

E D I val

F E|val

Put ’ G F|val

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Set a marker to indicate
that the entry in the slot is
logically deleted.

Reuse the slot for new
keys

31

Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds
® Oninsert, check every table and pick one with a free slot
® |fno table has a free slot, evict the element from one of then and then re-hash it to
find a new location

® [nrare cases, we may end up in a cycle. If this happens, we can rebuild using
larger hash tables

Look-ups and deletions are ~O(1)
because only one location per hash
table is checked.

32
Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Cuckoo Hashing

Hash Table #1
Insert A
hash(A) hash,(A)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash Table #2

33

Cuckoo Hashing

Hash Table #1

Insert A
hash1(A) hGShz(A)

Insert B
haShl(B) hﬂShz(B)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash Table #2

34

Cuckoo Hashing

Hash Table #1 Hash Table #2
Insert A

|| hesi(A) hashy(A)

-
-

Insert B
hash,(B) hash,(B)

Insert C
hash,(C) hash,(C)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

Hash Table #1 Hash Table #2
Insert A

hash,(A) hash,(A)

Insert B
e —

Insert C
hash(C) hash(C) / |

Alval

36
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Cuckoo Hashing

Hash Table #1

Insert A
hash,(A) hash,(A)

Insert B
hash,(B) hash,(B)

Insert C
’ h1(C) ha-"hz(C)
hash,(B)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash Table #2

C|val

37

Cuckoo Hashing

Hash Table #1

Insert A
hash,(A) hash,(A)

Insert B
hash,(B) hash,(B)

Insert C
hash,(C) hash,(C)
hash,(B)
hash,(A)

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

Hash Table #2

38

Dynamic hash table

e The previous hash tables require the DBMS to know the number of

elements it wants to store.
® Otherwise it needs to rebuild the table to resize

e Dynamic hash tables incrementally resize the hash table on demand
without needing to rebuild the entire table.

Examples

® (Chained Hashing
® Extensible Hashing
® Linear Hashing

Slides adapted from CMU CS 15-445/645 by Andy Pavlo

39

Chained Hashing

e Maintain a linked list of buckets for each slot in the
hash table.

e Resolve collisions by placing all elements with the

same hash key into the same bucket.

® TJo determine whether an element is present, hash to its bucket
and scan for it.
® |Insertions and deletions are generalizations of lookups.

NN

40

Chained Hashing

e Add g where h(g) =1

41

Chained Hashing

e Remove c where h(c) = 1

42

Chained Hashing

e Remove c where h(c) = 1

HEREER NN

Q: What can go wrong with
chained hashing?

43

Extendible Hashing
Chained-hashing approach that splits buckets incrementally instead of letting
the linked list grow forever.

® | ong chains of blocks -> many disk I/Os

Multiple slot locations can point to the same bucket chain.

Reshuffle bucket entries on split and increase the number of bits to examine.
® Data movement is localized to just the split chain.

44

Extensible hash table

e Use first i bits of hash value to locate block
o igrows overtime

=3

h(key):
00101100

45

Extensible hash table

e Use level of indirection where buckets are pointers to blocks

7 ﬂ Local depth

o001 i [1]
Globaldepth {i=1 / -----------------

0

T —F— 1001 1]
1100

Buckets Data blocks

46

Extensible hash table

e Add 0010

0001 1]
i =1 / """""""""
0
T ———— 1001 1]
1100
Buckets Data blocks

47

Extensible hash table

e Add 0010

00T
=1 / 0010

T ———] 1001

Buckets Data blocks

48

Extensible hash table

e Add 1010

00T
=1 / 0010

T ———] 1001

Buckets Data blocks

49

Extensible hash table

e Add 1010
o001 A
=1 / 0010
0
N 1001 2]
\> _________________
1o 12
Buckets Data blocks

May need to repeat splitting
until there is space

50

Extensible hash table

e Add 1010

o001 A

=1 / 0010

0

N 1001 2]

\> _________________

1010
1Moo 12

Buckets Data blocks

51

Extensible hash table

e Add 1010

2w
00

o1 [~ o0t]2

11 —
T 1100 2]

Buckets Data blocks

52

Extensible hash table

e Add 1000

2w
00
01 /V___/l_(_)_Qil ————————— ﬁ

11 —

T 1100 2]

Buckets Data blocks

Q: What will happen in this case?

53

Extensible hash table

e Add 1000

00
01
10
11

o001 A
0010
i:2 /
1000 18]
/ 1001
1010 3]
__1199 _________ 2]
Buckets Data blocks

54

Extensible hash table

e Add 1000

| o001 A
I:3 / 0010

000

001 / 1000 E

010 / 1001

011

100 1010 El

110 —

11— ——# 1100 2]
Buckets Data blocks

55

Extensible hashing summary
If bucket array fits in memory, lookup is always 1 disk 1/O
Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive
o Splitting can occur frequently if the number of records per block is small
o At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly

56

Linear hashing

The hash table maintains a pointer that tracks the next bucket to split.
® \When any bucket overflows, split the bucket at the pointer location.

Use multiple hashes to find the right bucket for a given key.

Can use different overflow criterion:

o Space Utilization
o Average Length of Overflow Chains

57

Linear hash tables

e Use lasti bits of hash value to locate block
e Hash table grows linearly

bits used | i=1 0 00600
buckets | n=2 1010
#records | r=3 1111
1 Lo
Policy: limitr < 1.7n

58

Linear hash tables

e Add 0101

bitsused | 1=1
buckets n=2
records r=4

Policy: limitr < 1.7n

Violation

59

Linear hash tables

e Add 0101

bitsused | |
buckets n
records r

2
3
4

Policy: limitr < 1.7n

00

01

10

o000 |
1010
1111 B
0101
B

60

Linear hash tables

e Add 0101

#bitsused | i=2 00 00600
buckets n=3 \
records r=4
01 -__1_?_1_15 ______
Policy: limitr < 1.7n 0101
1o | 10107

Linear hash tables

e Add 0101

#bitsused | j=2
buckets n=3
records r=4

Policy: limitr < 1.7n

oo | 0000 |

o VA
0101

o 1010]

1111 stays here because
there is no 11 bucket yet

62

Linear hash tables

e Add 0001

#bitsused | =2 00 0000

buckets n=3

records r=4 1111]
O o0

Policy: limitr < 1.7n

10 | 1010

Linear hash tables

e Add 0001

#bits used | 1=2 00 OOOO --------- u Use overflow block
buckets | n=3
ffrecords [r=5 1111 || 0001 ||
01 [T Aas T
Policy: limitr < 1.7n 0101
ol 1010]

Linear hash tables

e Add 0001

bits used | =2 0000 B
00 [.2XXY
buckets g Use overflow block
#records | r=9 1111] 0001
01 """"""""" Lt I
Policy: limitr < 1.7n 0101
T 1010 B
No violation 10 bt

Linear hash tables

e (Continuing with example, add 0111.
What happens here?

#bits used | i=2 oo | 0000 ||
#buckets | n=3
records r=>5 N X] | 0001
Policy: limitr < 1.7n 0101
gl 1010 ||

Linear hashing summary

e (Can grow table with little wasted space and avoiding full reorganizations
e (Compared to extensible hashing, there is no array of buckets
e However, there can be a long chain of overflow blocks

Mostly |
empty

Mostly
full

A 4
A 4

67

Multidimensional Indexes (14.4)

All the index structures discussed so far are one

dimensional

o Assume a single search key, and they retrieve
records that match a given search key value.
o The key can contain multiple attributes

Examples:
o KD-tree, R-tree

O
E

68

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Agenda
	Slide 3: Reading Materials
	Slide 4: 1. B+-Tree cost model
	Slide 5: B+ Tree: High Fanout = Smaller & Lower IO
	Slide 6: B+ Trees in Practice
	Slide 7: Simple Cost Model for Search
	Slide 8: Simple Cost Model for Search
	Slide 9: Simple Cost Model for Search

	Hash Tables
	Slide 10: 2. Hashing
	Slide 11: Indexing vs hashing
	Slide 12: Hash table
	Slide 13: Hash table: Design Decisions
	Slide 14: Hash function
	Slide 15: Static hash table
	Slide 16: Linear Probing Hashing
	Slide 17: Linear Probing Hashing
	Slide 18: Linear Probing Hashing
	Slide 19: Linear Probing Hashing
	Slide 20: Linear Probing Hashing
	Slide 21: Linear Probing Hashing
	Slide 22: Linear Probing Hashing
	Slide 23: Linear Probing Hashing
	Slide 24: Linear Probing Hashing
	Slide 25: Linear Probing Hashing - Delete
	Slide 26: Linear Probing Hashing
	Slide 27: Linear Probing Hashing
	Slide 28: Linear Probing Hashing
	Slide 29: Linear Probing Hashing
	Slide 30: Linear Probing Hashing
	Slide 31: Linear Probing Hashing
	Slide 32: Cuckoo Hashing
	Slide 33: Cuckoo Hashing
	Slide 34: Cuckoo Hashing
	Slide 35: Cuckoo Hashing
	Slide 36: Cuckoo Hashing
	Slide 37: Cuckoo Hashing
	Slide 38: Cuckoo Hashing
	Slide 39: Dynamic hash table
	Slide 40: Chained Hashing
	Slide 41: Chained Hashing
	Slide 42: Chained Hashing
	Slide 43: Chained Hashing
	Slide 44: Extendible Hashing
	Slide 45: Extensible hash table
	Slide 46: Extensible hash table
	Slide 47: Extensible hash table
	Slide 48: Extensible hash table
	Slide 49: Extensible hash table
	Slide 50: Extensible hash table
	Slide 51: Extensible hash table
	Slide 52: Extensible hash table
	Slide 53: Extensible hash table
	Slide 54: Extensible hash table
	Slide 55: Extensible hash table
	Slide 56: Extensible hashing summary
	Slide 57: Linear hashing
	Slide 58: Linear hash tables
	Slide 59: Linear hash tables
	Slide 60: Linear hash tables
	Slide 61: Linear hash tables
	Slide 62: Linear hash tables
	Slide 63: Linear hash tables
	Slide 64: Linear hash tables
	Slide 65: Linear hash tables
	Slide 66: Linear hash tables
	Slide 67: Linear hashing summary
	Slide 68: Multidimensional Indexes (14.4)

