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Agenda

1. B+-Tree cost model 

2. Hashing
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Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.3: Hash Tables
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.



1. B+-Tree cost model 
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B+ Tree: High Fanout = Smaller & Lower IO

So why does B+ tree work?

As compared to binary search trees, B+ Trees have 

high fanout (between d+1 and 2d+1)

This means that the depth of the tree is small →

getting to any element requires very few IO operations!

○ Also can often store most or all of the B+ Tree in main 

memory!

The fanout is defined as the 

number of pointers to child 

nodes coming out of a node

Note that fanout is dynamic 
- we’ll often assume it’s 

constant just to come up 

with approximate eqns!



B+ Trees in Practice

Typical order: d=100.  Typical fill-factor: 67%.

○ average fanout = 133

Top levels of tree sit in the buffer pool:

○ Level 1 =           1 page  =     8 KB

○ Level 2 =      133 pages =     1 MB

○ Level 3 = 17,689 pages = 133 MB

Typically, only 

pay for one IO!

Fill-factor is the percent of 

available slots in the B+ 

Tree that are filled; is 

usually < 1 to leave slack 

for (quicker) insertions



Simple Cost Model for Search

Suppose:

○ f = fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model…)

○ N = the total number of pages we need to index

○ F = fill-factor (usually ~= 2/3)

Our B+ Tree needs to have room to index N / F pages!

○ We have the fill factor in order to leave some open slots for faster insertions

What height (h) does our B+ Tree need to be?

○ h=1 → Just the root node- room to index f pages

○ h=2 → f leaf nodes- room to index f2 pages

○ h=3 → f2 leaf nodes- room to index f3 pages

○ …

○ h → fh-1 leaf nodes- room to index fh pages!

→ We need a B+ Tree of 

height h = logf
N

F
!



Simple Cost Model for Search

Note that if we have B available buffer pages, by the same logic:

○ We can store 𝑳𝑩 levels of the B+ Tree in memory

○ where 𝑳𝑩 is the number of levels such that the sum of all the levels’ nodes fit in the buffer:

■ 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓𝐿𝐵−1 = σ𝑙=0
𝐿𝐵−1𝑓𝑙

In summary: to do exact search:

○ We read in one page per level of the tree

○ However, levels that we can fit in buffer are free!

○ Finally we read in the actual record

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 1

where  𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙



Simple Cost Model for Search

To do range search, we just follow the horizontal pointers

The IO cost is that of loading additional leaf nodes we need to access + the IO 

cost of loading each page of the results- we phrase this as “Cost(OUT)”

IO Cost: log𝑓
𝑁

𝐹
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where  𝐵 ≥ σ𝑙=0
𝐿𝐵−1 𝑓𝑙



2. Hashing
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Indexing vs hashing

● Indexing (including B+ trees) is good for range lookups

● Hashing is good for equality-based point lookups
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SELECT *

FROM Movies

WHERE title = ‘Ponyo’;

SELECT *

FROM Movies

WHERE year >= 2000;



Hash table

● A hash function h takes a key and returns a block number from 0 to B - 1

● Blocks contain records and are stored in secondary storage

● Complexity:
● O(1) operation complexity 

● O(n) storage complexity 
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key h(key)

...
...



Hash table: Design Decisions

Hash Function 
● How to map a large key space into a smaller domain of array offsets

● Trade-off between fast execution vs. collision rate 

Hashing Scheme 
● How to handle key collisions after hashing 

● Trade-off between allocating a large hash table vs. extra steps to location/insert keys
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Hash function

● For any input key, return an integer representation of that key.
● Output is deterministic

● Example: 
● Given a key that is a string, return the sum of the characters xi modulo B (i.e., Σxi % B)

● This function is not idea since there might be many collisions

● We do NOT want to use a cryptographic hash function (e.g., SHA-256) for 

DBMS hash tables

● In general, we only care about the hash function’s speed and collision rate.

● Current SOTA: xxHash

14
Slides adapted from CMU CS 15-445/645 by Andy Pavlo

https://xxhash.com/


Static hash table

● The number of buckets is fixed

● Often used during query execution because they are faster than dynamic 

hashing schemes.

● If the DBMS runs out of storage space in the hash table, it has to rebuild 

a larger hash table (usually 2x) from scratch, which is very expensive!

Examples
● Linear Probing Hashing

● Robinhood Hashing (not covered)

● Cuckoo Hashing 
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Linear Probing Hashing

Single giant table of slots 

Resolve collisions by linearly searching for the next free slot in the table.
● To determine whether an element is present, hash to a location in the index and scan for it.
● Has to store the key in the index to know when to stop scanning

● Insertions and deletions are generalizations of lookups 

Example: Google's absl::flat_hash_map
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https://abseil.io/tips/136


Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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Q: What would happen in this case?



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing - Delete
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It is not sufficient to simply delete the key

This would affect searches for keys that have a hash value earlier than the 

emptied cell, but are stored in a position later than the emptied cell.

Two solutions:

● Tombstone

● Movement (less common)



Linear Probing Hashing
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Linear Probing Hashing
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Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.

• Reuse the slot for new 

keys



Linear Probing Hashing
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• Set a marker to indicate 

that the entry in the slot is 

logically deleted.

• Reuse the slot for new 

keys



Cuckoo Hashing

Power of 2 choices: Use multiple hash tables with different seeds 
● On insert, check every table and pick one with a free slot 

● If no table has a free slot, evict the element from one of then and then re-hash it to 

find a new location

● In rare cases, we may end up in a cycle. If this happens, we can rebuild using 

larger hash tables
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Image source: https://theconversation.com/egg-colours-make-cuckoos-masters-of-disguise-34217

Look-ups and deletions are ~O(1) 

because only one location per hash 

table is checked.



Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Cuckoo Hashing
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Dynamic hash table

● The previous hash tables require the DBMS to know the number of 

elements it wants to store.
● Otherwise it needs to rebuild the table to resize 

● Dynamic hash tables incrementally resize the hash table on demand 

without needing to rebuild the entire table. 

Examples
● Chained Hashing

● Extensible Hashing

● Linear Hashing
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Chained Hashing

● Maintain a linked list of buckets for each slot in the 

hash table.

● Resolve collisions by placing all elements with the 

same hash key into the same bucket.
● To determine whether an element is present, hash to its bucket 

and scan for it.

● Insertions and deletions are generalizations of lookups.
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Chained Hashing

● Add g where h(g) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Chained Hashing

● Remove c where h(c) = 1
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Q: What can go wrong with 

chained hashing? 



Extendible Hashing

Chained-hashing approach that splits buckets incrementally instead of letting 

the linked list grow forever. 
● Long chains of blocks -> many disk I/Os

Multiple slot locations can point to the same bucket chain. 

Reshuffle bucket entries on split and increase the number of bits to examine. 
● Data movement is localized to just the split chain.
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Extensible hash table

● Use first i bits of hash value to locate block
○ i grows over time
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h(key):    

00101100

i = 3



Extensible hash table

● Use level of indirection where buckets are pointers to blocks
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0001 1
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0
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Buckets Data blocks

i = 1Global depth

Local depth



Extensible hash table

● Add 0010
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Extensible hash table

● Add 0010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1010
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Extensible hash table

● Add 1000
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Q: What will happen in this case?



Extensible hash table

● Add 1000
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Extensible hash table

● Add 1000
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Extensible hashing summary

If bucket array fits in memory, lookup is always 1 disk I/O

Can grow table with little wasted space and avoiding full reorganizations

However, doubling the bucket array is expensive
○ Splitting can occur frequently if the number of records per block is small

○ At some point, the bucket array may not fit in memory

Linear hashing (covered next) grows the number of buckets more slowly
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Linear hashing

The hash table maintains a pointer that tracks the next bucket to split. 
● When any bucket overflows, split the bucket at the pointer location.

Use multiple hashes to find the right bucket for a given key.

Can use different overflow criterion:
○ Space Utilization 

○ Average Length of Overflow Chains
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Linear hash tables

● Use last i bits of hash value to locate block

● Hash table grows linearly
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n = 2
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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Linear hash tables

● Add 0101
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1111 stays here because 

there is no 11 bucket yet



Linear hash tables

● Add 0001
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Linear hash tables

● Add 0001

64

1111

0000
00

01

i = 2

n = 3

r = 5

Policy: limit r ≤ 1.7n

# buckets

# bits used

# records

0101

1010
10

0001

Use overflow block



Linear hash tables

● Add 0001
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Linear hash tables

● Continuing with example, add 0111. 

What happens here?
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Linear hashing summary

● Can grow table with little wasted space and avoiding full reorganizations

● Compared to extensible hashing, there is no array of buckets

● However, there can be a long chain of overflow blocks

67

Mostly 

empty

...Mostly 

full



Multidimensional Indexes (14.4)

All the index structures discussed so far are one 

dimensional
○ Assume a single search key, and they retrieve 

records that match a given search key value.

○ The key can contain multiple attributes 

Examples:
○ KD-tree, R-tree
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