
CS 6400 A

Database Systems

Concepts and Design

Lecture 8

09/16/24

Logistics

Please sign up for project groups on canvas!

○ 56 people still unassigned

○ Project proposal due Oct 2 (no late day)

Midterm logistics

○ Sep 25 (in class)

○ Open book open notes (no laptop)

○ Contents covered: up until Sep 9 lecture Design Theory II

○ Review lecture next Monday

2

Agenda

1. Index Overivew

2. Index structure basics

3. B+-Trees

3

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 14.1: Index-Structure Basics

● Chapter 14.2: B-Tree

4

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. Index Overview

5

Index Motivation

Suppose we want to search for people of a specific age

First idea: Sort the records by age… we know how to do this fast!

How many IO operations to search over N sorted records?

○ Simple scan: O(N)

○ Binary search: O(log𝟐 𝑵)

Person(name, age)

Could we get even cheaper search? E.g. go from

𝐥𝐨𝐠𝟐 𝐍→ 𝐥𝐨𝐠𝟐𝟎𝟎 𝐍?

Index Motivation

What about if we want to insert a new person, but keep the list sorted?

We would have to potentially shift N records, requiring up to ~ 2*N/P IO

operations (where P = # of records per page)!

○ We could leave some “slack” in the pages…

4,5 6,71,3 3,4 5,61,2

2

7,

Could we get faster insertions?

Index Motivation

What about if we want to be able to search quickly along multiple

attributes (e.g. not just age)?

○ We could keep multiple copies of the records, each sorted by one attribute set…

this would take a lot of space

Can we get fast search over multiple attribute (sets)

without taking too much space?

We’ll create separate data structures called indexes

to address all these points

Indexes: High-level

An index on a file speeds up selections on the search key fields for the index.

○ Search key properties

■ Any subset of fields

■ is not the same as key of a relation

Example:
On which attributes

would you build

indexes?
Product(name, maker, price)

More precisely

An index is a data structure mapping search keys to sets of rows in a
database table

○ Provides efficient lookup & retrieval by search key value- usually much faster than
searching through all the rows of the database table

An index can store the full rows it points to (primary index) or pointers to

those rows (secondary index)

○ We’ll cover both, but mainly consider secondary indexes

Operations on an Index

Search: Quickly find all records which meet some condition on the search

key attributes

○ Point queries, range queries, …

Insert / Remove entries

○ Bulk Load / Delete. Why?

Indexing is one the most important features provided by

a database for performance

Using Indexes in SQL

● An index is used to efficiently find tuples with certain values of attributes

● An index may speed up lookups and joins

● However, every built index makes insertions, deletions, and updates to

relation more complex and time-consuming

12

CREATE INDEX KeyIndex ON Movies(title, year);

DROP INDEX KeyIndex;

Simple cost model

● Multiple tuples are stored in blocks on disk

● Every block needed is always retrieved from disk

● Disk I/Os are expensive

13

Memory

Disk ...

t1

t2

t3

t4

t5t1

t2

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other blocks for the index itself

14

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Memory

Disk ...t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other pages for the index itself

15

Memory

Disk ...t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Index on a key

● An index on a key is often useful

● Retrieve at most one block to memory for tuple
○ Possibly other pages for the index itself

16

Memory

Disk ...

t3

t4

t3

t4

t5t1

t2

KeyIndex

(Ponyo, 2008)

SELECT *
FROM Movies
WHERE title = ‘Ponyo’ AND year = 2008;

CREATE INDEX KeyIndex ON Movies(title, year);

Indexes can be used in joins

17

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

Indexes can be used in joins

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

18

Memory

Disk ...m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex
SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Indexes can be used in joins

19

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Indexes can be used in joins

20

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

Cert # 101

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

Indexes can be used in joins

21

Memory

Disk ...

m1

m2 m3m1

MIndex

...e2 e3e1

(Ponyo, 2008)

MEIndex

e3

Cert # 101

With the right indexes, the join below only requires 2 page reads for the tuples

○ And possibly a small number of other pages for accessing the indexes

SELECT name
FROM Movies, MovieExec
WHERE title = ‘Ponyo’ AND year = 2008
AND producerC# = cert#;

CREATE INDEX MIndex ON Movies(title, year);

CREATE INDEX MEIndex ON MovieExec(cert#);

2. Index Structure Basics

22

Sequential file

● A file containing tuples of a relation sorted by their primary key

23

10

20

30

40

50

60

70

80

90

100

Sequential file

Dense index

● A sequence of blocks holding keys of records and pointers to the records

24

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

110

120

Index file Sequential file

Dense index

Given key K, search index blocks for K, then follow associated pointer

Why is this efficient?

○ Number of index blocks usually smaller than number of data blocks

○ Keys are sorted, so we can use binary search

○ The index may be small enough to fit in memory

25

Sparse index

● Has one key-pointer pair per block of the data file

● Uses less space than dense index, but needs more time to find a record

26

10

20

30

40

50

60

70

80

90

100

10

30

50

70

90

110

130

150

170

190

210

230

Index file Sequential file

Exercise #1

Suppose a block holds 3 records or 10 key-pointer pairs

If there are n records in a data file, how many blocks are needed to hold

○ The data file and a dense index

○ The data file and a sparse index

27

Multiple levels of index

If the index file is still large, add another level of indexing

● Basic idea of the B+-tree index

28

10

20

30

40

50

60

70

80

90

100

10

30

50

70

90

110
130

150

170

190

210

230

10

90

170

250

330

410

490

570

Q: Should the blocks of additional levels be dense or sparse?

Clustered Indexes

An index is clustered if the underlying

data is ordered in the same way as the

index’s data entries.

Clustered vs. Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered: often on

primary key

Unclustered

Index Entries

Data Records

Non-clustered/secondary index

Unlike a clustered index, does not determine the placement of records

31

20

40

10

20

50

30

10

50

60

20

Non-clustered/secondary index

Using a sparse index doesn’t make sense

32

20

40

10

20

50

30

10

50

60

20

20

10

50

10

60

...

Non-clustered/secondary index

As a result, secondary indexes are always dense

33

20

40

10

20

50

30

10

50

60

20

10

10

20

20

20

30

40

50

50

60

Secondary index

To remove redundant keys in secondary index file, use level of indirection

34

20

40

10

20

50

30

10

50

60

20

10

20

30

40

50

60

Buckets

Inverted index

● Previous idea is used in text information retrieval

● Search for documents containing “cat” or “dog” (or both)

35

Inverted

index

cat

dog

Buckets

Documents

… raining

cats and

dogs ...

...the cat is

fat...

…the dog

is eating ...

Store more information in inverted index

Can answer more complex queries like:
○ Find documents where “dog” and “cat” are within 10 words

○ Find documents about dogs that refer to other documents about cats

36

cat

dog

title 5

anchor 3

doc 1

Type Position

title 11

text 20

doc 2

doc 3
text 50

3. B+-Tree

37

B-tree

More general index structure that is commonly used in commercial DBMS’s

○ Automatically maintains arbitrary number of levels

○ Manages the space on blocks so that each block is at least half full

○ We will study the most popular variant called the B+ tree

38

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

B+ Tree Basics

10 20 30

Each non-leaf (“interior”) node

has ≥ d and ≤ 2d keys*

*except for root node, which can

have between 1 and 2d keys

Parameter d = the degree

B+ Tree Basics

10 20 30

k < 10

10 ≤ 𝑘 < 20

20 ≤ 𝑘 < 30

30 ≤ 𝑘

The n keys in a node

define n+1 ranges

B+ Tree Basics

10 20 30

22 25 28

For each range, in a non-leaf

node, there is a pointer to

another node with keys in

that range

Non-leaf or internal node

B+ Tree Basics

10 20 30

Leaf nodes also have

between d and 2d keys,

and are different in that:

22 25 28 29 32 34 37 3812 17

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29 32 34 37 3812 17

Their key slots

contain pointers to

data records

21 22 27 28 30 33 35 371511

Leaf nodes also have

between d and 2d keys,

and are different in that:

Leaf nodes

Non-leaf or internal node

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

21 22 27 28 30 33 35 371511

They contain a pointer

to the next leaf node

as well, for faster

sequential traversal

Their key slots

contain pointers to

data records

Leaf nodes also have

between d and 2d keys,

and are different in that:

B+ Tree Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf or internal node

12 17

Note that the pointers at

the leaf level will be to the

actual data records

(rows).

We might truncate these

for simpler display…

Name: John
Age: 21

Name: Jake
Age: 15

Name: Bob
Age: 27

Name: Sally
Age: 28

Name: Sue
Age: 33

Name: Jess
Age: 35

Name: Alf
Age: 37Name: Joe

Age: 11

Name: Bess
Age: 22

Name: Sal
Age: 30

B+ Tree requirement: leaf nodes

n = 3

46

13 17 19

To next leaf in sequence

To record

with key 13

To record

with key 17

To record

with key 19

Full

13 17

Counts even if null

To record

with key 13

To record

with key 17

Minimal

At least half of the keys

must be used

B+ Tree requirement: interior nodes

n = 3

47

23 31 43

To keys

K < 23

To keys

23 ≤ K < 31

To keys

31 ≤ K < 43

To keys

43 ≤ K

Full

Minimal

23

To keys

K < 23

To keys

23 ≤ K < ?

At least half of the

pointers much be used

Nodes must be “full enough”

48

Node type Min. # pointers Max. # pointers Min. # keys Max. # keys

Interior ⌈(n + 1) / 2⌉ n + 1 ⌈(n + 1) / 2⌉ - 1 n

Leaf ⌊(n + 1) / 2⌋ ** n + 1 ⌊(n + 1) / 2⌋ n

Root 2 * n + 1 1 n

* Exception: If there is only one record in the B-tree, there is one pointer in the root

** Not including the next leaf pointer

Lookup

● Search for key K recursively

49

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup K = 41

Lookup

● For range query [a, b], search for key a then scan leaves to right until we pass b

50

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup 41 ≤ K ≤ 43

Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

51

13

7 23 31 43

2 3 5 7 11 13 19 23 29 31 37 41 43 47

Insert K = 17

Insertion

● Find place for new key in a leaf

● If there is space, put key in leaf

52

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 17

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

53

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

54

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

55

13

23 31 43

13 17 19 23 29 31 37 43 4740 41

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

56

13

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40

Insertion

● If leaf is full, split into two and insert new pointer at a higher level recursively

57

13 40

23 31

13 17 19 23 29 31 37 43 4740 41

43

Insert K = 40

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with adjacent

sibling

58

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with adjacent

sibling

59

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

60

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=7

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

61

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Delete K=11

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with adjacent

sibling

62

13

5 23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

63

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

Deletion

● Delete the key pointer from a leaf

● If the node contains too few pointers, take a pointer from or merge with

adjacent sibling

64

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Delete K=11

Exercise #2

● Delete K = 31

65

23

13 31 43

2 3 13 17 23 29 31 37 43 47

B-tree deletions in practice

● Coalescing is sometimes not implemented because

○ It is hard to implement and

○ The B-tree will probably grow again

66

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Logistics
	Slide 3: Agenda
	Slide 4: Reading Materials
	Slide 5: 1. Index Overview
	Slide 6: Index Motivation
	Slide 7: Index Motivation
	Slide 8: Index Motivation
	Slide 9: Indexes: High-level
	Slide 10: More precisely
	Slide 11: Operations on an Index
	Slide 12: Using Indexes in SQL
	Slide 13: Simple cost model
	Slide 14: Index on a key
	Slide 15: Index on a key
	Slide 16: Index on a key
	Slide 17: Indexes can be used in joins
	Slide 18: Indexes can be used in joins
	Slide 19: Indexes can be used in joins
	Slide 20: Indexes can be used in joins
	Slide 21: Indexes can be used in joins

	14.1 index structure basics
	Slide 22: 2. Index Structure Basics
	Slide 23: Sequential file
	Slide 24: Dense index
	Slide 25: Dense index
	Slide 26: Sparse index
	Slide 27: Exercise #1
	Slide 28: Multiple levels of index
	Slide 29: Clustered Indexes
	Slide 30: Clustered vs. Unclustered Index
	Slide 31: Non-clustered/secondary index
	Slide 32: Non-clustered/secondary index
	Slide 33: Non-clustered/secondary index
	Slide 34: Secondary index
	Slide 35: Inverted index
	Slide 36: Store more information in inverted index

	B-tree
	Slide 37: 3. B+-Tree
	Slide 38: B-tree
	Slide 39: B+ Tree Basics
	Slide 40: B+ Tree Basics
	Slide 41: B+ Tree Basics
	Slide 42: B+ Tree Basics
	Slide 43: B+ Tree Basics
	Slide 44: B+ Tree Basics
	Slide 45: B+ Tree Basics
	Slide 46: B+ Tree requirement: leaf nodes
	Slide 47: B+ Tree requirement: interior nodes
	Slide 48: Nodes must be “full enough”
	Slide 49: Lookup
	Slide 50: Lookup
	Slide 51: Insertion
	Slide 52: Insertion
	Slide 53: Insertion
	Slide 54: Insertion
	Slide 55: Insertion
	Slide 56: Insertion
	Slide 57: Insertion
	Slide 58: Deletion
	Slide 59: Deletion
	Slide 60: Deletion
	Slide 61: Deletion
	Slide 62: Deletion
	Slide 63: Deletion
	Slide 64: Deletion
	Slide 65: Exercise #2
	Slide 66: B-tree deletions in practice

