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Next Part: Database System Internals

● Hardware and file system structure

● Indexing and hashing

● Query optimization

● Transactions

● Crash recovery

● Concurrency control
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Parse Query

Select logical query plan
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Disk

SQL query

Schema design



Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 13: Secondary Storage Management
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Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) 
taught by Steven Whang and CS245 (Principles of Data-Intensive Systems) taught by Matei Zaharia. 



Agenda

1. Storage hardware 

2. Record encoding

3. Collection Storage
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1. Storage Hardware
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Typical computer system (Von Neumann architecture)
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High-level: Disk vs. Main Memory
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Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable

• ~10x faster for sequential access

• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs, 
power goes out, etc!

• Expensive: For $100, get 16GB of RAM vs. 
2TB of disk!

Disk:

• Fast: sequential block access

• Read a blocks (not byte) at a time, so sequential 
access is cheaper than random 

• Disk read / writes are expensive

• Durable: We will assume that once on 
disk, data is safe!

• Cheap



Storage Hierarchies

Typically cache frequently accessed data on 

faster storage to improve performance 

● Main memory stores current data

● Secondary storage stores main database
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Numbers everyone should know
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by Jeff Dean



Jim Gray’s storage latency analogy: how far is the data?
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Sizing Storage Tiers

When should we cache data in DRAM vs storing it on disks?

Can determine based on workload & cost 
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“The 5 Minute Rule for Trading Memory 

Accesses for Disc Accesses”

Jim Gray & Franco Putzolu

May 1985 



The five minute rule 

“Pages referenced every 5 minutes should be memory resident (1987)”
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Technology ratio Economic ratio



The five minute rule 

“Pages referenced every 5 minutes should be memory resident (1987)”
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● We will focus on the typical 

magnetic disk

● One or more circular platters 

rotate around a spindle

● Tracks of the same radius 

form a cylinder
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Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector

Most Common Permanent Storage: Hard Disks



Top view of disk surface
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Track

Sector

Gap

● The disk is organized into tracks

● Tracks are organized into sectors, which are indivisible units

● Blocks (unit of transfer to memory) consist of one or more sectors

● Gaps are used to identify the beginnings of sectors



Disk access time

Latency = seek time + rotational delay + 

transfer time + other

○ Transfer time: time to read/write data 

in sectors
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Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/



Seek time

● The seek time depends on the distance the head has to travel to 

the desired cylinder
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Rotational delay

● The time can range from 0 to the time to rotate the disk once
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Head here

Block I want



Relative times

● Seek time
○ Disk: 1~15ms

○ Solid-state drive (SSD): 0.08~0.16ms

● Rotational delay
○ Disk: 0~10ms (on average, 1/2 rotation)

○ SSD: 0ms

● Transfer time
○ Disk: < 1ms for 4KB block

○ SSD: several times faster than disk

● Other delays
○ CPU time, contention for controller/bus/memory

○ Typically 0
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I/O model of computation

● Time to read a block from disk >> time to search a record within that block

● Algorithm time ≈ Number of disk I/Os
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Exercise #1

● Consider a 500GB hard disk with the following performance characteristics
○ 5000 revolution-per-minute (RPM) rotation rate

○ 200 cylinders

○ Takes 1 + (t / 20) milliseconds to move heads t cylinders

○ 100MB/s transfer rate

● What is the average time to read a 1MB block from the hard disk?
● Assumes that the head travels 100 cylinders on average

● On average the disk rotates half a circle 
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Speeding up disk access

● The previous analysis was on random accesses

● In general, sequential access is much faster than random accesses 

● There are several techniques for decreasing average disk access time
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RAID: Combining storage devices

● RAID: redundant array of inexpensive disks

● Many flavors of “RAID”: striping, mirroring, etc to increase 

performance and reliability 
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Common RAID Levels
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Striping across 2 

disks: adds 

performance but 

not reliability 

Mirroring across 2 

disks: adds reliability 

but not performance 

(except for reads) 

Striping + 1 parity disk: adds 

performance and reliability at 

lower storage cost 

Image source: Wikipedia 



Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time
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Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time
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Disk: B C D

Memory:
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Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time
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Disk: C D

Memory:
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Exercise #2

● Suppose

○ P = processing time / block

○ R = I/O time / block

○ N = number of blocks

● If P ≥ R, what is the processing time of

○ Single buffering

○ Double buffering
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2. Record Encoding
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File system structure

● Now let’s look at how disks are used to store databases

● A tuple is represented by a record, 

which consists of consecutive bytes in a disk block
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Data items

Records

Blocks

Files



Physical Representation of Data Items 

Example data items that we want to store:

○ Date 

○ Salary

○ Name

○ Picture 

What we have available: bytes
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Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia



Fixed length items 

Integer: fixed # of bytes (e.g., 2 bytes) 

Floating-point: n-bit mantissa, m-bit exponent 

Character: encode as integer (e.g. ASCII) 
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Adapted from Stanford CS245 from Matei Zaharia



Variable length items 

String of characters: 

● Null-terminated 

● Length + data 

● Fixed-length 

Bag of bits: 
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Adapted from Stanford CS245 from Matei Zaharia



Storing Records 

● Record (tuple): consecutive bytes in disk blocks 

○ e.g. employee record: 

■ name field

■ salary field

■ date-of-hire field 

● Fixed vs variable length

● Fixed vs variable format
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Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia



Fixed-format records

A schema for all records in table specifies: 

○ # of fields 

○ type of each field

○ order in record

○ meaning of each field 
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Adapted from Stanford CS245 from Matei Zaharia



Fixed-length records

● header + fixed-length region of record’s information

● It is common for field addresses to be multiples of 4 or 8 to align data for 

efficient reading/writing of main memory (a CPU accesses memory one 

word at a time)
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CREATE TABLE MovieStar (
name CHAR(30),
address CHAR(255),
gender CHAR(1),
birthdate DATE

);
name address

gender

birthdate

header

0

pointer to schema for finding 

fields of the record

length

timestamp when 

record was modified

12 44 300 304 316



Variable-length records

Some records may not have a fixed schema with a list of fixed-length fields

● e.g., VARCHAR

● other data models (e.g., semi-structured)
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Records with variable-length fields

● Put all fixed-length fields ahead of the variable-length fields
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birthdate address

gender

name

header

other header info

record length

pointer to address

fixed-length fields variable-length fields

CREATE TABLE MovieStar (
name VARCHAR(30),
address VARCHAR(100),
gender CHAR(1),
birthdate DATE

);



Variable-format records

● Records may not have a fixed schema (e.g., JSON)

● Use tagged fields to make record “self-describing”
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Variable format useful for

“Sparse” records 

Repeating fields 

Evolving formats 

But many waste space…
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Adapted from Stanford CS245 from Matei Zaharia



3. Collection Storage
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Collection Storage Questions 

How do we place data items and records for efficient access?

● Locality

● Searchability 

How do we physical encode records in blocks and files?
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Adapted from Stanford CS245 from Matei Zaharia
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Place Data for Efficient Access

Locality: which items are accessed together 
● When you read one field of a record, you’re likely to read other fields of the 

same record 

● When you read one field of record 1, you’re likely to read the same field of 

record 2 

Searchability: quickly find relevant records
● E.g. sorting the file lets you do binary search 
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Adapted from Stanford CS245 from Matei Zaharia



Locality Example: Row Stores vs Column Stores

44
Adapted from Stanford CS245 from Matei Zaharia



Locality Example: Row Stores vs Column Stores
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Adapted from Stanford CS245 from Matei Zaharia

Accessing all fields of one record: 1 random I/O for row, 3 for column 



Locality Example: Row Stores vs Column Stores
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Adapted from Stanford CS245 from Matei Zaharia

Accessing one field of all records: 3x less I/O for column store 



Can We Have Hybrids Between Row & Column? 
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Adapted from Stanford CS245 from Matei Zaharia

Helpful if age & state are frequently co-accessed 

Yes! For example, colocated column groups: 



Improving Searchability: Ordering
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Adapted from Stanford CS245 from Matei Zaharia

Q: What’s the downside of having an ordering?

Ordering the data by a field will give:

• Smaller I/Os if queries tend to read data with nearby values of the field 

(e.g. time ranges) 

• Option to accelerate search via an ordered index (e.g. B-tree), binary 

search, etc



Improving Searchability: Partitions
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Adapted from Stanford CS245 from Matei Zaharia

Easy to add, remove, list any files in a directory

Just place data into buckets based on a field 

(but not necessarily fine-grained order) 

E.g. Hive table storage over a filesystem: 



Can We Have Searchability on Multiple 

Fields at Once?
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Adapted from Stanford CS245 from Matei Zaharia

Yes! Many possible ways: 

1) Multiple partition or sort keys (e.g., partition by date, then sort 

by userID) 

2) Interleaved orderings such as Z-ordering 



Z-Ordering

51Image source: wikipedia



How Do We Encode Records into Blocks & Files? 
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Adapted from Stanford CS245 from Matei Zaharia
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Storing records into blocks 

Records are stored in blocks, which are moved into main memory.

Several options:

(1) separating records

(2) spanned vs. unspanned

(3) indirection 
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Adapted from Stanford CS245 from Matei Zaharia



(1) Separating Records 

(a) no need to separate - fixed size recs. 

(b) special marker

(c) give record lengths (or offsets) 

○ within each record 

○ in block header 
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Adapted from Stanford CS245 from Matei Zaharia

Block



(2) Spanned vs Unspanned

Unspanned: records must be within one block 

Spanned: 
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Adapted from Stanford CS245 from Matei Zaharia



(3) Indirection

How does one refer to other records? 

Many options: physical vs indirect  
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Adapted from Stanford CS245 from Matei Zaharia



(3) Indirection
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Adapted from Stanford CS245 from Matei Zaharia

Purely Physical Fully Indirect

Tradeoff: 

Flexibility to move records <> cost of indirection



Inserting Records 

Easy case: records not ordered

● Insert record at end of file or in a free space 

● Harder if records are variable-length 

Hard case: records are ordered 

● If free space close by, not too bad... 

● Otherwise, use an overflow area and reorganize the file periodically 
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Adapted from Stanford CS245 from Matei Zaharia



Deleting Records 

Immediately reclaim space 

OR 

Mark deleted

- And keep track of freed spaces for later use 
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Adapted from Stanford CS245 from Matei Zaharia



Interesting Problems 

How much free space to leave in each block, 

track, cylinder, etc? 

How often to reorganize file + merge 

overflow? 
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Adapted from Stanford CS245 from Matei Zaharia



Summary

Many ways to store data on disk!

Key tradeoffs:
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Flexibility

Complexity

Space Utilization

Performance



To Evaluate a Strategy, Compare: 

Space used for expected data 

Expected time to 
● fetch record given key 

● read whole file

● insert record

● delete record 

● update record 

● reorganize file 

● ... 
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