
CS 6400 A

Database Systems

Concepts and Design

Lecture 7

09/11/24

Next Part: Database System Internals

● Hardware and file system structure

● Indexing and hashing

● Query optimization

● Transactions

● Crash recovery

● Concurrency control

2

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

Schema design

Reading Materials

Database Systems: The Complete Book (2nd edition)

● Chapter 13: Secondary Storage Management

3

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems)
taught by Steven Whang and CS245 (Principles of Data-Intensive Systems) taught by Matei Zaharia.

Agenda

1. Storage hardware

2. Record encoding

3. Collection Storage

4

1. Storage Hardware

5

Typical computer system (Von Neumann architecture)

6

CPU

Main

Memory
Controller ...

Memory - I/O Bus

Secondary Storage

High-level: Disk vs. Main Memory

7

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:

• Fast: Random access, byte addressable

• ~10x faster for sequential access

• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs,
power goes out, etc!

• Expensive: For $100, get 16GB of RAM vs.
2TB of disk!

Disk:

• Fast: sequential block access

• Read a blocks (not byte) at a time, so sequential
access is cheaper than random

• Disk read / writes are expensive

• Durable: We will assume that once on
disk, data is safe!

• Cheap

Storage Hierarchies

Typically cache frequently accessed data on

faster storage to improve performance

● Main memory stores current data

● Secondary storage stores main database

8

Numbers everyone should know

9

by Jeff Dean

Jim Gray’s storage latency analogy: how far is the data?

10

1

2

10

100

106

109

Disk

Memory

Registers

On chip cache

On board cache

Tape

2 years

1 min

10 min

1.5 hours

2,000 years

My head

This room

This building

Columbus, GA

Pluto

Andromeda

Turing Award,

1998

Sizing Storage Tiers

When should we cache data in DRAM vs storing it on disks?

Can determine based on workload & cost

11

“The 5 Minute Rule for Trading Memory

Accesses for Disc Accesses”

Jim Gray & Franco Putzolu

May 1985

The five minute rule

“Pages referenced every 5 minutes should be memory resident (1987)”

12

Technology ratio Economic ratio

The five minute rule

“Pages referenced every 5 minutes should be memory resident (1987)”

13

● We will focus on the typical

magnetic disk

● One or more circular platters

rotate around a spindle

● Tracks of the same radius

form a cylinder

14

Image source: https://en.wikipedia.org/wiki/Cylinder-head-sector

Most Common Permanent Storage: Hard Disks

Top view of disk surface

15

Track

Sector

Gap

● The disk is organized into tracks

● Tracks are organized into sectors, which are indivisible units

● Blocks (unit of transfer to memory) consist of one or more sectors

● Gaps are used to identify the beginnings of sectors

Disk access time

Latency = seek time + rotational delay +

transfer time + other

○ Transfer time: time to read/write data

in sectors

16
Image source: https://theithollow.com/2013/11/18/disk-latency-concepts/

Seek time

● The seek time depends on the distance the head has to travel to

the desired cylinder

17

N1

Cylinders traveled

Time

x

3x-20x

Arm

movement

Rotational delay

● The time can range from 0 to the time to rotate the disk once

18

Head here

Block I want

Relative times

● Seek time
○ Disk: 1~15ms

○ Solid-state drive (SSD): 0.08~0.16ms

● Rotational delay
○ Disk: 0~10ms (on average, 1/2 rotation)

○ SSD: 0ms

● Transfer time
○ Disk: < 1ms for 4KB block

○ SSD: several times faster than disk

● Other delays
○ CPU time, contention for controller/bus/memory

○ Typically 0

19

I/O model of computation

● Time to read a block from disk >> time to search a record within that block

● Algorithm time ≈ Number of disk I/Os

20

Memory

Disk ...

t1

t2

t3

t4

t5t1

t2

Exercise #1

● Consider a 500GB hard disk with the following performance characteristics
○ 5000 revolution-per-minute (RPM) rotation rate

○ 200 cylinders

○ Takes 1 + (t / 20) milliseconds to move heads t cylinders

○ 100MB/s transfer rate

● What is the average time to read a 1MB block from the hard disk?
● Assumes that the head travels 100 cylinders on average

● On average the disk rotates half a circle

21

Speeding up disk access

● The previous analysis was on random accesses

● In general, sequential access is much faster than random accesses

● There are several techniques for decreasing average disk access time

22

RAID: Combining storage devices

● RAID: redundant array of inexpensive disks

● Many flavors of “RAID”: striping, mirroring, etc to increase

performance and reliability

23

Common RAID Levels

24

Striping across 2

disks: adds

performance but

not reliability

Mirroring across 2

disks: adds reliability

but not performance

(except for reads)

Striping + 1 parity disk: adds

performance and reliability at

lower storage cost

Image source: Wikipedia

Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time

25

Disk: A B C D

Memory:

Prefetching

A

Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time

26

Disk: B C D

Memory:

Processing Prefetching

A B

Prefetching/Double buffering

● Predict block request order and load into memory before needed

● Reduces average block access time

27

Disk: C D

Memory:

Prefetching Processing

C B

Exercise #2

● Suppose

○ P = processing time / block

○ R = I/O time / block

○ N = number of blocks

● If P ≥ R, what is the processing time of

○ Single buffering

○ Double buffering

28

2. Record Encoding

29

File system structure

● Now let’s look at how disks are used to store databases

● A tuple is represented by a record,

which consists of consecutive bytes in a disk block

30

Data items

Records

Blocks

Files

Physical Representation of Data Items

Example data items that we want to store:

○ Date

○ Salary

○ Name

○ Picture

What we have available: bytes

31

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Fixed length items

Integer: fixed # of bytes (e.g., 2 bytes)

Floating-point: n-bit mantissa, m-bit exponent

Character: encode as integer (e.g. ASCII)

32
Adapted from Stanford CS245 from Matei Zaharia

Variable length items

String of characters:

● Null-terminated

● Length + data

● Fixed-length

Bag of bits:

33
Adapted from Stanford CS245 from Matei Zaharia

Storing Records

● Record (tuple): consecutive bytes in disk blocks

○ e.g. employee record:

■ name field

■ salary field

■ date-of-hire field

● Fixed vs variable length

● Fixed vs variable format

34

Data items

Records

Blocks

Files

Adapted from Stanford CS245 from Matei Zaharia

Fixed-format records

A schema for all records in table specifies:

○ # of fields

○ type of each field

○ order in record

○ meaning of each field

35
Adapted from Stanford CS245 from Matei Zaharia

Fixed-length records

● header + fixed-length region of record’s information

● It is common for field addresses to be multiples of 4 or 8 to align data for

efficient reading/writing of main memory (a CPU accesses memory one

word at a time)

36

CREATE TABLE MovieStar (
name CHAR(30),
address CHAR(255),
gender CHAR(1),
birthdate DATE

);
name address

gender

birthdate

header

0

pointer to schema for finding

fields of the record

length

timestamp when

record was modified

12 44 300 304 316

Variable-length records

Some records may not have a fixed schema with a list of fixed-length fields

● e.g., VARCHAR

● other data models (e.g., semi-structured)

37

Records with variable-length fields

● Put all fixed-length fields ahead of the variable-length fields

38

birthdate address

gender

name

header

other header info

record length

pointer to address

fixed-length fields variable-length fields

CREATE TABLE MovieStar (
name VARCHAR(30),
address VARCHAR(100),
gender CHAR(1),
birthdate DATE

);

Variable-format records

● Records may not have a fixed schema (e.g., JSON)

● Use tagged fields to make record “self-describing”

39

2 A NI S JOHN20 4

Variable format useful for

“Sparse” records

Repeating fields

Evolving formats

But many waste space…

40
Adapted from Stanford CS245 from Matei Zaharia

3. Collection Storage

41

Collection Storage Questions

How do we place data items and records for efficient access?

● Locality

● Searchability

How do we physical encode records in blocks and files?

42
Adapted from Stanford CS245 from Matei Zaharia

Data items

Records

Blocks

Files

Place Data for Efficient Access

Locality: which items are accessed together
● When you read one field of a record, you’re likely to read other fields of the

same record

● When you read one field of record 1, you’re likely to read the same field of

record 2

Searchability: quickly find relevant records
● E.g. sorting the file lets you do binary search

43
Adapted from Stanford CS245 from Matei Zaharia

Locality Example: Row Stores vs Column Stores

44
Adapted from Stanford CS245 from Matei Zaharia

Locality Example: Row Stores vs Column Stores

45
Adapted from Stanford CS245 from Matei Zaharia

Accessing all fields of one record: 1 random I/O for row, 3 for column

Locality Example: Row Stores vs Column Stores

46
Adapted from Stanford CS245 from Matei Zaharia

Accessing one field of all records: 3x less I/O for column store

Can We Have Hybrids Between Row & Column?

47
Adapted from Stanford CS245 from Matei Zaharia

Helpful if age & state are frequently co-accessed

Yes! For example, colocated column groups:

Improving Searchability: Ordering

48
Adapted from Stanford CS245 from Matei Zaharia

Q: What’s the downside of having an ordering?

Ordering the data by a field will give:

• Smaller I/Os if queries tend to read data with nearby values of the field

(e.g. time ranges)

• Option to accelerate search via an ordered index (e.g. B-tree), binary

search, etc

Improving Searchability: Partitions

49
Adapted from Stanford CS245 from Matei Zaharia

Easy to add, remove, list any files in a directory

Just place data into buckets based on a field

(but not necessarily fine-grained order)

E.g. Hive table storage over a filesystem:

Can We Have Searchability on Multiple

Fields at Once?

50
Adapted from Stanford CS245 from Matei Zaharia

Yes! Many possible ways:

1) Multiple partition or sort keys (e.g., partition by date, then sort

by userID)

2) Interleaved orderings such as Z-ordering

Z-Ordering

51Image source: wikipedia

How Do We Encode Records into Blocks & Files?

52
Adapted from Stanford CS245 from Matei Zaharia

Data items

Records

Blocks

Files

Storing records into blocks

Records are stored in blocks, which are moved into main memory.

Several options:

(1) separating records

(2) spanned vs. unspanned

(3) indirection

53
Adapted from Stanford CS245 from Matei Zaharia

(1) Separating Records

(a) no need to separate - fixed size recs.

(b) special marker

(c) give record lengths (or offsets)

○ within each record

○ in block header

54
Adapted from Stanford CS245 from Matei Zaharia

Block

(2) Spanned vs Unspanned

Unspanned: records must be within one block

Spanned:

55
Adapted from Stanford CS245 from Matei Zaharia

(3) Indirection

How does one refer to other records?

Many options: physical vs indirect

56
Adapted from Stanford CS245 from Matei Zaharia

(3) Indirection

57
Adapted from Stanford CS245 from Matei Zaharia

Purely Physical Fully Indirect

Tradeoff:

Flexibility to move records <> cost of indirection

Inserting Records

Easy case: records not ordered

● Insert record at end of file or in a free space

● Harder if records are variable-length

Hard case: records are ordered

● If free space close by, not too bad...

● Otherwise, use an overflow area and reorganize the file periodically

58
Adapted from Stanford CS245 from Matei Zaharia

Deleting Records

Immediately reclaim space

OR

Mark deleted

- And keep track of freed spaces for later use

59
Adapted from Stanford CS245 from Matei Zaharia

Interesting Problems

How much free space to leave in each block,

track, cylinder, etc?

How often to reorganize file + merge

overflow?

60
Adapted from Stanford CS245 from Matei Zaharia

Summary

Many ways to store data on disk!

Key tradeoffs:

61

Flexibility

Complexity

Space Utilization

Performance

To Evaluate a Strategy, Compare:

Space used for expected data

Expected time to
● fetch record given key

● read whole file

● insert record

● delete record

● update record

● reorganize file

● ...

62

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Next Part: Database System Internals
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: 1. Storage Hardware
	Slide 6: Typical computer system (Von Neumann architecture)
	Slide 7: High-level: Disk vs. Main Memory
	Slide 8: Storage Hierarchies
	Slide 9: Numbers everyone should know
	Slide 10: Jim Gray’s storage latency analogy: how far is the data?
	Slide 11: Sizing Storage Tiers
	Slide 12: The five minute rule
	Slide 13: The five minute rule

	hardware
	Slide 14: Most Common Permanent Storage: Hard Disks
	Slide 15: Top view of disk surface
	Slide 16: Disk access time
	Slide 17: Seek time
	Slide 18: Rotational delay
	Slide 19: Relative times
	Slide 20: I/O model of computation
	Slide 21: Exercise #1
	Slide 22: Speeding up disk access
	Slide 23: RAID: Combining storage devices
	Slide 24: Common RAID Levels
	Slide 25: Prefetching/Double buffering
	Slide 26: Prefetching/Double buffering
	Slide 27: Prefetching/Double buffering
	Slide 28: Exercise #2

	Arranging Data on Disk
	Slide 29: 2. Record Encoding
	Slide 30: File system structure
	Slide 31: Physical Representation of Data Items
	Slide 32: Fixed length items
	Slide 33: Variable length items
	Slide 34: Storing Records
	Slide 35: Fixed-format records
	Slide 36: Fixed-length records
	Slide 37: Variable-length records
	Slide 38: Records with variable-length fields
	Slide 39: Variable-format records
	Slide 40: Variable format useful for
	Slide 41: 3. Collection Storage
	Slide 42: Collection Storage Questions
	Slide 43: Place Data for Efficient Access
	Slide 44: Locality Example: Row Stores vs Column Stores
	Slide 45: Locality Example: Row Stores vs Column Stores
	Slide 46: Locality Example: Row Stores vs Column Stores
	Slide 47: Can We Have Hybrids Between Row & Column?
	Slide 48: Improving Searchability: Ordering
	Slide 49: Improving Searchability: Partitions
	Slide 50: Can We Have Searchability on Multiple Fields at Once?
	Slide 51: Z-Ordering
	Slide 52: How Do We Encode Records into Blocks & Files?
	Slide 53: Storing records into blocks
	Slide 54: (1) Separating Records
	Slide 55: (2) Spanned vs Unspanned
	Slide 56: (3) Indirection
	Slide 57: (3) Indirection
	Slide 58: Inserting Records
	Slide 59: Deleting Records
	Slide 60: Interesting Problems
	Slide 61: Summary
	Slide 62: To Evaluate a Strategy, Compare:

