CS 6400 A Database Systems Concepts and Design

Lecture 5 09/04/24

Logistics

Assignment 1 due next Wednesday

• Sep 11 @ 11:59PM

Project proposal

- Groups of 3-4, total of 20 groups
- Sign up under People->Project Groups on canvas
- Use the "Find teammates" post on Piazza
- Due Oct 2

Design theory for relational databases

There are many ways to design a relational database schema

• E.g., we just learned how to use an E/R diagram

It is also common to improve the initial schema (esp. eliminating redundancy)

• Often, the problem is combining too much into one relation

Fortunately, there is a well-developed design theory for good schema design

- Functional dependencies, normalization, multivalued dependencies
- One of the reasons Databases are powerful and so widely used

Reading Materials

Database Systems: The Complete Book (2nd edition)

Chapter 3: Design Theory for Relational Databases
 (3.1 – 3.5)

Acknowledgement: The following slides have been adapted from EE477 (Database and Big Data Systems) taught by Steven Whang and CS145 (Intro to Big Data Systems) taught by Peter Bailis

Agenda

1. Normal forms & functional dependencies

2. Finding functional dependencies

3. Closures, superkeys & keys

1. Normal forms & functional dependencies

Normal Forms

- <u>1st Normal Form (1NF)</u> = All tables are flat
- <u>2nd Normal Form</u> = disused
- Boyce-Codd Normal Form (BCNF)
- <u>3rd Normal Form (3NF)</u>

DB designs based on functional dependencies, intended to prevent data anomalies

Our focus in this lecture + next one

• $4^{\text{th}} \text{ and } 5^{\text{th}} \text{ Normal Forms} = \text{see textbooks}$

1st Normal Form (1NF)

Student	Courses
Mary	{CS145,CS229}
Joe	{CS145,CS106}

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

A poorly designed database causes *anomalies*:

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

If every course is in only one room, contains <u>redundant</u> information!

A poorly designed database causes anomalies:

Student	Course	Room	
Mary	CS145	B01	
Joe	CS145	C12	
Sam	CS145	B01	

If we update the room number for one tuple, we get inconsistent data = an <u>update</u> <u>anomaly</u>

A poorly designed database causes *anomalies*:

Student	Course	Room	
] :	

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

A poorly designed database causes anomalies:

		Student	Course	Room
		Mary	CS145	B01
		Joe	CS145	B01
 CS229	C12	Sam	CS145	B01
		••	••	

Similarly, we can't reserve a room without students = an <u>insert anomaly</u>

Student	Course
Mary	CS145
Joe	CS145
Sam	CS145

Course	Room
CS145	B01
CS229	C12

Eliminate anomalies by decomposing relations.

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Goal: develop theory to understand why this design may be better and how to find this decomposition...

Functional Dependencies

Functional dependency (FD)

Definition: if two tuples of R agree on all the attributes $A_1, A_2, ..., A_n$, they must also agree on (or functionally determine) $B_1, B_2, ..., B_m$

• Denoted as $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$

A->B means that "whenever two tuples agree on A then they agree on B."

Splitting/combining rule

• Splitting/combining can be applied to the right sides of FD's

Splitting/combining rule

• For example,

title year \rightarrow length genre studioName

title year \rightarrow length title year \rightarrow genre title year \rightarrow studioName

Splitting rule

• Splitting rule does not apply to the left sides of FD's

title year \rightarrow length

Functional Dependencies as Constraints

A functional dependency is a form of <u>constraint</u>

- Holds on some instances (but not others) – can check whether there are violations
- Part of the schema, helps define a valid instance

Recall: an <u>instance</u> of a schema is a multiset of tuples conforming to that schema, i.e. a table

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
	••	••

Note: The FD {Course} -> {Room} holds on this instance

Functional Dependencies as Constraints

Note that:

 You can check if an FD is violated by examining a single instance;

- However, you **cannot prove** that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

However, cannot prove that the FD {Course} -> {Room} is part of the schema

Trivial functional dependencies

A constraint is *trivial* if it holds for every possible instance of the relation.

Trivial FDs: $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ such that $\{B_1, B_2, \dots B_m\} \subseteq \{A_1, A_2, \dots, A_n\}$

Trivial dependency rule: $A_1A_2 \dots A_n \rightarrow B_1 B_2 \dots B_m$ is equivalent to $A_1A_2 \dots A_n \rightarrow C_1 C_2 \dots C_k$ where the C's are the B's that are not also A's

Q1: Find an FD that holds on this instance Q2: Find an FD that is violated on this instance

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

2. Finding functional dependencies

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

- 1. Start with some relational schema
- 2. Find out its functional dependencies (FDs)

This part can be tricky!

- 3. Use these to design a better schema
 - 1. One which minimizes possibility of anomalies

Finding Functional Dependencies

There can be a large number of FDs...

Let's start with this problem:

Given a set of FDs, $F = \{f_1, \dots, f_n\}$, does an FD g hold?

Three simple rules called Armstrong's Rules.

- 1. Reflexivity,
- 2. Augmentation,
- 3. Transitivity

You can derive any FDs that follows from a given set using these axioms:

1. Reflexivity: If Y is a subset of X, then $X \rightarrow Y$

This means that a set of attributes always determines a subset of itself

2. Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z This means we can add the same attributes to both sides of a functional dependency.

3. Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

This allows us to chain functional dependencies.

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

1.
$$AB \rightarrow C$$
 (given)
2. $BC \rightarrow AD$ (given)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)

• Does $AB \rightarrow D$ follow from the FDs below?

$$AB \rightarrow C$$
$$BC \rightarrow AD$$
$$D \rightarrow E$$
$$CF \rightarrow B$$

- 1. $AB \rightarrow C$ (given)
- 2. BC \rightarrow AD (given)
- 3. $AB \rightarrow BC$ (Augmentation on 1)
- 4. $AB \rightarrow AD$ (Transitivity on 2,3)
- 5. $AD \rightarrow D$ (Reflexivity)
- 6. $AB \rightarrow D$ (Transitivity on 4,5)

Can we find an algorithmic way to do this?

Closures

$$\{A, B\}^+$$

$$AB \rightarrow C$$

$$BC \rightarrow AD$$

$$D \rightarrow E$$

$$CF \rightarrow B$$

$$\{A, B\}^+$$

$$A, B, C, D$$

Given a set of attributes $A_1, ..., A_n$ and a set of FDs F, the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B where $\{A_1, ..., A_n\} \rightarrow B$ follows from the FDs in F

$$\begin{array}{c} \{A, B\}^+ \\ \\ AB \rightarrow C \\ BC \rightarrow AD \\ D \rightarrow E \\ CF \rightarrow B \end{array}$$

Cannot be expanded further, so this is a closure

Closure algorithm

• Discovers all true FDs

3. Closures, Superkeys & Keys

Why Do We Need the Closure?

With closure we can find all FD's easily

To check if $X \rightarrow A$

- 1. Compute X⁺
- 2. Check if $A \in X^+$

Note here that X is a set of attributes, but A is a single attribute. Why does considering FDs of this form suffice?

Recall the <u>split/combine</u> rule: $X \rightarrow A_1, ..., X \rightarrow A_n$ implies $X \rightarrow \{A_1, ..., A_n\}$

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^+ = {A}$ $\{B\}^+ = \{B, D\}$ $\{C\}^+ = \{C\}$ $\{D\}^+ = \{D\}$ ${A,B}^+ = {A,B,C,D}$ ${A,C}^+ = {A,C}$ ${A,D}^+ = {A,B,C,D}$ ${A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D} {B,C,D}^+ = {B,C,D}$ ${A,B,C,D}^+ = {A,B,C,D}$

Example: $\{A,B\} \rightarrow C$ Given F = $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \\ \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,D\}^{+} = \{A,C,D\}^{+} = \\ \{A,B,C,D\}, \{B,C,D\}^{+} = \{B,C,D\}, \quad \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = Ø:

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

Example:

Given F =

Using Closure to Infer ALL FDs

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \\ \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,D\}^{+} = \{A,C,D\}^{+} = \\ \{A,B,C,D\}, \{B,C,D\}^{+} = \{B,C,D\}, \quad \{A,B,C,D\}^{+} = \{A,B,C,D\}$

 $\{A,B\} \rightarrow C$ $\{A,D\} \rightarrow B$ $\{B\} \rightarrow D$

Example:

Given F =

Y is in the closure of X

Step 2: Enumerate all FDs X \rightarrow Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

Keys and Superkeys

```
A <u>superkey</u> is a set of attributes A_1, ..., A_n
s.t.
for any other attribute B in R,
we have \{A_1, ..., A_n\} \rightarrow B
```

i.e. all attributes are functionally determined by a superkey

A <u>key</u> is a minimal superkey

This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Keys and Superkeys

Q: What are superkeys and keys in the following relation?

{title, year, length, starName} is a superkey

{title, year, starName} is a key {title, year} is not a key because title year \rightarrow starName is not an FD {year, starName} is not a key because year starName \rightarrow title is not an FD {title, starName} is not a key because title starName \rightarrow year is not an FD

title	year	length	genre	studioName	starName
Ponyo	2008	103	anime	Ghibli	Yuria Nara
Ponyo	2008	103	anime	Ghibli	Hiroki Doi
Oldboy	2003	120	mystery	Show East	Choi Min-Sik

Finding Keys and Superkeys

For each set of attributes X

- 1. Compute X⁺
- 2. If X^+ = set of all attributes then X is a **superkey**
- 3. If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

What is a key?

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price {category} \rightarrow color

{name, category}⁺ = {name, price, category, color}

- = the set of all attributes
- \Rightarrow this is a **superkey**

 \Rightarrow this is a **key**, since neither name nor category alone is a superkey

Exercise #2

Given R(A, B, C, D) and FD's AB \rightarrow C, C \rightarrow D, D \rightarrow A

• What are all keys of R?