Database Systems
Concepts and Design

Lecture 3
08/26/24

Logistics

Assignment O due today @11:59PM

OH starting this week:
* Instructor: Wednesdays 3-4PM, KACB 3322
« TA OH1: Monday 3:30-4:30PM, common space near KACB 3322
* TA OHZ2: Thursday 3:30-4:30PM, common space near KACB 3322

Agenda

1. Set operators & nested queries
2. Aggregation & GROUP BY

3. Advanced SQL-izing

Reading Materials

Database Systems: The Complete Book (2nd edition) &2t
« Chapter 6: The Database Language SQL (6.2-6.4) B SisTEMS

e
ey R THE
BERCSSN COMPLETI
™ BOOK

Acknowledgement: The following slides have been adapted from
CS145 (Intro to Big Data Systems) taught by Peter Bailis.

1. Set Operators & Nested
Queries

An Unintuitive Query

R.A
R,S, T
R.A=5.A ORR.A=T.A

What does it compute?

An Unintuitive Query

R,S, T

R.A

R.A=5.A ORR.A=T.A

ComputesRN (SUT)

But what if S = ¢?

Go back to the semantics!

An Unintuitive Query

R.A
R,S, T
R.A=5.A ORR.A=T.A

Recall the semantics!

1. Take cross-product
2. Apply selections / conditions
3. Apply projection

If S ={}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.
Are there more explicit way to do set operations like this?

Set Operations in SQL

Explicit Set Operators: INTERSECT

R.A
R, S
R.A=S.A
INTERSECT
R.A
R, T
R.A=T.A

{rrAlrA=s.A}n{r.Alr.A =t A}

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION

SELECT R.A
FROM R, T
WHERE R.A=T.A

{rrAlr. A=s.A}u{r.A|lr. A=t A}

By default:
SQL uses set
semantics!

What if we want
duplicates?

11

UNION ALL

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A

{rrA|lrA=s.A}u{r.Alr.A =t A}

ALL indicates
Multiset
operations

12

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT

SELECT R.A
FROM R, T
WHERE R.A=T.A

{rrAlr.A=s.A}\{r.Alr.A=1t.A}

13

IN ']

hg_city
Company, Product
maker = name
AND factory loc = ‘US’

hg_city
Company, Product
maker = name
AND factory loc = ‘China’

What can go wrong here?

—“RSECT: Still some subtle problems...

“Headquarters of
companies which
make products in
US AND China”

IN ']

-RSECT: Remember the semantics!

Example: C JOIN P on maker = name

Company, Product
maker = name
AND factory_loc="US’

FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

C.name C.hqg_city P.pname P.maker P.factory_loc
[X Co. Seattle X X Co. U.S.
[Y Inc. Seattle X Y Inc. China

X Co has a factory in the US (but not China)
Y Inc. has a factory in China (but not US)

But Seattle is returned by the query!

15

One Solution: Nested Queries

hg_city
Company, Product
maker = name

AND name IN (
maker
Product
factory_loc = ‘US’)
AND name IN (
maker
Product

factory loc = ‘China’)

“Headquarters of
companies which
make products in
US AND China”

High-level note on nested queries

We can do nested queries because SQL is compositional.

 Everything (inputs / outputs) is represented as multisets- the output of one
query can thus be used as the input to another (nesting)!

This is extremely powerful!

Nested queries: Sub-queries Return Relations

Another
example:

c.city
Company c
c.name [N (
pr.maker
Purchase p, Product pr
p.product = pr.name
AND p.buyer = ‘Joe Blow’)

“Cities where
one can find
companies that
manufacture
products bought
by Joe Blow™

Nested Queries

Are these queries equivalent?

c.city c.city
Company c Company c,
c.name IN (Product pr,
pr.maker Purchase p
Purchase p, Product pr c.name = pr.maker
p.name = pr.product AND pr.name = p.product
AND p.buyer = ‘Joe Blow’) AND p.buyer = ‘Joe Blow’

Beware of duplicates!

Nested Queries

DISTINCT c.city DISTINCT c.city
Company c, Company c
Product pr, c.name IN (
Purchase p pr.maker
c.name = pr.maker Purchase p, Product pr
AND pr.name = p.product p.product = pr.name
AND p.buyer = ‘Joe Blow’ AND p.buyer = ‘Joe Blow’)

Now they are equivalent (both use set semantics)

Subqgueries Return Relations

You can also use operations of the form: ANY and ALL not supported

e s>ALLR by SQLite.
« s<ANYR
« EXISTSR
EX:
name Find products that
Product are more
price > ALL(expensive than all
price those produced by
Product “Gizmo-Works”
maker = ‘Gizmo-Works’)

Subqueries Returning Relations

You can also use operations of the form:
« s>ALLR
« s<ANYR
« EXISTSR

EX:

pl.name
Product p1
pl.maker = ‘Gizmo-Works’
AND EXISTS(
p2.name
Product p2
p2.maker <> ‘Gizmo-Works'’
AND pl.name = p2.name)

<> means !=

Find ‘copycat’
products, i.e.
products made by
competitors with
the same names
as products made
by “Gizmo-Works”

COrre‘ated Queries Using External Vars in Internal Subquery

Find movies whose

title title appears more
Movie AS than once.
year < (
A Note the
MOV'e : scoping of the
title = m.title) variables!

Complex Correlated Query

x.name, x.maker Find products (and
Product AS x their manufacturers)
X.price > ALL(that are more
y.price expensive than all
Product ASy products made by the
X.maker = y.maker same manufacturer
AND y.year < 1972) before 1972

Can be very powerful (also much harder to optimize)

Correlated vs Regular Subqueries

In terms of execution
» Reqgular: executed once for the entire outer query

 Correlated: executed once for each row processed by the outer query
(due to the dependence between inner and outer queries)

This means that correlated subqueries are usually very slow
* \When possible, rewrite using JOINs for better performance

title
Movie AS
year <> (
year
Movie
title =

title)

m1.title
Movie m1 Movie m2
m1l.title = m2.title
ml.year <> ma2.year

Basic SQL Summary

« SQL provides a high-level declarative language for manipulating
data (DML)

* The workhorse is the SFW block
« Set operators are powerful but have some subtleties

» Powerful, nested queries also allowed.

2. Aggregation & GROUP BY

Aggregation

AVG(price) COUNT(*)
Product Product
maker = “Toyota” year > 1995

« SQL supports several aggregation operations:
« SUM, COUNT, MIN, MAX, AVG

Except COUNT, all aggregations
apply to a single attribute

Aggregation: COUNT

COUNT applies to duplicates, unless otherwise stated

COUNT(category) Note: Same as i
Product COUNT(*). Why’

year > 1995

We probably want:

COUNT(category)
Product
year > 1995

More Examples

SUM(price * quantity)
Purchase

SUM(price * quantity)
Purchase
product = ‘bagel’

What do these mean?

Simple Aggregations

bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10

bagel 10/25 1.50 20

SUM(price * quantity)

Purchase
product = ‘bagel’

> 50

1*20 + 1.50*20)

Grouping and Aggregation

product, Find total sales
SUM(price * quantity) AS TotalSales after 10/1/2005
Purchase per product.

date > ‘10/1/2005’
GROUP BY product

Let's see what this means...

Grouping and Aggregation

Semantics of the query:

1. Compute the and clauses

2. Group by the attributes in the

3. Compute the clause: grouped attributes and aggregates

1. Compute the and
Purchase
date > ‘10/1/2005’
Bagel 10/21 1 20
> Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

clauses

2. Group by the attributes in the

GROUP BY product

Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana | 10/10 1 10

GROUP BY

=

10/21 1 20
Bagel
10/25 1.50 20
10/3 0.5 10
Banana
10/10 1 10

3. Compute the

attributes and aggregates

clause: grouped

product, SUM(price*quantity) AS TotalSales

10/21 1 20
Bagel
10/25 1.50 20
10/3 0.5 10
Banana

10/10 1 10

=

Bagel

50

Banana

15

HAVING Clause

product, SUM(price*quantity) Same query as
Purchasle ’ before, except that
date > “10/1/2005 we consider only
product ducts that h
HAVING SUM(quantity) > 100 proaucts that have
more than
100 buyers

HAVING clauses contains conditions on aggregates

Whereas WHERE clauses condition on individual tuples...

General form of Grouping and Aggregation

S
Ry,...,R.
C,
ay,...,a
C,

« S = Can ONLY contain attributes a,,...,a, and/or aggregates over other attributes
« C, =is any condition on the attributes in Ry,...,R,
« C, = is any condition on the aggregate expressions

General form of Grouping and Aggregation

S
Ry, R,
C
Aq,---, A
G
Evaluation steps:
1. Evaluate . apply condition C, on the
attributes in R4,...,R,
2. the attributes a,...,a,

3. Apply condition C, to each group (may have aggregates)
4. Compute aggregates in S and return the result

Group-by v.s. Nested Query

Find authors who wrote >= 10 documents:
« Attempt 1: with nested queries

Author.name This is
Author SQL by
COUNT(d novice
Wrote.url
Wrote
Author.login = Wrote.login) > 10

Group-by v.s. Nested Query

Find all authors who wrote at least 10 documents:
« Attempt 2: SQL style (with GROUP BY)

Author.name This is
Author, Wrote >QL by
. . an expert
Author.login = Wrote.login
Author.name
COUNT(Wrote.url) > 10

No need for . automatically from

Group-by vs. Nested Query

Which way is more efficient?

« Attempt #1- With nested: How many times do we do a SFW query
over all of the Wrote relations?

« Attempt #2- With group-by: How about when written this way?

With GROUP BY can be much more efficient!

3. Advanced SQL-izing

NULLS in SQL

* Whenever we don't have a value, we can put a NULL

« Can mean many things:
 Value does not exists
 Value exists but is unknown
* Value not applicable
e Etc.

* The schema specifies for each attribute it can be null (nullable attribute)
or not

« How does SQL cope with tables that have NULLs??

Null Values

* For numerical operations, NULL -> NULL:
o If x = NULL then 4*(3-x)/7 is still NULL

* For boolean operations, in SQL there are three values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

* |f x= NULL then x="Joe” is UNKNOWN

Null Values

« C1AND C2 = min(C1, C2)
«C1 OR C2 = max(C1, C2)

* NOT C1 = 1-C1
*
Won't return e.g.
Person (age=20
(age < 25) height=NULL
AND (height > 6 AND weight > 190) weight=200)!

Rule in SQL: include only tuples that yield TRUE (1.0)

Null Values

Unexpected behavior:

*

Person
age <25 0OR age >=25

Does this query include all rows in the table?

Null Values

Can test for NULL explicitly:
« x IS NULL
« x IS NOT NULL

*

Person
age <25 0R age >=25
OR age

Now It includes all Persons!

Inner Joins

By default, joins in SQL are “inner joins™:

Product.name, Purchase.store
Product
JOIN Purchase ON Product.name = Purchase.prodName

Product.name, Purchase.store
Product, Purchase
Product.name = Purchase.prodName

Both equivalent:
Both INNER JOINS!

Inner Joins + NULLS = Lost data?

By default, joins in SQL are “inner joins™:

Product.name, Purchase.store
Product
JOIN Purchase ON Product.name = Purchase.prodName

Product.name, Purchase.store
Product, Purchase
Product.name = Purchase.prodName

However: Products that never sold (with no Purchase tuple) will be lost!

Outer Joins

 An outer join returns tuples from the joined relations that don't have a
corresponding tuple in the other relations

* |.e. If we join relations A and B on a.X = b.X, and there is an entry in A with X=5,
but none in B with X=5...

« ALEFT OUTER JOIN will return a tuple (a, NULL)!

» Left outer joins in SQL: Product.name, Purchase.store

Product
LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

Now we'll get products even if they didn't sell

INNER JOIN:

Gizmo gadget
Camera Photo
OneClick Photo

Product.name, Purchase.store
Product
INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note: another equivalent way to write an
INNER JOIN!

Gizmo Wiz

Camera Ritz

Camera Wiz
Gizmo Wiz
Camera Ritz
Camera Wiz

LEFT OUTER JOIN:

Gizmo gadget
Camera Photo
OneClick Photo

Product.name, Purchase.store
Product
LEFT OUTER JOIN Purchase

ON Product.name = Purchase.prodName

Gizmo Wiz
Camera Ritz
Camera Wiz
Gizmo Wiz
Camera Ritz
Camera Wiz
OneClick NULL

Other QOuter Joins

* |eft outer join:
* Include the left tuple even if there’'s no match

* Right outer join:
* Include the right tuple even if there’s no match

* Full outer join:
* Include the both left and right tuples even if there’s no match

Summary

SQLis a riChO|oro ramming language
that hanales the way data Is
processed declaratively

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Logistics
	Slide 3: Agenda
	Slide 4: Reading Materials
	Slide 5: 1. Set Operators & Nested Queries
	Slide 6: An Unintuitive Query
	Slide 7: An Unintuitive Query
	Slide 8: An Unintuitive Query
	Slide 9: Set Operations in SQL
	Slide 10: Explicit Set Operators: INTERSECT
	Slide 11: UNION
	Slide 12: UNION ALL
	Slide 13: EXCEPT
	Slide 14: INTERSECT: Still some subtle problems…
	Slide 15: INTERSECT: Remember the semantics!
	Slide 16: One Solution: Nested Queries
	Slide 17: High-level note on nested queries
	Slide 18: Nested queries: Sub-queries Return Relations
	Slide 19: Nested Queries
	Slide 20: Nested Queries
	Slide 21: Subqueries Return Relations
	Slide 22: Subqueries Returning Relations
	Slide 23: Correlated Queries Using External Vars in Internal Subquery
	Slide 24: Complex Correlated Query
	Slide 25: Correlated vs Regular Subqueries
	Slide 26: Basic SQL Summary
	Slide 27: 2. Aggregation & GROUP BY
	Slide 28: Aggregation
	Slide 29: Aggregation: COUNT
	Slide 30: More Examples
	Slide 31: Simple Aggregations
	Slide 32: Grouping and Aggregation
	Slide 33: Grouping and Aggregation
	Slide 34: 1. Compute the FROM and WHERE clauses
	Slide 35: 2. Group by the attributes in the GROUP BY
	Slide 36: 3. Compute the SELECT clause: grouped attributes and aggregates
	Slide 37: HAVING Clause
	Slide 38: General form of Grouping and Aggregation
	Slide 39: General form of Grouping and Aggregation
	Slide 40: Group-by v.s. Nested Query
	Slide 41: Group-by v.s. Nested Query
	Slide 42: Group-by vs. Nested Query
	Slide 43: 3. Advanced SQL-izing
	Slide 44: NULLS in SQL
	Slide 45: Null Values
	Slide 46: Null Values
	Slide 47: Null Values
	Slide 48: Null Values
	Slide 49: Inner Joins
	Slide 50: Inner Joins + NULLS = Lost data?
	Slide 51: Outer Joins
	Slide 52: INNER JOIN:
	Slide 53: LEFT OUTER JOIN:
	Slide 54: Other Outer Joins
	Slide 55: Summary

