CS 6400 A Database Systems Concepts and Design

Lecture 21 12/02/24

Announcements

Exam 2 stats (will publish tonight):

- max: 86 (96%), median: 67.5 (75%), mean: 65.55 (72.8%), std: 11.89
- Solution posted on canvas (under Files/Midterm solution)
- Regrade request open until next Monday (Dec 9)

Assignment 3 grades published

Project presentation

- Video due night
- Demo: Dec 6

CIOS is open

Today's class

- 1. Data Cleaning
- 2. Data Labeling
- 3. Course Summary

"Only a fraction of real-world ML systems is composed of ML code" ^[1]

[1] Sculley, David, et al. "Hidden technical debt in machine learning systems." NeurIPS 2015

Data is the Bottleneck in the lifecyle

ML ≈ Model + Data

Model is gradually commoditized

• Transformers for "all" tasks

• Out-of-the-box invocation of ML libraries gives decent results

Data remains the bottleneck

- Collecting and storing raw data is becoming cheaper
- Turning them into ML-ready datasets is not

Q: How much time do you think data scientists spend on cleaning data?

- A: <20%
- B: 20-50%
- C: 50-80%
- D: >80%

Cleaning Data: Most Time-Consuming, Least Enjoyable Data Science Task Forbes, 2016

- Cleaning & organizing data Collecting data sets
- Mining data for patterns
 Refining algorithms
- Building training sets

Incomplete

Country	♦ UN R/P 10% ^[4] ♦	UN R/P 20% ^[5] \$	World Bank Gini (%) ^[6]	WB Gini (year) \$	CIA R/P 10% ^[7]	Year	CIA Gini (%) ^[8]	CIA Gini (year)	GPI Gini (%) ^[9] \$
Z Seychelles			65.8	2007					
Comoros			64.3	2004					
Mamibia	106.6	56.1	63.9	2004	129.0	2003	59.7	2010	
South Africa	33.1	17.9	63.1	2009	31.9	2000	65.0	2005	
Botswana	43.0	20.4	61.0	1994			63	1993	
Haiti	54.4	26.6	59.2	2001	68.1	2001	59.2	2001	
Angola			58.6	2000					62.0
Honduras	59.4	17.2	57.0	2009	35.2	2003	57.7	2007	

Inconsistent

Financial

Employee	Salary	
John	1000	

Employee → Salary

Human Resources

Employee	Salary	
John	2000	
Mary	3000	

Employee → Salary

Target Database

Employee	Salary	
John	1000	
John	2000	
Mary	3000	

Employee \rightarrow Salary

$\frac{Mapping}{Financial(e,s)} \subseteq Global(e,s)$ $HumanRes(e,s) \subseteq Global(e,s)$

Sheepdog or mop?

Poodle or fried chicken?

Outliers

Model amplifies data biases Example: Buolamwini and Gebru (2018). Gender Shades

Dirty Data is Costly

- Address errors caused 6.8 billion undelivered mails in 2013
- Estimated \$1.5 billion spent on processing
- At least \$3.4 billion wasted postage

Bad Data Costs the U.S. \$3 Trillion Per Year

by Thomas C. Redman

SEPTEMBER 22, 2016

1. Data Cleaning

Data Cleaning for Structured Data

Detect and repair errors in a structured dataset

- <u>Discovering denial constraints</u>. [VLDB'13]
- HoloClean: Holistic Data Repairs with Probabilistic Inference. [VLDB'17]

Data cleaning and machine learning

- Cleaning before ML
- Cleaning for ML

Two tasks in data cleaning

- Detection: A minimal set of cells that cannot coexist together
- Repair: A set of cell updates to resolve the violations

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R1: Two persons with the same ZIP live in the same ST

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R2: LVL should not be empty

Data Quality Rules

	Name	ID	LVL	ZIP	ST	SAL
t_1	Alice	ID1	5	10001	NM	90K
t_2	Bob	ID2	6	87101	NM	80K
t_3	Chris	ID3	4	10001	NY	80K
t_4	Dave	ID4	1	90057	CA	20K
t_5	Frank	ID5		90057	CA	50K

R3: People with a higher LVL earn more SAL in the same ST

Na	me	ZIP	ST
Al	ice	10001	NM
В	ob	87101	NM
Cł	nris	10001	NY

Name	ZIP	ST
Alice	10001	NM
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Name	ZIP	ST
Alice	10001	NM
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Name	ZIP	ST
Alice	10001	NY
Bob	87101	NM
Chris	10001	NY

Two persons with the same ZIP live in the same ST

Discovering denial constraints [VLDB'13]

Can ask a domain expert, but takes too much time Automatically discover quality rules in the form of **Denial Constraints**

R1: Two persons with the same ZIP live in the same ST $\forall t_{\alpha}, t_{\beta} \neg (t_{\alpha}, ZIP = t_{\beta}, ZIP \land t_{\alpha}, ST \neq t_{\beta}, ST)$

Adapted from Intro to Data Cleaning lecture from Xu Chu

Examples of Discovered DCs

On a tax dataset

 $\forall t_{\alpha} \neg (t_{\alpha}.ST = "FL" \land t_{\alpha}.ZIP < 30397)$

State Florida's ZIP code cannot be lower than 30397.

 $\forall t_{\alpha} \neg (t_{\alpha}.MS \neq "Single" \land t_{\alpha}.STX \neq 0)$ One has to be single to have any single tax exemption.

$$\forall t_{\alpha}, t_{\beta} \neg (t_{\alpha}, ST = t_{\beta}, ST \land t_{\alpha}, SAL < t_{\beta}, SAL \land t_{\alpha}, TR > t_{\beta}, TR)$$

There cannot exist two persons who live in the same state, but one person earns less salary and has higher tax rate at the same time.

HoloClean: Holistic Data Repairs with Probabilistic Inference. [VLDB'17]

Input

Output

	Pro	pose	ed Clea	aned Data	aset		
	DBAName	Ad	dress	City	Stat	te	Zip
t1	John Veliotis Sr.	-	165 S gan ST	Chicago	IL		60608
t2	John Veliotis Sr.	-	465 S rgan ST	Chicago	IL		60608
t3	John Veliotis Sr.	-	465 S gan ST	Chicago	IL		60608
t4	John Veliotis Sr.		465 S rgan ST	Chicago	IL		60608
		Me	minal F	Notrib+	<u></u>		
			•	Distributi signmen			
	Cell		Cell As		ts	Pr	obability
			Cell As Possi	signmen	ts	Pr	obability 0.84
	Cell t2.Zip		Cell As Possi	signmen ible Value	ts	Pr	
	t2.Zip		Cell As Possi	signmen i ble Valu 60608	ts	Pr	0.84
			Cell As Possi	signmen ible Value 60608 60609	ts	Pr	0.84 0.16
	t2.Zip	of (Cell As Possi	signmen ible Value 60608 60609 Chicago	ts es	Pr	0.84 0.16 0.95

Probabilistic model that unifies different signals for repairing a dataset.

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Bohannon et al., 2005, 2007; Kolahi and Lakshmanan , 2005; Bertossi et al., 2011; Chu et al., 2013; 2015 Fagin et al., 2015

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Action: Fewer erroneous than correct cells; perform minimum number of changes to satisfy all constraints

Constraints and minimality

Functional dependencies

c1: DBAName \rightarrow Zip c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Does not fix errors and introduces new ones.

External Information

Matching dependencies

- m1: $\operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \to \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City}$
- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$

m3: City = Ext_City \land State = Ext_State \land

 $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Fan et al., 2009; Bertossi et al., 2010; Chu et al., 2015

External Information

 $\begin{array}{l} \text{Matching dependencies} \\ \text{m1: } \operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \rightarrow \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City} \\ \text{m2: } \operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \rightarrow \operatorname{State} = \operatorname{Ext}_{-}\operatorname{State} \\ \text{m3: } \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City} \wedge \operatorname{State} = \operatorname{Ext}_{-}\operatorname{State} \wedge \end{array}$

 $\wedge \: Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Action: Map external information to input dataset using matching dependencies and repair disagreements

External Information

 $\begin{array}{l} \text{Matching dependencies} \\ \text{m1: } \operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \rightarrow \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City} \\ \text{m2: } \operatorname{Zip} = \operatorname{Ext}_{-}\operatorname{Zip} \rightarrow \operatorname{State} = \operatorname{Ext}_{-}\operatorname{State} \\ \text{m3: } \operatorname{City} = \operatorname{Ext}_{-}\operatorname{City} \wedge \operatorname{State} = \operatorname{Ext}_{-}\operatorname{State} \wedge \end{array}$

 $\wedge \, Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60 610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

External dictionaries may have limited coverage or not exist altogether

Quantitative Statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Example: Chicago co-occurs with IL

Hellerstein, 2008; Mayfield et al., 2010; Yakout et al., 2013

Quantitative Statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Again, fails to repair the wrong zip code

Combining Everything

Constraints and minimality

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

External data

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	L	60608
†4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Quantitative statistics

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Different solutions suggest different repairs

HoloClean: a probabilistic model for data repairs Each cell is a random variable Address City State Zip Value co-occurences 3465 S Chicago t1 IL 60608 Morgan ST capture data statistics 3465 S t2 Chicago IL 60609 Morgan ST Constraints introduce c1: Zip \rightarrow City 3465 S correlations 60609 t3 IL Chicago Morgan ST 3465 S 60608 t4 Cicago IL Morgan ST t1.City t1.Zip "Address= 3465 S : Unknown (to be inferred) RV Morgan St" **C1**

- : Observed (fixed) RV
- : Factor (encodes correlations)

Adapted from UW Madison CS639 by Theodoros Rekatsinas

t4.Zip

t4.City

HoloClean: Holistic Data Repairs with Probabilistic Inference. [VLDB'17]

Input

Output

	Pro	pose	ed Clea	ned Data	aset		
	DBAName	Ad	dress	City	Stat	te	Zip
t1	John Veliotis Sr.	3465 S Morgan ST		Chicago	IL		60608
t2	John Veliotis Sr.	3465 S Morgan ST		Chicago	IL		60608
t3	John Veliotis Sr.	3465 S Morgan ST		Chicago	IL		60608
t4	John Veliotis Sr.	3465 S		Chicago	IL		60608
		Mar					
			•	Distributi signmen			
	Cell		Cell As		ts	Pr	obability
			Cell As Possi	signmen	ts	Pr	obability 0.84
	Cell t2.Zip		Cell As Possi	signmen ible Value	ts	Pr	
	t2.Zip		Cell As Possi	signmen i ble Valu o 60608	ts	Pr	0.84
			Cell As Possi	signmen i ble Valu 60608 60609	ts	Pro	0.84 0.16
	t2.Zip	of (Cell As Possi	signmen i ble Value 60608 60609 chicago	ts es	Pr	0.84 0.16 0.95

Probabilistic model that unifies different signals for repairing a dataset.

Data cleaning and ML

The impact of data cleaning on downstream ML models?

Data cleaning and ML

Cleaning "before" ML:

- Perform cleaning independently of the downstream ML applications; leverage user-specified signals or data-driven approaches
- Example: <u>HoloClean: Holistic Data Repairs with Probabilistic Inference</u>
 - Also an example of using ML for data cleaning

Reading: From Cleaning Before ML to Cleaning For ML

Data cleaning and ML

Cleaning "for" ML:

- Leverage the downstream ML model or application to define cleaning signals that incorporates high-level semantics
- Why is this a good idea?
 - Clean datasets that contain fully correct attributes are rarely available
 - Data cleaning can sometimes negatively impact the performance of ML models
 - <u>CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks</u>
- Example: <u>BoostClean: Automated Error Detection and Repair for Machine</u> <u>Learning</u>

Reading: From Cleaning Before ML to Cleaning For ML

Data preprocessing

- Data preprocessing transforms raw data into a representation that is more suitable for the downstream ML model
- Data cleaning is usually performed as a part of the data preprocessing step
 - Missing value: mean/median imputation, frequent value imputation
 - Outlier removal: z-score, MAD, IQR...
- Also includes:
 - Normalization: min-max, standardization ...
 - Discretization: uniform, quantile ...
- Different from feature engineering, which creates new features from existing data

2. Data Labeling

Data Labeling

Data is the Bottleneck for ML

ML ≈ Model + Data

Model is gradually commoditized

- Out-of-the-box invocation of ML libraries gives decent results
- Transformers for "all" tasks

Data is the bottleneck

OpenAI has hired an army of contractors to do what's called "data labeling"

Sources:

https://www.semafor.com/article/01/27/2023/openai-has-hired-an-army-of-contractors-to-make-basic-coding-obsolete https://www.datanami.com/2023/01/20/openai-outsourced-data-labeling-to-kenyan-workers-eaming-less-than-2-per-hour-time-report/

Manual v.s. Programmatic Labeling

Labeling individual data points

Writing Labeling Functions (LFs) where each LF abstracts a supervision source (e.g. heuristics, existing models, external KBs, ...)

@labeling_function()
def lf_contains_link(x):
 # Return a label of SPAM if "http" in comment text, otherwise ABSTAIN
 return SPAM if "http" in x.text.lower() else ABSTAIN

Programmatic Labeling Pipeline Overview

Credit: Snorkel Project

(1) Users write labeling functions to generate noisy labels (2) A label modelcombines noisy labels tobe probabilistic labels

(3) Using the **probabilistic labels to train** an end ML model

(1) Labeling Function


```
def LF_pneumothorax(c):
    if re.search(r'pneumo.*', c.report.text):
        return "ABNORMAL"
```


LFs can be noisy!

Source: https://ajratner.github.io/assets/papers/Snorkel_VLDB_2018_slides.pdf

Other Example LFs: Existing Knowledge

- Knowledge bases
 - Match the text inputs against the knowledge base (e.g., DBPedia) to search for known spouse relationships.
- Pretrained models
 - Pre-trained model with a different label space
- Thirty-party tools
 - <u>TextBlob: Simplified Text Processing</u>

How are LFs developed

- By domain experts
- Generate programmatically
 - <u>Snuba: Automating Weak Supervision to Label Training Data</u>. [VLDB'18]
 - Language Models Enable Simple Systems for Generating Structured <u>Views of Heterogeneous Data Lakes</u>

(2) Label Model

Weak label matrix X

Inferred ground-truth labels y

Example label model

Option 1: Majority voting

Q: What if some rules are more reliable than others?

Option 2: Evaluate the accuracy of each labeling function

Example: Dawid and Skene's method

- 1. Assume accuracies θ of each LF
- 2. Learn parameter θ with an Expectation and Maximization algorithm:
 - a. Initialize *y* by majority vote
 - b. Calculate accuracies θ for each LF
 - c. Update y by maximizing $p(X|y,\theta)$

We learned...

1. How to query a database

1. Intro

2-3. SQL

4. ER Diagrams

5-6. DB Design

7-9. Storage

11-13. QO

14-16. TXNs

17-21. Beyond RDBMS

We learned...

- 1. How to query a database
- 2. How to design a database

1. Intro 2-3. SQL 4. ER Diagrams 5-6. DB Design 7-9. Storage 11-13. QO 14-16. TXNs

17-21. Beyond RDBMS

We learned...

- 1. How to query a database
- 2. How to design a database

1. Intro 2-3. SQL 4. ER Diagrams 5-6. DB Design 7-9. Storage 11-13. QO 14-16. TXNs

17-21. Beyond RDBMS

We learned...

- 1. How to query a database
- 2. How to design a database
- 3. How records are stored and indexed

1. Intro 2-3. SQL 4. ER Diagrams 5-6. DB Design 7-9. Storage 11-13. QO 14-16. TXNs 17-21. Beyond RDBMS

We learned...

- 1. How to query a database
- 2. How to design a database
- 3. How records are stored and indexed
- 4. How to optimize the performance of a database

1. Intro
2-3. SQL
4. ER Diagrams
5-6. DB Design
7-9. Storage
11-13. QO
14-16. TXNs
17-21. Beyond RDBMS

We learned...

- 1. How to query a database
- 2. How to design a database
- 3. How records is stored and indexed
- 4. How to optimize the performance of a database
- 5. How to handle concurrent user requests and crashes/aborts

We learned...

- 1. How to query a database
- 2. How to design a database
- 3. How records is stored and indexed
- 4. How to optimize the performance of a database
- 5. How to handle concurrent user requests and crashes/aborts
- 6. How RDBMS relates to OLAP, Distributed Query Processing etc.

1. Intro 2-3. SQL 4. ER Diagrams 5-6. DB Design 7-9. Storage 11-13. QO 14-16. TXNs 17-21. Beyond RDBMS

Relational databases => data-intensive systems

Most important computer applications must manage, update and query datasets

• Bank, store, search app...

Data quality, quantity & timeliness becoming even more important with AI

• Machine learning = algorithms that generalize from data

Relational databases => data-intensive systems

Relational databases are the most popular type of data-intensive system (MySQL, Oracle, etc)

Many other systems facing similar concerns: key-value stores, streaming systems, ML frameworks, your custom app?

Reliability in the face of crashes, bugs, bad user input, etc Concurrency: access by multiple users Performance: throughput, latency, etc Access interface from many, changing apps Security and data privacy (not covered in this course)

Beyond this class

Classes:

- CS 4420/6422: Database System Implementation
- CS 6220: Big Data Systems and Analytics
- CS 8803: Data-Centric Machine Learning

DB research at GT:

• Data Systems and Analytics Group