
CS 6400 A

Database Systems
Concepts and Design

Lecture 20

11/25/24

1

Announcements

Upcoming deliverables:
• Paper critique (assignment 4): due tonight

• Project presentation video: Dec 2

• Project demo: Dec 6

Sign up for project demo: https://tinyurl.com/3uukakra
• Email the course staff if you absolutely need to reschedule

Exam 2 solution will be posted on canvas tonight

https://tinyurl.com/3uukakra

Agenda

1. Vector Search/Database Overview

2. Locality-Sensitive Hashing

3. Product Quantization

4. Graph-based Algorithms

3

1. Overview

Similarity Search

• Finding the most relevant data points in the database when
compared to a specific query point

Structured and

unstructured data
ML embeddings

Scale of Embeddings

Example: OpenAI
• text-embedding-3-small: 1536 dims

• 1536 * 4 bytes = 6 KB

• 6 KB * 1B = 6 TB

• 6 KB * 1T = 6 PB

• text-similarity-davinci-001: 12288 dims
• 12288 * 4 bytes = 49 KB

• 49 KB * 1B = 49 TB

• 49 KB * 1T = 49 PB

Source: openai.com

Significant memory requirement for processing
billion/trillion scale vector datasets

Vector Search in LLMs
(Retrieval Augmented Generation)

Vector DB
(Domain Knowledge)

User
Query

Top-k documents

Context
LLM

(General Knowledge)

Similarity
Search

Embed

…
Vector DB is in the critical path of LLM applications –

we need them to be performant!

Vector search pyramid

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

Vector Databases

• Fast similarity searches
and retrieval for high-
dimensional vectors

• Consistency
guarantees, multi-
tenancy, cloud-native,
CRUD, logging and
recovery, serverless,
etc

Source: https://thedataquarry.com/posts/vector-db-1/

https://thedataquarry.com/posts/vector-db-1/

Vector Databases

How do vector databases compare to RDBMS

RDBMS Vector Databases

Indexing B+ Tree, LSM Tree HNSW, IVF, LSH

Query Filter, Project, Aggregate,

Sort

ANN, Hybrid Search

Performance Metrics Transactions / Second Queries / Second, Recall

Performance Metrics Index loaded page-by-page Entire index in memory

Vector search pyramid

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

Our focus

today

Indexing Algorithms in Vector Databases

Source: https://thedataquarry.com/posts/vector-db-1/

Common indexes:

HNSW, IVF(PQ)

https://thedataquarry.com/posts/vector-db-1/

Index Algorithms: Big players in the field

● Meta: FAISS (CPU & GPU)

● Google: ScaNN

● Microsoft (Bing team): DiskANN, SPTAG

● Spotify: ANNOY

● Amazon: KNN based on HNSW in OpenSearch

● Baidu: IPDG (Baidu Cloud)

● Alibaba: NSG (Taobao Search Engine)

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/google-research/google-research/tree/master/scann
https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy

Problem: Nearest Neighbor Search (NNS)

Problem definition: given a query object 𝑞, we search in a massive
high-dimensional dataset 𝒟 for one or more objects in 𝒟 that are
among the closet to 𝑞 according to some similarity or distance
metric.

Common similarity metric:
• Euclidean Distance: ||q − p||2

• Manhattan Distance: ||q − p||1

• Jaccard Similarity:
|q ∩ p|

|q ∪ p|
 (q and p are two arbitrary sets)

One-dimensional Indexes

Recall that B-trees are examples of
a one-dimensional index

○ Assume a single search key, and
they retrieve records that match a
given search key value.

○ The key can contain multiple
attributes

15

17

7 - 37 43

2 3 5 7 13 13 17 23 23 23 23 37 41 43 47

Multidimensional Indexes

Multidimensional indexes:
● Specifically designed to partition multi-

dimensional data

● Examples: kd-tree, R-tree

○ kd-tree: pick a dimension, find median, split data,
repeat

16
Image source: https://www.baeldung.com/cs/k-d-trees

Curse of Dimensionality
Linear scan takes 𝑂(𝑛) per query

One of the most popular NNS solutions is the search-tree
algorithms, such as kd-tree or R-tree.

However, when the dimension 𝑑 is very large, search tree performs
no better than the linear scan, due to the “curse of dimensionality”
[C1994].

Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on
Computational Geometry, pages 160–164, 1994.

Approximate Nearest Neighbor Search

Problem Definition: Given a query object 𝑞, we search in a
massive high-dimensional dataset 𝒟 for one or more objects in
𝒟 that are among the closet to 𝑞 with high probability
according to some similarity or distance metric.

ANNS solutions are usually much faster than linear scan with
negligible accuracy loss.

• Tradeoff between performance and accuracy

Approximate Nearest Neighbor Search

This image is downloaded from: http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

Exact

http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

Popular ANNS Algorithms

Locality sensitive hashing (LSH)

Product Quantization (PQ)

Nearest neighbor graph
• KNN graph

• Hierarchical Navigable Small Worlds (HNSW)

VectorDB ANN library ANN algorithm

Milvus Custom FAISS PQ

Pinecone Custom FAISS LSH, PQ

Qdrant Custom HNSW NN graph

Pgvector Custom HNSW NN graph

2. Locality Sensitive Hashing

Locality sensitive hashing (LSH)

1. LSH for Cosine Distance

2. Using LSH for ANNS

3.Tuning parameters in LSH

Locality sensitive hashing (LSH)

A locality sensitive hashing h ⋅ function has the following
distance-preserving property:

• The collision probability between two items 𝑃𝑟[ℎ(Ԧ𝑞) = ℎ Ԧ𝑥]
monotonically decreases with their distance Ԧ𝑞, Ԧ𝑥

• When Ԧ𝑞, Ԧ𝑥 ≤ 𝑟1, 𝑃𝑟[ℎ Ԧ𝑞 = ℎ Ԧ𝑥] ≥ 𝑝1

• When Ԧ𝑞, Ԧ𝑥 ≥ 𝑟2, 𝑃𝑟[ℎ Ԧ𝑞 = ℎ Ԧ𝑥] ≤ 𝑝2

Ԧ𝑞, Ԧ𝑥

1

0
𝑟1

𝑝1

𝑝2

𝑟2

𝑃𝑟[ℎ(Ԧ𝑞) = ℎ Ԧ𝑥]

h ⋅ is (𝑟1, 𝑟2, 𝑝1, 𝑝2) −sensitive

24

LSH for Cosine Distance
• For cosine distance, there is a technique for generating a

𝑑1, 𝑑2, 1 −
𝑑1

180
, 1 −

𝑑2

180
-sensitive family for any 𝑑1 and 𝑑2

• Called random hyperplanes.

25

Random Hyperplanes

Pick a random vector v, which determines a hash function hv with two
buckets:

• ℎ𝑣(𝑥) = +1 if 𝑣 ∙ 𝑥 > 0

• ℎ𝑣(𝑥) = −1 if 𝑣 ∙ 𝑥 < 0

LSH-family H = set of all functions derived from any vector.

𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1 −
𝜃

180
, cos 𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|

26

Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v)
for which
h(x) <> h(y)

v

Hyperplanes
for which
h(x) = h(y)

𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1 −
𝜃

180
, cos 𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|

Using LSH for ANNS

Main idea: Only check data points that hash collides with the query
(instead of the entire dataset)

• Two points are close in the projected space are likely to be close in the
original space

Image source: https://randorithms.com/2019/09/19/Visual-LSH.html

Main idea: Only check data points that hash collides with the
query (instead of the entire dataset)

• Two points are close in the projected space are likely to be
close in the original space

LSH-based ANNS

Hash Table 1

hash bucket ℎ(𝑞)

For ANNS to be effective, we hope to capture only the true
nearest neighbors in ℎ(𝑞)

• High precision: low false positives

• High recall: low false negatives

LSH-based ANNS

Collision probability reduces to 𝑝𝑀

• Harder for false positives to result in a hash collision

 => increase precision

• Q: What about recall?

For ANNS to be effective, we hope to capture only the true nearest
neighbors in ℎ(𝑞)

• High precision: low false positives
• High recall: low false negatives

Q: What’s the probability of two vectors being on the same side of
M random hyperplanes?

• Suppose that 𝑃[ℎ1(𝑥) = ℎ1(𝑞)] = 𝑝.
• What is 𝑃[ℎ1(𝑥) = ℎ1(𝑞)&ℎ2(𝑥) = ℎ2(𝑞)& … &ℎ𝑀(𝑥) = ℎ𝑀(𝑞)]?

• How to increase recall:
• Repeat multiple times. Consider a data point an NN candidate if it hash

collides with the query in any trial

• Build L hash tables
• Each table generates hash signatures using M random hyperplanes:

h ⋅ ≜ < h1 ⋅ , h2 ⋅ , ⋯, hM ⋅ >

• Consider the union of h q buckets from each table

Hash Table 1

Hash Table 2

Hash Table L

hash bucket ℎ(𝑞)

LSH-based ANNS

Key Parameters in LSH

• M: number of hash functions (in the hash signature)
• Larger M increases precision but lowers recall

• L: number of hash tables
• Larger L increases recall

• Also at the cost of larger storage overhead

• How to tune these parameters?

32

Analysis of LSH – What We Want

Similarity s of two vectors

Probability
of becoming
a candidate

t

No chance
if s < t

Probability
= 1 if s > t

33

Single hash function (one random hyperplane)

Similarity s of two vectors

t

Remember:
probability of
equal hash-values
= similarity

Probability
of becoming
a candidate

34

M hash functions, L tables

Similarity s of two vectors

t

s M

All M hash
functions
are equal
(collide in
one table)

1 -

Does not
collide in
a hash
table

()L

No collision in
any of the L
tables

1 -

At least
one
collision

t ~ (1/L)1/M
Probability

of becoming
a candidate

35

Example: L = 20; M = 5

s 1-(1-sM)L

.2 .03

.3 .22

.4 .64

.5 .96

.6 .9996

𝑡 ≈ 0.4

• Designed to reduce the space requirements of LSH

• In LSH, L can be in the hundreds to boost the recall (probability
of finding true nearest neighbors in epicenter buckets).

• Multi-probe LSH [Lv2007] was proposed for reducing L when
the Gaussian-projection LSH scheme (GP-LSH) is used.

• Main idea: get more information from each hash table

[Lv2007] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multiprobe LSH: efficient indexing for
high-dimensional similarity search. In PVLDB. 950–961

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf

• In addition to the epicenter bucket, multi-probe LSH also probes
T nearby buckets whose success probabilities (of finding nearest
neighbor of q) are among the T +1 highest.

Hash Table 1

Hash Table 2

Hash Table L

Epicenter and nearby
Buckets

Significantly reduce L by probing “best” nearby buckets!

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf

3. Product Quantization

Product Quantization

Winner in BigANN Competition @ NeurIPS’ 21; a technique for
compression high-dimensional vectors, therefore speeding up the
similarity search.

Popular implementation: Meta’s faiss library

Vector Quantization: use centroids to represent vectors in clusters.

• distance(query, vector) ~ distance(query, centroid)

https://big-ann-benchmarks.com/
https://github.com/facebookresearch/faiss

Vector Quantization
• Map the original dataset by a vector quantizer with k centroids

using k-means

• Each code is an integer ranging from 1 to k

• Codebook: a map from code to the centroid

Problem: need a large number of clusters to distinguish vectors

Product Quantization
• Split a high-dimensional vector into equally sized subvectors

• Assigning each of these subvectors to its nearest centroid

• Replacing these centroid values with unique IDs — each ID
represents a centroid

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57

Product Quantization

Suppose we are using 32 bits for each compressed vector
• Vector quantization:

• 𝑘 = 232 total centroids

• Total centroids: 𝑘 = 232 = 4,294,967,296

• Product quantization:
• 𝑚 = 4 subquantizer

• 𝑘∗ = 28 centroids for each subquantizer

• Total centroids: 𝑚 ∙ 𝑘∗ = 1024

𝑘 = (𝑘∗)𝑚

Benefit: Produce a large set of centroids

from several small sets of centroids

https://doi.org/10.1109/TPAMI.2010.57

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Quantization

Each subvector

space has its

own set of

clusters

Computing Distances with Quantized Codes

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Asymmetric distance computation: The database vector 𝑦 is

represented by 𝑞(𝑦), but the query 𝑥 is not encoded.

ሚ𝑑 𝑥, 𝑦 =

𝑗

𝑑(𝑢𝑗 𝑥 , 𝒒𝒋(𝑢𝑗(𝑦)))2

IVF-PQ: Search Index

• PQ is just a compression mechanism

• During ANN search, still need an index to avoid exhaustive search
• IVF: Inverted index of Voronoi cells

• PQ is usually built on the residuals

nprobe parameter controls

how many cells to search

during query time

https://lancedb.github.io/lancedb/concepts/index_ivfpq/#product-quantization

4. Graph-based Algorithms

• KNN Graph: for a set of objects V is a directed graph with
vertex set V and an edge from each v ∈ V to its K most
similar objects in V under a given similarity measure.

• Key intuition: a neighbor of a neighbor is also likely to be a
neighbor.

• Triangle inequality:

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf

• In the search stage, graph-based algorithms find the
candidate neighbors of a query point in some way (e.g.,
random selection) and then check the neighbors of these
candidate neighbors for closer ones iteratively.

• To avoid local optima, we need to traverse over thousands
of points to find the nearest neighbors of the query point .

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf

• The size of KNN graph is usually very large and hard to store

in memory.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf

A KNN graph that has both long-range and short-range links;
inspired by the “small-world” phenomenon

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Search procedure

• Start from a pre-defined entry point and
greedily moves towards the query point

• Stopping condition: find no nearer
vertices than our current vertex.

Long-range links help ensure the search

doesn’t get stuck in local minima

https://www.sciencedirect.com/science/article/pii/S0306437913001300

Two phase: start with low-degree vertices (“zoom out”) then pass
through higher-degree vertices (“zoom in”).

• More likely to hit a local minimum and stop too early in the zoom-out
phase

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Increasing the average degree of
vertices would increase search
complexity – balance between recall
and search speed

https://www.sciencedirect.com/science/article/pii/S0306437913001300

Hierarchical Navigable Small Worlds (HNSW)

Among the top-performing indexes for vector similarity search: fast
search speed and good recall

Probability skip list: building several layers of linked lists. On the first
layer, we find links that skip many intermediate nodes/vertices. As
we move down the layers, the number of ‘skips’ by each link is
decreased.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Start from the top layer with the longest ’skips’

• If you overshoot, move down to a lower layer

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Main idea: Combine skip list with NSW
• Top layers have longer links and bottom layers have shorter links

• Top layer: fewer vertexes and higher average degree

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Enter from top layer: long links
and higher-degree vertices (with
links separated across multiple
layers)
• Starting in the “zoom-in” phase

• Upon finding local minimum, move
to a lower layer and search again

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320

Comparison of ANN algorithms

• Benchmarks:
• ANN-benchmarks: https://ann-benchmarks.com/

• Big-ANN benchmarks: http://big-ann-benchmarks.com/neurips23.html

• Approximate Nearest Neighbor Search on High Dimensional Data
— Experiments, Analyses, and Improvement

https://ann-benchmarks.com/
http://big-ann-benchmarks.com/neurips23.html
https://ieeexplore.ieee.org/document/8681160
https://ieeexplore.ieee.org/document/8681160

Comparison of ANN algorithms

• LSH-based algorithms are easy to index and update and usually
have acceptable query performance; not the best fit for high
dimensional data and high precision requirement

• Graph-based algorithms have very good query performance with
large indexing cost

• Product quantization algorithms are good for very large datasets
when memory usage is a concern

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: 1. Overview
	Slide 5: Similarity Search
	Slide 6: Scale of Embeddings
	Slide 7: Vector Search in LLMs (Retrieval Augmented Generation)
	Slide 8: Vector search pyramid
	Slide 9: Vector Databases
	Slide 10: Vector Databases
	Slide 11: Vector search pyramid
	Slide 12: Indexing Algorithms in Vector Databases
	Slide 13: Index Algorithms: Big players in the field
	Slide 14: Problem: Nearest Neighbor Search (NNS)
	Slide 15: One-dimensional Indexes
	Slide 16: Multidimensional Indexes
	Slide 17: Curse of Dimensionality
	Slide 18: Approximate Nearest Neighbor Search
	Slide 19: Approximate Nearest Neighbor Search
	Slide 20: Popular ANNS Algorithms
	Slide 21: 2. Locality Sensitive Hashing
	Slide 22: Locality sensitive hashing (LSH)
	Slide 23: Locality sensitive hashing (LSH)
	Slide 24: LSH for Cosine Distance
	Slide 25: Random Hyperplanes
	Slide 26: Proof of Claim
	Slide 27: Using LSH for ANNS
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Key Parameters in LSH
	Slide 32: Analysis of LSH – What We Want
	Slide 33: Single hash function (one random hyperplane)
	Slide 34: M hash functions, L tables
	Slide 35: Example: L = 20; M = 5
	Slide 36
	Slide 37
	Slide 38: 3. Product Quantization
	Slide 39: Product Quantization
	Slide 40: Vector Quantization
	Slide 41: Product Quantization
	Slide 42: Product Quantization
	Slide 43: Quantization
	Slide 44: Computing Distances with Quantized Codes
	Slide 45: IVF-PQ: Search Index
	Slide 46: 4. Graph-based Algorithms
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Hierarchical Navigable Small Worlds (HNSW)
	Slide 53: Hierarchical Navigable Small Worlds (HNSW)
	Slide 54: Hierarchical Navigable Small Worlds (HNSW)
	Slide 55: Hierarchical Navigable Small Worlds (HNSW)
	Slide 56: Comparison of ANN algorithms
	Slide 57: Comparison of ANN algorithms

