
CS 6400 A

Database Systems 
Concepts and Design

Lecture 20

11/25/24 

1



Announcements 

Upcoming deliverables:
• Paper critique (assignment 4): due tonight 

• Project presentation video: Dec 2

• Project demo: Dec 6

Sign up for project demo: https://tinyurl.com/3uukakra
• Email the course staff if you absolutely need to reschedule

Exam 2 solution will be posted on canvas tonight

https://tinyurl.com/3uukakra


Agenda

1. Vector Search/Database Overview

2. Locality-Sensitive Hashing

3. Product Quantization

4. Graph-based Algorithms
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1. Overview



Similarity Search

• Finding the most relevant data points in the database when 
compared to a specific query point

Structured and 

unstructured data
ML embeddings



Scale of Embeddings

Example: OpenAI
• text-embedding-3-small: 1536 dims 

• 1536 * 4 bytes = 6 KB 

• 6 KB * 1B = 6 TB 

• 6 KB * 1T = 6 PB 

•  text-similarity-davinci-001: 12288 dims 
• 12288 * 4 bytes = 49 KB 

• 49 KB * 1B = 49 TB 

• 49 KB * 1T = 49 PB 

Source: openai.com

Significant memory requirement for processing 
billion/trillion scale vector datasets



Vector Search in LLMs 
(Retrieval Augmented Generation)

Vector DB
(Domain Knowledge)

User 
Query

Top-k documents

Context
LLM

(General Knowledge)

Similarity 
Search

Embed

…
Vector DB is in the critical path of LLM applications – 

we need them to be performant!



Vector search pyramid

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections



Vector Databases

• Fast similarity searches 
and retrieval for high-
dimensional vectors

• Consistency 
guarantees, multi-
tenancy, cloud-native, 
CRUD, logging and 
recovery, serverless, 
etc 

Source: https://thedataquarry.com/posts/vector-db-1/

https://thedataquarry.com/posts/vector-db-1/


Vector Databases

How do vector databases compare to RDBMS

RDBMS Vector Databases

Indexing B+ Tree, LSM Tree HNSW, IVF, LSH

Query Filter, Project, Aggregate, 

Sort

ANN, Hybrid Search

Performance Metrics Transactions / Second Queries / Second, Recall

Performance Metrics Index loaded page-by-page Entire index in memory



Vector search pyramid

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

Our focus 

today



Indexing Algorithms in Vector Databases

Source: https://thedataquarry.com/posts/vector-db-1/

Common indexes: 

HNSW, IVF(PQ)

https://thedataquarry.com/posts/vector-db-1/


Index Algorithms: Big players in the field 

● Meta: FAISS (CPU & GPU)

● Google: ScaNN

● Microsoft (Bing team): DiskANN, SPTAG

● Spotify: ANNOY

● Amazon: KNN based on HNSW in OpenSearch

● Baidu: IPDG (Baidu Cloud)

● Alibaba: NSG (Taobao Search Engine)

Source: https://www.youtube.com/watch?v=2o8-dX__EgU&ab_channel=OpenSourceConnections

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/google-research/google-research/tree/master/scann
https://github.com/microsoft/DiskANN
https://github.com/spotify/annoy


Problem: Nearest Neighbor Search (NNS)

Problem definition: given a query object 𝑞, we search in a massive 
high-dimensional dataset 𝒟 for one or more objects in 𝒟 that are 
among the closet to 𝑞 according to some similarity or distance 
metric.

Common similarity metric:
• Euclidean Distance: ||q − p||2

• Manhattan Distance: ||q − p||1

• Jaccard Similarity: 
|q ∩ p|

|q ∪ p|
 (q and p are two arbitrary sets)



One-dimensional Indexes

Recall that B-trees are examples of 
a one-dimensional index 

○ Assume a single search key, and 
they retrieve records that match a 
given search key value.

○ The key can contain multiple 
attributes 
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Multidimensional Indexes

Multidimensional indexes:
● Specifically designed to partition multi-

dimensional data

● Examples: kd-tree, R-tree

○ kd-tree: pick a dimension, find median, split data, 
repeat 
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Image source: https://www.baeldung.com/cs/k-d-trees



Curse of Dimensionality 
Linear scan takes 𝑂(𝑛) per query 

One of the most popular NNS solutions is the search-tree 
algorithms, such as kd-tree or R-tree.

However, when the dimension 𝑑 is very large, search tree performs 
no better than the linear scan, due to the “curse of dimensionality” 
[C1994]. 

Example: k-d tree versus linear scan.

[C1994] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of the Annual Symposium on 
Computational Geometry, pages 160–164, 1994.



Approximate Nearest Neighbor Search

Problem Definition: Given a query object 𝑞, we search in a
massive high-dimensional dataset 𝒟 for one or more objects in 
𝒟 that are among the closet to 𝑞 with high probability 
according to some similarity or distance metric.

ANNS solutions are usually much faster than linear scan with 
negligible accuracy loss. 

• Tradeoff between performance and accuracy



Approximate Nearest Neighbor Search

This image is downloaded from: http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html

Exact 

http://ann-benchmarks.com/fashion-mnist-784-euclidean_10_euclidean.html


Popular ANNS Algorithms

Locality sensitive hashing (LSH)

Product Quantization (PQ)

Nearest neighbor graph 
• KNN graph 

• Hierarchical Navigable Small Worlds (HNSW) 

VectorDB ANN library ANN algorithm 

Milvus Custom FAISS PQ

Pinecone Custom FAISS LSH, PQ

Qdrant Custom HNSW NN graph 

Pgvector Custom HNSW NN graph 



2. Locality Sensitive Hashing



Locality sensitive hashing (LSH)

1. LSH for Cosine Distance 

2. Using LSH for ANNS

3.Tuning parameters in LSH



Locality sensitive hashing (LSH)

A locality sensitive hashing h ⋅ function has the following 
distance-preserving property:

• The collision probability between two items 𝑃𝑟[ℎ( Ԧ𝑞) = ℎ Ԧ𝑥 ] 
monotonically decreases with their distance Ԧ𝑞, Ԧ𝑥

• When Ԧ𝑞, Ԧ𝑥  ≤ 𝑟1,  𝑃𝑟[ℎ Ԧ𝑞 = ℎ Ԧ𝑥 ] ≥ 𝑝1

• When Ԧ𝑞, Ԧ𝑥  ≥ 𝑟2, 𝑃𝑟[ℎ Ԧ𝑞 = ℎ Ԧ𝑥 ] ≤ 𝑝2

Ԧ𝑞, Ԧ𝑥

1

0
𝑟1

𝑝1

𝑝2

𝑟2

𝑃𝑟[ℎ( Ԧ𝑞) = ℎ Ԧ𝑥 ]

h ⋅  is (𝑟1, 𝑟2, 𝑝1, 𝑝2) −sensitive
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LSH for Cosine Distance
• For cosine distance, there is a technique for generating a 

𝑑1, 𝑑2, 1 −
𝑑1

180
, 1 −

𝑑2

180
-sensitive family for any 𝑑1 and 𝑑2

• Called random hyperplanes.
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Random Hyperplanes

Pick a random vector v, which determines a hash function hv  with two 
buckets:

• ℎ𝑣(𝑥)  =  +1 if 𝑣 ∙ 𝑥 >  0

• ℎ𝑣(𝑥)  =  −1 if 𝑣 ∙ 𝑥 <  0

LSH-family H = set of all functions derived from any vector.

𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1 −
𝜃

180
, cos 𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|
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Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v )
for which 
h(x) <> h(y)

v

Hyperplanes
for which
h(x) = h(y)

𝑃𝑟𝑜𝑏 ℎ 𝑥 = ℎ 𝑦 = 1 −
𝜃

180
, cos 𝜃 =

𝑥 ∙ 𝑦

𝑥 |𝑦|



Using LSH for ANNS

Main idea: Only check data points that hash collides with the query 
(instead of the entire dataset)

• Two points are close in the projected space are likely to be close in the 
original space 

Image source: https://randorithms.com/2019/09/19/Visual-LSH.html



Main idea: Only check data points that hash collides with the 
query (instead of the entire dataset)

• Two points are close in the projected space are likely to be 
close in the original space 

LSH-based ANNS

Hash Table 1

hash bucket ℎ(𝑞) 

For ANNS to be effective, we hope to capture only the true 
nearest neighbors in ℎ(𝑞)

• High precision: low false positives

• High recall: low false negatives



LSH-based ANNS

Collision probability reduces to 𝑝𝑀

• Harder for false positives to result in a hash collision 

    => increase precision  

• Q: What about recall?

For ANNS to be effective, we hope to capture only the true nearest 
neighbors in ℎ(𝑞)

• High precision: low false positives
• High recall: low false negatives

Q: What’s the probability of two vectors being on the same side of 
M random hyperplanes? 

• Suppose that 𝑃[ℎ1(𝑥) = ℎ1(𝑞)]  =  𝑝. 
• What is 𝑃[ℎ1(𝑥) = ℎ1(𝑞)&ℎ2(𝑥) = ℎ2(𝑞)& … &ℎ𝑀(𝑥) = ℎ𝑀(𝑞)]?



• How to increase recall: 
• Repeat multiple times. Consider a data point an NN candidate if it hash 

collides with the query in any trial

• Build L hash tables
• Each table generates hash signatures using M random hyperplanes:

h ⋅ ≜ < h1 ⋅ , h2 ⋅ , ⋯, hM ⋅ >

• Consider the union of h q  buckets from each table

Hash Table 1

Hash Table 2

Hash Table L

hash bucket ℎ(𝑞)

LSH-based ANNS



Key Parameters in LSH

• M: number of hash functions (in the hash signature)
• Larger M increases precision but lowers recall 

• L: number of hash tables 
• Larger L increases recall 

• Also at the cost of larger storage overhead 

• How to tune these parameters?
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Analysis of LSH – What We Want

Similarity s of two vectors

Probability
of becoming 
a candidate

t

No chance
if s < t

Probability
= 1 if s > t
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Single hash function (one random hyperplane)  

Similarity s of two vectors

t

Remember:
probability of
equal hash-values
= similarity

Probability
of becoming 
a candidate
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M hash functions, L tables 

Similarity s of two vectors

t

s M 

All M hash 
functions 
are equal
(collide in 
one table)

1 -

Does not 
collide in 
a hash 
table

( )L 

No collision in 
any of the L 
tables

1 -

At least
one 
collision

t ~ (1/L)1/M 
Probability

of becoming 
a candidate
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Example: L  = 20; M  = 5

s 1-(1-sM)L

.2 .03

.3 .22

.4 .64

.5 .96

.6 .9996

𝑡 ≈  0.4



• Designed to reduce the space requirements of LSH 

• In LSH, L can be in the hundreds to boost the recall (probability
of finding true nearest neighbors in epicenter buckets).

• Multi-probe LSH [Lv2007] was proposed for reducing L when 
the Gaussian-projection LSH scheme (GP-LSH) is used.

• Main idea: get more information from each hash table

[Lv2007] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multiprobe LSH: efficient indexing for 
high-dimensional similarity search. In PVLDB. 950–961

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf


• In addition to the epicenter bucket, multi-probe LSH also probes 
T nearby buckets whose success probabilities (of finding nearest
neighbor of q) are among the T +1 highest.

Hash Table 1

Hash Table 2

Hash Table L

Epicenter and nearby
Buckets

Significantly reduce L by probing “best” nearby buckets!

Multi-probe LSH [VLDB’07]

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/p950-lv.pdf


3. Product Quantization



Product Quantization 

Winner in BigANN Competition @ NeurIPS’ 21; a technique for 
compression high-dimensional vectors, therefore speeding up the 
similarity search. 

Popular implementation: Meta’s faiss library 

Vector Quantization: use centroids to represent vectors in clusters. 

• distance(query, vector) ~ distance(query, centroid)

https://big-ann-benchmarks.com/
https://github.com/facebookresearch/faiss


Vector Quantization 
• Map the original dataset by a vector quantizer with k centroids 

using k-means

• Each code is an integer ranging from 1 to k 

• Codebook: a map from code to the centroid

Problem: need a large number of clusters to distinguish vectors 



Product Quantization
• Split a high-dimensional vector into equally sized subvectors

• Assigning each of these subvectors to its nearest centroid

• Replacing these centroid values with unique IDs — each ID 
represents a centroid

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

https://doi.org/10.1109/TPAMI.2010.57


Product Quantization

Suppose we are using 32 bits for each compressed vector
• Vector quantization:

• 𝑘 = 232 total centroids 

• Total centroids: 𝑘 = 232 = 4,294,967,296

• Product quantization:
• 𝑚 = 4 subquantizer

• 𝑘∗ = 28 centroids for each subquantizer

• Total centroids: 𝑚 ∙ 𝑘∗ = 1024

𝑘 = (𝑘∗)𝑚

Benefit: Produce a large set of centroids 

from several small sets of centroids

https://doi.org/10.1109/TPAMI.2010.57


https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Quantization

Each subvector 

space has its 

own set of 

clusters 



Computing Distances with Quantized Codes

https://towardsdatascience.com/similarity-search-product-quantization-b2a1a6397701

Asymmetric distance computation: The database vector 𝑦 is 

represented by 𝑞(𝑦), but the query 𝑥 is not encoded.

ሚ𝑑 𝑥, 𝑦 = 

𝑗

𝑑(𝑢𝑗 𝑥 , 𝒒𝒋(𝑢𝑗(𝑦)))2



IVF-PQ: Search Index  

• PQ is just a compression mechanism 

• During ANN search, still need an index to avoid exhaustive search 
• IVF: Inverted index of Voronoi cells

• PQ is usually built on the residuals 

nprobe parameter controls 

how many cells to search 

during query time

https://lancedb.github.io/lancedb/concepts/index_ivfpq/#product-quantization



4. Graph-based Algorithms



• KNN Graph: for a set of objects V is a directed graph with 
vertex set V and an edge from each v ∈ V to its K most 
similar objects in V under a given similarity measure. 

• Key intuition: a neighbor of a neighbor is also likely to be a 
neighbor. 

• Triangle inequality:

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• In the search stage, graph-based algorithms find the 
candidate neighbors of a query point in some way (e.g., 
random selection) and then check the neighbors of these 
candidate neighbors for closer ones iteratively.

• To avoid local optima, we need to traverse over thousands 
of points to find the nearest neighbors of the query point .

[Wei2011] Dong, Wei, Charikar Moses, and Kai Li. "Efficient k-nearest neighbor graph construction for generic 

similarity measures." Proceedings of the 20th international conference on World wide web . 2011.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


• The size of KNN graph is usually very large and hard to store 

in memory.

KNN Graph [WWW’11]

https://www.cs.princeton.edu/cass/papers/www11.pdf


A KNN graph that has both long-range and short-range links; 
inspired by the “small-world” phenomenon

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Search procedure 

• Start from a pre-defined entry point and 
greedily moves towards the query point 

• Stopping condition: find no nearer 
vertices than our current vertex.

Long-range links help ensure the search 

doesn’t get stuck in local minima 

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Two phase: start with low-degree vertices (“zoom out”) then pass 
through higher-degree vertices (“zoom in”).

• More likely to hit a local minimum and stop too early in the zoom-out 
phase

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

Navigable Small Worlds (NSW)

Increasing the average degree of 
vertices would increase search 
complexity – balance between recall 
and search speed 

https://www.sciencedirect.com/science/article/pii/S0306437913001300


Hierarchical Navigable Small Worlds (HNSW)

Among the top-performing indexes for vector similarity search: fast 
search speed and good recall

Probability skip list: building several layers of linked lists. On the first 
layer, we find links that skip many intermediate nodes/vertices. As 
we move down the layers, the number of ‘skips’ by each link is 
decreased.

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Search procedure 

• Start from the top layer with the longest ’skips’

• If you overshoot, move down to a lower layer 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Main idea: Combine skip list with NSW
• Top layers have longer links and bottom layers have shorter links

• Top layer: fewer vertexes and higher average degree

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Hierarchical Navigable Small Worlds (HNSW)

Search procedure

• Enter from top layer: long links 
and higher-degree vertices (with 
links separated across multiple 
layers) 
• Starting in the “zoom-in” phase

• Upon finding local minimum, move 
to a lower layer and search again 

Source: https://www.pinecone.io/learn/series/faiss/hnsw/

https://arxiv.org/abs/1603.09320


Comparison of ANN algorithms 

• Benchmarks:
• ANN-benchmarks: https://ann-benchmarks.com/

• Big-ANN benchmarks: http://big-ann-benchmarks.com/neurips23.html

• Approximate Nearest Neighbor Search on High Dimensional Data 
— Experiments, Analyses, and Improvement

https://ann-benchmarks.com/
http://big-ann-benchmarks.com/neurips23.html
https://ieeexplore.ieee.org/document/8681160
https://ieeexplore.ieee.org/document/8681160


Comparison of ANN algorithms 

• LSH-based algorithms are easy to index and update and usually 
have acceptable query performance; not the best fit for high 
dimensional data and high precision requirement

• Graph-based algorithms have very good query performance with 
large indexing cost

• Product quantization algorithms are good for very large datasets 
when memory usage is a concern
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