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Announcements

Course project updates 
• Dec 2: Project Presentation (video submission)

• Dec 6: Project Demo 
• 15min per group over Zoom 

• Our designated final exam slot: 6:00 PM - 8:50 PM

• Dec 9: Code and documentation due 

Paper presentation starts this Wednesday
• Please email your slides to the staff (cs6400-staff@groups.gatech.edu) by 

2 p.m. on the day of the presentation.
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Recap: SQL history and motivation

Initially developed in the early 1970’s

By 1986, ANSI and ISO standard groups standardize SQL
○ New versions of standard published in 1989, 1992, and 

more up to 2016

Dark times in 2000s
○ NoSQL for Web 2.0
○ Google’s BigTable, Amazon’s Dynamo
○ Are relational databases dead?

NewSQL systems in 2010s
○ SQL → No SQL → Not only SQL → NewSQL
○ SQL withstands the test of time and continues to evolve
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The rise of NewSQL

Online transaction processing (OLTP)
○ Short-lived, read/write transactions
○ Touch a small subset of data using indexes
○ Repetitive

Online analytical processing (OLAP)
○ Introduced in the 2000’s as Data Warehouses for analyzing large data
○ Complex read-only queries (aggregations, multi-way joins)

At some point, OLTP was not fast enough, which led to NoSQL systems

Now we have NewSQL: NoSQL performance for OLTP + ACID
○ Sacrificing ACID for better performance is no longer worth the effort
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Spanner: Google’s Globally-
Distributed Database
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Case study: Google Spanner

Main features:
○ Distributed, multi-version database
○ General-purpose transactions (ACID)
○ SQL query language
○ Semi-relational data model
○ Scales to millions of machines across hundreds of data centers 

and trillions of database rows

Used by Google Ads (has the most valuable database in 
Google) among others
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Cloud Spanner 101: Google's mission-critical relational database 

(Google Cloud Next ‘17)

https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech


Summary: History of Spanner 

● Previously, Google used sharded MySQL for their Ads database
● At some point, resharding took multiple years

○ Remember: cannot afford to shutdown Ads system, so need to do this 
carefully

● Could not use existing NoSQL databases (BigTable, Megastore) 
because they either did not fully support ACID transactions or 
were too slow

● Took 5 years to develop Spanner, and 5 more years to make it 
available on Cloud
○ These systems are not easy to implement!
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CAP Theorem 
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Any distributed data store can 

provide only two of the 

following three guarantees: 

Consistency, Availability, and 

Partition-tolerance.

Image source: https://medium.com/nerd-for-tech/understand-cap-theorem-751f0672890e

AP: eventual consistency

CP: strong consistency  

Q: Which properties in the CAP theorem do Spanner provide? 



Data model

● Not purely relation but pretty similar 
● Create tables using SQL DDL

9Hierarchies



Data model

● Users(uid, email)
● Albums(uid, aid, name)

Tables can be interleaved for better locality
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Data model

● Each directory/shard is a unit of data movement (e.g., place shard 1 in 
Zones 1 and 3)
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Motivating example: banking

Start with $50 in account (consists of checkings and savings accounts)

○ T1: deposit $150 on savings account

○ T2: debit $200 from checkings account

Say client (i.e., you) issues T1 and then T2

Suppose total balance must not be negative at any point
○ That is, Spanner must never run T2 and then T1
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Easy on single-machine database

● Give monotonically-increasing timestamps to T1 and then T2
● If another transaction reads the database, use snapshot with most 

recent timestamp
○ Total balance is never negative
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Not easy if database is distributed

● Suppose database is sharded and replicated in three different data 
centers
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Challenge 1: consistency

● Need to write on replicas as if there 
was a single transaction running
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Challenge 1: consistency

● Need to write on replicas as if there 
was a single transaction running

● Use existing distributed database 
techniques
○ Use Paxos algorithm for 

synchronizing writes
○ Will not go into details
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Challenge 2: clock uncertainty

● If clock in Zone 1 is slower than 
Zone 2, then T2 may have a 
smaller timestamp than T1

● A transaction that reads after T2 
sees a negative total balance!
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Solution: TrueTime

● Global time with bounded uncertainty 
● Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
● Spanner “waits out” any uncertainty
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Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of:
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Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and
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Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and consensus with replicas 
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Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and consensus with replicas 
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True Time

Idea: There is a global “true” time t

TT.now() = 𝑡 ∈ [earliest, latest]
• TT.now().earliest: definitely in the past

• TT.now().latest: definitely in the future 

23Slide Source: https://www.infoq.com/presentations/spanner-distributed-google/



TrueTime implementation

● Use time master machines that have GPS or atomic clocks
○ GPS is precise, but may have connection problems
○ Atomic clocks do not have connections, but may drift
○ The two types complement each other and are not expensive
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TrueTime implementation

● Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times

● Initially, [earliest, latest] = now ± ε
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TrueTime implementation

● Step 2: reflect local clock drift between polls

● Recall we start from [earliest, latest] = now ± ε

● If X seconds passed, 

○ now += X seconds

○ ε += X * 200μs  (200μs per second is an upper bound of 

clock drift)

● Basically clock becomes more and more uncertain until we 

poll again
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Transaction protocol

1. Acquire locks
2. Execute reads
3. Pick commit timestamp T = TT.now().latest 
4. Replicate writes using Paxos
5. Wait until TT.now().earliest > T
6. Commit
7. Apply write
8. Release locks
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ts(T)ε ε
Commit

ts(T)

Synchronize writes 

using Paxos algorithm

Current read: T = TT.now().latest 

MVCC for read-only

2PL for read-write 



Guarantee: external consistency

In Spanner, commit order (= timestamp order) respects global 
wall-time order

○ System behaves as if all (conflicting) transactions were executed 
sequentially in one machine
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External Consistency: If T1 commits before T2 starts, T1 
should be serialized before T2. In other words, T2’s commit 
timestamp should be greater than T1’s commit timestamp. 



NewSQL techniques

Main memory storage
○ Entire database can be stored in memory

Partitioning/sharding
○ Not a new idea, but now feasible to implement high performance distributed 

DBMS

Concurrency control
○ Use variants of time-stamping ordering concurrency control

Secondary indexes
○ Challenge is to implement these on a distributed system

Replication
○ Most support strongly consistent replication

Crash recovery
○ Need to perform in a distributed DBMS

29Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf


NewSQL summary

Some applications need SQL, ACID transactions, and scalability 
at the same time

NewSQL systems require significant engineering effort, but are 
now commercialized

○ The individual techniques are not new, but incorporating them into a 
single platform is
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