Database Systems
Concepts and Design

Lecture 19
11/04/24

Announcements

Course project updates
» Dec 2: Project Presentation (video submission)

* Dec 6: Project Demo
« 15min per group over Zoom
« Qur designated final exam slot: 6:00 PM - 8:50 PM

 Dec 9: Code and documentation due

Paper presentation starts this Wednesday

» Please email your slides to the staff (cs6400-staff@groups.gatech.edu) by
2 p.m. on the day of the presentation.

Recap: SQL history and motivation

Initially developed in the early 1970’ MySGiL.
By 1986, ANSI and ISO standard groups standardize SQL '
- New versions of standard published in 1989, 1992, and a 5 a
more up to 2016
Dark times in 2000s ‘AZ
o NoSQL for Web 2.0
- Google’s BigTable, Amazon’s Dynamo Spqr K SQL

o Are relational databases dead?

NewSQL systems in 2010s
- SQL — No SQL — Not only SQL — NewSQL
o SQL withstands the test of time and continues to evolve

Google Spanner

he rise of NewSQL

Online transaction processing (OLTP)
o Short-lived, read/write transactions
> Touch a small subset of data using indexes
o Repetitive

Online analytical processing (OLAP)

> Introduced in the 2000’s as Data Warehouses for analyzing large data
o Complex read-only queries (aggregations, multi-way joins)

At some point, OLTP was not fast enough, which led to NoSQL systems

Now we have NewSQL: NoSQL performance for OLTP + ACID

o Sacrificing ACID for better performance is no longer worth the effort

Spanner: Google's Globally-
Distributed Database

Case study: Google Spanner

Main features:

@]
o
@]
o
(@]

Distributed, multi-version database
General-purpose transactions (ACID)
SQL query language Google Spanner
Semi-relational data model

Scales to millions of machines across hundreds of data centers

and trillions of database rows

Used by Google Ads (has the most valuable database in
Google) among others

Cloud Spanner 101: Google's mission-critical relational database

(Google Cloud Next “17)

https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech

Summary: History of Spanner

« Previously, Google used sharded MySQL for their Ads database

o At some point, resharding took multiple years
Remember: cannot afford to shutdown Ads system, so need to do this
carefully

« Could not use existing NoSQL databases (BigTable, Megastore)
because they either did not fully support ACID transactions or
were too slow

e T00k 5 years to develop Spanner, and 5 more years to make it

available on Cloud
These systems are not easy to implement!

CAP Theorem

Any distributed data store can
provide only two of the
following three guarantees:
Consistency, Availability, and
Partition-tolerance.

AP: eventual consistency
CP: strong consistency

Consistency

All clients see the
same view of data,
even right after
update or delete

CA CP

X

Availability Partitioning

All clients can find a AP
replica of data, even
in case of partial
node failures

The system continues
to work as expected,

even in presence of

partial network failure

Q: Which properties in the CAP theorem do Spanner provide?

Data model

o Not purely relation but pretty similar
o Create tables using SQL DDL

CREATE TABLE Users {

uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;

CREATE TABLE Albums {

uid INT64 NOT NULL, aid INT64 NOT NULL,
name STRING

} PRIMARY KEY (uid, aid),
INTERLEAVE IN PARENT Users|ON DELETE CASCADE;

Hierarchies

Data model

o Users(uid, email)

e Albums(uid, aid,

name)

Tables can be interleaved for better locality

ooooo

Users(1)

Albums(1,1)

Albums(1,2)

Users(2)

Albums(2,1)

Albums(2,2)

Albums(2,3)

10

Data model

o Each directory/shard is a unit of data movement (e.g., place shard 1 in
Zones 1 and 3)

Users (1)
Albums (1, 1)

shard EE
Users (2) - Shard 1

/one 1 /one 2
Albums (2, 1)
e shard 1] [shrd)
Users (3)

- Shard 2 Zone 3
11

Motivating example: banking

Start with $50 in account (consists of checkings and savings accounts)
- T1:deposit $150 on savings account

- T2:debit $200 from checkings account
Say client (i.e., you) issues T1 and then T2

Suppose total balance must not be negative at any point
o Thatis, Spanner must never run T2 and then T1

Easy on single-machine database

« (Give monotonically-increasing timestamps to T1 and then T2
o If another transaction reads the database, use snapshot with most

recent timestamp
o lotal balance is never negative

3:00pm

e [

T1 T2
Total: $50 $200 $0

3:00pm 3:01pm

Not easy If datalbase is distributed

o Suppose database is sharded and replicated in three different data
centers

Savings Checkings
Zonel Zone 2

]

Savings Checkings

Zone 3

Challenge 1: consistency

o Need to write on replicas as if there
was a single transaction running

Savings Checkings
> >
Zonel Zone 2

]

Savings Checkings

Zone 3

Challenge 1: consistency

o Need to write on replicas as if there
was a single transaction running

o Use existing distributed database Savings Checkings
techniques — —
, T1 i T2
- Use Paxos algorithm for
synchronizing writes Zone 1 Zone 2

- Will not go into details @ @

n [sm] [sm] T

Savings Checkings

Zone 3

Challenge 2: clock uncertainty

« Ifclockin Zone 1 is slower than
Zone 2, then T2 may have a
smaller timestamp than T1

« A transaction that reads after T2
sees a negative total balance!

T2 T1
Total: $50 -$150 %0
3:00pm

3:00pm 2:59pm
Savings Checkings
Zonel Zone 2

]

Savings Checkings

Zone 3

Solution: TrueTime

« Global time with bounded uncertainty
« Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
e Spanner “waits out” any uncertainty

3:00pm £ ¢ 3:0lpmt ¢
Savings Checkings
T1 T2
Zonel Zone 2
Total: $50 $200 $0

==

Savings Checkings

Zone 3

Running 11 and T2

e Use strict 2PL (strict = keep locks until commit or abort)

e Timestamp is some time between when locks are acquired and released
e In addition, need to take care of:

ts(T1)

)
) \

Running 11 and T2

e Use strict 2PL (strict = keep locks until commit or abort)
e Timestamp is some time between when locks are acquired and released
e In addition, need to take care of: time uncertainty and

Commit

e ts(T1) e
— \/
) \

Zone 3

20

Running T1 and T2

e Use strict 2PL (strict = keep locks until commit or abort)
e Timestamp is some time between when locks are acquired and released
e In addition, need to take care of: time uncertainty and consensus with replicas

Commit
e ts(T1) e

fl\lf‘\/
_— / {

Zone 3

Synchronize writes
ts(T1) using Paxos algorithm

_— / i \

Zonel

21

Running T1 and 12

e Use strict 2PL (strict = keep locks until commit or abort)
e Timestamp is some time between when locks are acquired and released
e In addition, need to take care of: time uncertainty and consensus with replicas

Commit
e t(T1) e ts(T2) e

e g
A G

Synchronize writes
ts(T1) using Paxos algorithm

_— / : \

Zonel

22

True Time

ldea: There is a global “true” time t

TT.now() =t € [earliest, latest]

* TT.now().earliest: definitely in the past
* TT.now().latest: definitely in the future

TrueTime implementation

o Use time master machines that have GPS or atomic clocks
- GPS is precise, but may have connection problems
o Atomic clocks do not have connections, but may drift
o The two types complement each other and are not expensive

24

TrueTime implementation

o Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times
e Initially, [earliest, latest] = now + ¢

GPS time GPS time GPS time
GPS ttime W
Client

Data center 1 Data center 2

TrueTime implementation docks |
Now
o Step 2: reflect local clock drift between polls -
o Recall we start from [earliest, latest] = now =+ € %/
e If X seconds passed, "
> now += X seconds Actual time
o €+=X*200us (200us per second is an upper bound of
clock drift)

e Basically clock becomes more and more uncertain until we
poll again

Transaction protocol

© N o Ok w D~

Acquire locks

Execute reads -

Pick commit timestamp T = TT.now() latest & ®7) ¢ /

Replicate writes using Paxos | Y |

Wait until TT.now().earliest > T / \

Commit S

App|y write Sy_nchronlze writes

Release locks ts(T) using Paxos algorithm
) |

/ \

Current read: T = TT.now().latest

MVCC for read-only
2PL for read-write
27

Guarantee: external consistency

In Spanner, commit order (= timestamp order) respects global

wall-time order
o System behaves as if all (conflicting) transactions were executed
seqguentially in one machine

External Consistency: If T1 commits before T2 starts, T1
should be serialized before T2. In other words, T2’s commit
timestamp should be greater than T1's commit timestamp.

NewSQL technigues

Main memory storage
o Entire database can be stored in memory
Partitioning/sharding

- Not a new idea, but now feasible to implement high performance distributed
DBMS

Concurrency control

o Use variants of time-stamping ordering concurrency control
Secondary indexes

- Challenge is to implement these on a distributed system
Replication

o Most support strongly consistent replication

Crash recovery
- Need to perform in a distributed DBMS

Source:

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL summary

Some applications need SQL, ACID transactions, and scalability
at the same time

NewSQL systems require significant engineering effort, but are
now commercialized

o The individual technigues are not new, but incorporating them into a
single platform is

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Recap: SQL history and motivation
	Slide 4: The rise of NewSQL
	Slide 5: Spanner: Google’s Globally-Distributed Database
	Slide 6: Case study: Google Spanner
	Slide 7: Summary: History of Spanner
	Slide 8: CAP Theorem
	Slide 9: Data model
	Slide 10: Data model
	Slide 11: Data model
	Slide 12: Motivating example: banking
	Slide 13: Easy on single-machine database
	Slide 14: Not easy if database is distributed
	Slide 15: Challenge 1: consistency
	Slide 16: Challenge 1: consistency
	Slide 17: Challenge 2: clock uncertainty
	Slide 18: Solution: TrueTime
	Slide 19: Running T1 and T2
	Slide 20: Running T1 and T2
	Slide 21: Running T1 and T2
	Slide 22: Running T1 and T2
	Slide 23: True Time
	Slide 24: TrueTime implementation
	Slide 25: TrueTime implementation
	Slide 26: TrueTime implementation
	Slide 27: Transaction protocol
	Slide 28: Guarantee: external consistency
	Slide 29: NewSQL techniques
	Slide 30: NewSQL summary

