
CS 6400 A

Database Systems
Concepts and Design

Lecture 19

11/04/24

Announcements

Course project updates
• Dec 2: Project Presentation (video submission)

• Dec 6: Project Demo
• 15min per group over Zoom

• Our designated final exam slot: 6:00 PM - 8:50 PM

• Dec 9: Code and documentation due

Paper presentation starts this Wednesday
• Please email your slides to the staff (cs6400-staff@groups.gatech.edu) by

2 p.m. on the day of the presentation.

2

Recap: SQL history and motivation

Initially developed in the early 1970’s

By 1986, ANSI and ISO standard groups standardize SQL
○ New versions of standard published in 1989, 1992, and

more up to 2016

Dark times in 2000s
○ NoSQL for Web 2.0
○ Google’s BigTable, Amazon’s Dynamo
○ Are relational databases dead?

NewSQL systems in 2010s
○ SQL → No SQL → Not only SQL → NewSQL
○ SQL withstands the test of time and continues to evolve

3

The rise of NewSQL

Online transaction processing (OLTP)
○ Short-lived, read/write transactions
○ Touch a small subset of data using indexes
○ Repetitive

Online analytical processing (OLAP)
○ Introduced in the 2000’s as Data Warehouses for analyzing large data
○ Complex read-only queries (aggregations, multi-way joins)

At some point, OLTP was not fast enough, which led to NoSQL systems

Now we have NewSQL: NoSQL performance for OLTP + ACID
○ Sacrificing ACID for better performance is no longer worth the effort

4

Spanner: Google’s Globally-
Distributed Database

5

Case study: Google Spanner

Main features:
○ Distributed, multi-version database
○ General-purpose transactions (ACID)
○ SQL query language
○ Semi-relational data model
○ Scales to millions of machines across hundreds of data centers

and trillions of database rows

Used by Google Ads (has the most valuable database in
Google) among others

6

Cloud Spanner 101: Google's mission-critical relational database

(Google Cloud Next ‘17)

https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech
https://www.youtube.com/watch?v=IfsTINNCooY&ab_channel=GoogleCloudTech

Summary: History of Spanner

● Previously, Google used sharded MySQL for their Ads database
● At some point, resharding took multiple years

○ Remember: cannot afford to shutdown Ads system, so need to do this
carefully

● Could not use existing NoSQL databases (BigTable, Megastore)
because they either did not fully support ACID transactions or
were too slow

● Took 5 years to develop Spanner, and 5 more years to make it
available on Cloud
○ These systems are not easy to implement!

7

CAP Theorem

8

Any distributed data store can

provide only two of the

following three guarantees:

Consistency, Availability, and

Partition-tolerance.

Image source: https://medium.com/nerd-for-tech/understand-cap-theorem-751f0672890e

AP: eventual consistency

CP: strong consistency

Q: Which properties in the CAP theorem do Spanner provide?

Data model

● Not purely relation but pretty similar
● Create tables using SQL DDL

9Hierarchies

Data model

● Users(uid, email)
● Albums(uid, aid, name)

Tables can be interleaved for better locality

10

Data model

● Each directory/shard is a unit of data movement (e.g., place shard 1 in
Zones 1 and 3)

11

Users (1)

Albums (1, 1)

Users (2)

Albums (2, 1)

Albums (2, 2)

Shard 1

Shard 2
Users (3)

...

Zone 1 Zone 2

Zone 3

Shard 1

Shard 1 Shard 2

Shard 2

Motivating example: banking

Start with $50 in account (consists of checkings and savings accounts)

○ T1: deposit $150 on savings account

○ T2: debit $200 from checkings account

Say client (i.e., you) issues T1 and then T2

Suppose total balance must not be negative at any point
○ That is, Spanner must never run T2 and then T1

12

Easy on single-machine database

● Give monotonically-increasing timestamps to T1 and then T2
● If another transaction reads the database, use snapshot with most

recent timestamp
○ Total balance is never negative

13

T1, T2

3:00pm

T1 T2

$200 $0$50

3:00pm

Total:

3:01pm

Not easy if database is distributed

● Suppose database is sharded and replicated in three different data
centers

14

Savings Checkings

Savings Checkings

Zone 1 Zone 2

Zone 3

Challenge 1: consistency

● Need to write on replicas as if there
was a single transaction running

15

T1 +$150 T2-$200

Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Challenge 1: consistency

● Need to write on replicas as if there
was a single transaction running

● Use existing distributed database
techniques
○ Use Paxos algorithm for

synchronizing writes
○ Will not go into details

16

T1

T1

+$150

+$150

T2

T2

-$200

-$200

Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Challenge 2: clock uncertainty

● If clock in Zone 1 is slower than
Zone 2, then T2 may have a
smaller timestamp than T1

● A transaction that reads after T2
sees a negative total balance!

17

3:00pm

T1

$0$50

T2

-$150

3:00pm 2:59pm

Total:
Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Solution: TrueTime

● Global time with bounded uncertainty
● Guarantees that if T1 commits before T2 starts, then ts(T1) < ts(T2)
● Spanner “waits out” any uncertainty

18

3:00pm

T1

$50

T2

$200 $0

3:00pm ± ε 3:01pm ± ε

Total:
Zone 1 Zone 2

Zone 3

Savings Checkings

Savings Checkings

Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of:

19

ts(T1)

Zone 3

Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and

20

ts(T1)ε ε

Zone 3

Commit

Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and consensus with replicas

21

ts(T1)ε ε

ts(T1)

Zone 3

Zone 1

Commit

Synchronize writes

using Paxos algorithm

Running T1 and T2

● Use strict 2PL (strict = keep locks until commit or abort)

● Timestamp is some time between when locks are acquired and released

● In addition, need to take care of: time uncertainty and consensus with replicas

22

ts(T1)ε ε

ts(T1)

Zone 3

Zone 1

ts(T2)
Commit

Synchronize writes

using Paxos algorithm

ε ε

True Time

Idea: There is a global “true” time t

TT.now() = 𝑡 ∈ [earliest, latest]
• TT.now().earliest: definitely in the past

• TT.now().latest: definitely in the future

23Slide Source: https://www.infoq.com/presentations/spanner-distributed-google/

TrueTime implementation

● Use time master machines that have GPS or atomic clocks
○ GPS is precise, but may have connection problems
○ Atomic clocks do not have connections, but may drift
○ The two types complement each other and are not expensive

24

TrueTime implementation

● Step 1: periodically poll [earliest, latest] of selected GPS and atomic clock times

● Initially, [earliest, latest] = now ± ε

25

GPS time

Atomic time

GPS time

GPS time

GPS time

Client

Data center 1 Data center 2 ...

TrueTime implementation

● Step 2: reflect local clock drift between polls

● Recall we start from [earliest, latest] = now ± ε

● If X seconds passed,

○ now += X seconds

○ ε += X * 200μs (200μs per second is an upper bound of

clock drift)

● Basically clock becomes more and more uncertain until we

poll again

26

Actual time

Now

Poll

clocks

Transaction protocol

1. Acquire locks
2. Execute reads
3. Pick commit timestamp T = TT.now().latest
4. Replicate writes using Paxos
5. Wait until TT.now().earliest > T
6. Commit
7. Apply write
8. Release locks

27

ts(T)ε ε
Commit

ts(T)

Synchronize writes

using Paxos algorithm

Current read: T = TT.now().latest

MVCC for read-only

2PL for read-write

Guarantee: external consistency

In Spanner, commit order (= timestamp order) respects global
wall-time order

○ System behaves as if all (conflicting) transactions were executed
sequentially in one machine

28

External Consistency: If T1 commits before T2 starts, T1
should be serialized before T2. In other words, T2’s commit
timestamp should be greater than T1’s commit timestamp.

NewSQL techniques

Main memory storage
○ Entire database can be stored in memory

Partitioning/sharding
○ Not a new idea, but now feasible to implement high performance distributed

DBMS

Concurrency control
○ Use variants of time-stamping ordering concurrency control

Secondary indexes
○ Challenge is to implement these on a distributed system

Replication
○ Most support strongly consistent replication

Crash recovery
○ Need to perform in a distributed DBMS

29Source: https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

https://db.cs.cmu.edu/papers/2016/pavlo-newsql-sigmodrec2016.pdf

NewSQL summary

Some applications need SQL, ACID transactions, and scalability
at the same time

NewSQL systems require significant engineering effort, but are
now commercialized

○ The individual techniques are not new, but incorporating them into a
single platform is

30

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Recap: SQL history and motivation
	Slide 4: The rise of NewSQL
	Slide 5: Spanner: Google’s Globally-Distributed Database
	Slide 6: Case study: Google Spanner
	Slide 7: Summary: History of Spanner
	Slide 8: CAP Theorem
	Slide 9: Data model
	Slide 10: Data model
	Slide 11: Data model
	Slide 12: Motivating example: banking
	Slide 13: Easy on single-machine database
	Slide 14: Not easy if database is distributed
	Slide 15: Challenge 1: consistency
	Slide 16: Challenge 1: consistency
	Slide 17: Challenge 2: clock uncertainty
	Slide 18: Solution: TrueTime
	Slide 19: Running T1 and T2
	Slide 20: Running T1 and T2
	Slide 21: Running T1 and T2
	Slide 22: Running T1 and T2
	Slide 23: True Time
	Slide 24: TrueTime implementation
	Slide 25: TrueTime implementation
	Slide 26: TrueTime implementation
	Slide 27: Transaction protocol
	Slide 28: Guarantee: external consistency
	Slide 29: NewSQL techniques
	Slide 30: NewSQL summary

