
CS 6400 A

Database Systems
Concepts and Design

Lecture 16

10/23/24

Announcements
Assignment 3,4 released

• Assignment 3: Paper presentation (group)
• Group and paper assignment on canvas

• 20min presentation + 5min Q&A

• Presentation starts Nov 6

• Assignment 4: Paper review (individual)

Assignment 2 leaderboard

2

Desirable Properties of Transactions: ACID

• Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring atomicity and durability with logging

and recovery manager

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 17 - Copying with System Failures

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 22 - Database Recovery Techniques

4

Agenda

1. Undo Logging

2. Redo Logging

3. Undo/redo logging

5

Failure modes and solutions
Erroneous data entry

○ Typos
→ Write constraints and triggers

Media failures
○ Local disk failure, head crashes

→ Parity checks, RAID, archiving and copying

Catastrophic failures
○ Explosions, fires

→ Archiving and copying

System failures
○ Transaction state lost due to power loss and software errors

→ Logging

6

Our focus today

Recovery

Atomicity
• by ”undo”ing actions of “aborted transactions”

Durability
• by making sure that all actions of committed transactions survive crashes

and system failure

• – i.e. by “redo”-ing actions of “committed transactions”

7

Recall: The Correctness Principle
A fundamental assumption about transaction is:

8

DB in consistent state

Txn

DB in consistent stateRun in isolation

If a transaction executes in the absence of any other
transactions or system errors, and it starts with the
database in a consistent state, then the database is also
in a consistent state when the transactions ends.

Transaction primitives

● Example transaction
○ Consistent state: A = B

9

A := A * 2
B := B * 2

Logical steps

Execution

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

10

A := A * 2
B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

11

A := A * 2
B := B * 2

Logical steps

Execution

Consistent

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Transaction primitives

● Example transaction
○ Consistent state: A = B

12

A := A * 2
B := B * 2

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
OUTPUT(A)
OUTPUT(B)

Logical steps

Execution

8
16
16

8
16
16
16
16

8
8

16
16
16
16
16
16

8
8

16
16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8
8

16

Action t

A B A

B

Memory Disk

Not consistent!
Either reset A = 8
or advance B = 16

1. Undo logging

13

Undo logging

14

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Log: records
of what
transaction
has done

Undo logging

15

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Memory Disk

T started

T completed
successfully

T changed A, and its
former value is 8

● Idea: Undo incomplete transactions, and ignore committed ones

Undo logging

16

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be
flushed to disk before
new A is written to disk
(same for B)

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Undo logging

17

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Rule 1:
<T, A, 8> must be flushed
to disk before new A is
written to disk (same for
B)

Rule 2:
<COMMIT T> must be
flushed to disk after A
and B are written to disk

Log

● Idea: Undo incomplete transactions, and ignore committed ones

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

18

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

19

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

20

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

21

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Observe <COMMIT T> record

Recovery

Ignore (T was committed)

Ignore (T was committed)

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

22

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

23

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

<COMMIT T> may or may not have
been flushed to disk. If so, same as
previous scenario. If not, T is
considered incomplete

A = 16
B = 16

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

24

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set B to
previous value 8 on disk

A = 16
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

25

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

If T was incomplete, set A to
previous value 8 on disk

A = 8
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

26

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

Write <ABORT T> to log and
flush to disk

A = 8
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

27

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 16
 B = 8

Recovery using undo logging

● Simplifying assumption: use entire log, no matter how long

28

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)
OUTPUT(B)

FLUSH LOG

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 8>

<T, B, 8>

<COMMIT T>

Log

Recovery

Crash

A = 8
 B = 8

Same recovery as before, but only A is
set to previous value

What happens if the system crashes during
the recovery?

● Undo-log recovery is
idempotent, so repeating the
recovery is OK

29

Image source: https://insightrsblog.com/2010/09/17/do-you-want-to-recreate-your-entire-database/

In-class Exercise

● Given the undo log, describe the action of the recovery manager

30

<START T>
<T, A, 10>
<START U>
<U, B, 20>
<T, C, 30>
<U, D, 40>
<COMMIT U>

Checkpointing

● Entire log can be too long

● Cannot truncate log after a COMMIT because there are other
running transactions

31

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

32

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>

33

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>

34

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>

35

Write <CKPT> and flush

Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Checkpointing

● Solution: checkpoint log periodically

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<T2, C, 15>
<T1, D, 20>
<COMMIT T1>
<COMMIT T2>
<CKPT>
<START T3>
<T3, E, 25>
<T3, F, 30>

36

Resume transactions

Write <CKPT> and flush

Flush log

Wait until all transactions commit or abort

Stop accepting new transactions

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

37

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

38

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <END CKPT>, only need to
recover until <START CKPT (T1, T2)>

Nonquiescent checkpointing

● Motivation: avoid shutting down system while checkpointing
● Checkpoint all active transactions, but allow new transactions to

enter system

39

<START T1>
<T1, A, 5>
<START T2>
<T2, B, 10>
<START CKPT (T1, T2)>
<T2, C, 15>
<START T3>
<T1, D, 20>
<COMMIT T1>
<T3, E, 25>
<COMMIT T2>
<END CKPT>
<T3, F, 30>

Crash

If we first meet <START CKPT (T1, T2)>, only
need to recover until <START T1>

2. Redo logging

40

Redo logging

Redo logging ignores incomplete transactions and repeats committed
ones

○ Undo logging cancels incomplete transactions and ignores committed ones

<T, X, v> now means T wrote new value v for database element X

One rule: all log records (e.g., <T, X, v> and <COMMIT T>) must appear
on disk before modifying any database element X on disk

41

Redo logging

● Example

42

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Recovery with redo logging

● Scan log forward and redo committed transactions

43

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Recovery with redo logging

● Scan log forward and redo committed transactions

44

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 16
B = 16

Recovery with redo logging

● Scan log forward and redo committed transactions

45

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Recovery with redo logging

● Scan log forward and redo committed transactions

46

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)

FLUSH LOG
OUTPUT(A)
OUTPUT(B)

8
16
16

8
16
16

16
16

8
8

16
16
16
16

16
16

8
8

16

16
16

8
8
8
8
8
8

16
16

8
8
8
8
8
8

8
16

Action t

A B A

B

<START T>

<T, A, 16>

<T, B, 16>
<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

Do nothing

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

47

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

48

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log

● Write to disk all DB elements modified by committed transactions

49

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all DB elements by transactions
that already committed when START CKPT was
written to log (i.e., T1)

Nonquiescent checkpointing for redo log

● After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

50

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Nonquiescent checkpointing for redo log

● After crash, redo committed transactions that either started after
START CKPT or were active during START CKPT

51

<START T1>
<T1, A, 5>
<START T2>
<COMMIT T1>
<T2, B, 10>
<START CKPT (T2)>
<T2, C, 15>
<START T3>
<T3, D, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3> Crash

Only redo writes by T2
Write <ABORT T3> in log after recovery

3. Undo/redo logging

52

Undo/redo logging

More flexible than undo or redo logging in ordering actions

<T, X, v, w> : T changed value of X from v to w

One rule: <T, X, v, w> must appear on disk before modifying X on disk

53

Undo/redo logging

● Example

54

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

55

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 8

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

56

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 16

T is commited
Redo by writing the value 16
for both A and B to the disk.

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

57

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 16
 B = 8

Recovery with undo/redo logging

● Redo all committed transactions and undo all incomplete transactions

58

Memory Disk

READ(A, t)
t := t * 2
WRITE(A, t)
READ(B, t)
t := t * 2
WRITE(B, t)
FLUSH LOG
OUTPUT(A)

OUTPUT(B)

8
16
16

8
16
16

16

16

8
8

16
16
16
16

16

16

8
8

16

16

16

8
8
8
8
8
8

16

16

8
8
8
8
8
8

8

16

Action t

A B A

B

<START T>

<T, A, 8, 16>

<T, B, 8, 16>

<COMMIT T>

Log

Crash

Recovery

A = 8
 B = 8

T is incomplete
Undo by resetting A and B to
the previous value of 8

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

59

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

60

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging

● Simpler than other logging methods

61

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Write to disk all the buffers that are dirty

Nonquiescent checkpointing for undo/redo logging

● After a crash, redo committed transactions, and undo
uncommitted ones

62

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Nonquiescent checkpointing for undo/redo logging

● After a crash, redo committed transactions, and undo
uncommitted ones

63

<START T1>
<T1, A, 4, 5>
<START T2>
<COMMIT T1>
<T2, B, 9, 10>
<START CKPT (T2)>
<T2, C, 14, 15>
<START T3>
<T3, D, 19, 20>
<END CKPT>
<COMMIT T2>
<COMMIT T3>

Crash

Redo T2 by setting C to 15 on disk
(No need to set B to 10 thanks to CKPT)
Undo T3 by setting D to 19 on disk

Summary

Coping with System Failures

- Undo logging

- Redo logging

- Undo/redo logging

- Checkpointing

64

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements

	Recovery
	Slide 3: Desirable Properties of Transactions: ACID
	Slide 4: Reading Materials
	Slide 5: Agenda
	Slide 6: Failure modes and solutions
	Slide 7: Recovery
	Slide 8: Recall: The Correctness Principle
	Slide 9: Transaction primitives
	Slide 10: Transaction primitives
	Slide 11: Transaction primitives
	Slide 12: Transaction primitives

	Undo logging
	Slide 13: 1. Undo logging
	Slide 14: Undo logging
	Slide 15: Undo logging
	Slide 16: Undo logging
	Slide 17: Undo logging
	Slide 18: Recovery using undo logging
	Slide 19: Recovery using undo logging
	Slide 20: Recovery using undo logging
	Slide 21: Recovery using undo logging
	Slide 22: Recovery using undo logging
	Slide 23: Recovery using undo logging
	Slide 24: Recovery using undo logging
	Slide 25: Recovery using undo logging
	Slide 26: Recovery using undo logging
	Slide 27: Recovery using undo logging
	Slide 28: Recovery using undo logging
	Slide 29: What happens if the system crashes during the recovery?
	Slide 30: In-class Exercise

	checkpoint
	Slide 31: Checkpointing
	Slide 32: Checkpointing
	Slide 33: Checkpointing
	Slide 34: Checkpointing
	Slide 35: Checkpointing
	Slide 36: Checkpointing
	Slide 37: Nonquiescent checkpointing
	Slide 38: Nonquiescent checkpointing
	Slide 39: Nonquiescent checkpointing

	redo
	Slide 40: 2. Redo logging
	Slide 41: Redo logging
	Slide 42: Redo logging
	Slide 43: Recovery with redo logging
	Slide 44: Recovery with redo logging
	Slide 45: Recovery with redo logging
	Slide 46: Recovery with redo logging
	Slide 47: Nonquiescent checkpointing for redo log
	Slide 48: Nonquiescent checkpointing for redo log
	Slide 49: Nonquiescent checkpointing for redo log
	Slide 50: Nonquiescent checkpointing for redo log
	Slide 51: Nonquiescent checkpointing for redo log

	undo/redo
	Slide 52: 3. Undo/redo logging
	Slide 53: Undo/redo logging
	Slide 54: Undo/redo logging
	Slide 55: Recovery with undo/redo logging
	Slide 56: Recovery with undo/redo logging
	Slide 57: Recovery with undo/redo logging
	Slide 58: Recovery with undo/redo logging
	Slide 59: Nonquiescent checkpointing for undo/redo logging
	Slide 60: Nonquiescent checkpointing for undo/redo logging
	Slide 61: Nonquiescent checkpointing for undo/redo logging
	Slide 62: Nonquiescent checkpointing for undo/redo logging
	Slide 63: Nonquiescent checkpointing for undo/redo logging
	Slide 64: Summary

