
CS 6400 A

Database Systems
Concepts and Design

Lecture 15

10/21/24

Desirable Properties of Transactions: ACID

• Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes
are committed, these changes must never be lost because of
subsequent failure.

This class: ensuring isolation via concurrency control

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 18 – Concurrency Control

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 21 - Concurrency Control Techniques

3

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Locking-based Concurrency Control

2. Optimistic Concurrency Control

3. Multi-version Concurrency Control

4

1. Lock-based Concurrency
Control

5

Enforce serializability with locks

Consistency of transactions
○ Can only read/write element if

granted a lock
○ A locked element must later be

unlocked

Legality of schedules
○ No two transactions may lock

element at the same time

6

Requests from transactions

SchedulerLock table

Serializable

schedule of

actions

li(X): Ti requests lock on X
ui(X): Ti releases lock on X

Enforce serializability with locks

● Legal, but not serializable schedule

7

l1(A); r1(A);
A := A+100
w1(A); u1(A);

l2(B); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

50

250

150

l1(B); r1(B)
B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A); u2(A)

Two-phase locking (2PL)

● In every transaction, all lock actions precede all unlock actions
● Guarantees a legal schedule of consistent transactions is

conflict serializable

8

time
locks

acquired

First unlock

Two-phase locking (2PL)

● This is now conflict serializable

9

l1(A); r1(A);
A := A+100
w1(A); l1(B); u1(A);

l2(B); u2(A); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

125

250

250

r1(B); B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A);
l2(B) Denied

Locking with several modes

Using one type of lock is not efficient when reading and writing

Instead, use shared locks for reading and exclusive locks for writing

Requirements: analogous notions of consistent transactions, legal
schedules, and 2PL

10

sli(X): Ti requests shared lock on X
xli(X): Ti requests exclusive lock on X

Locking with several modes

● More efficient than previous schedule

11

sl1(A); r1(A);

T1 T2

sl2(A); r2(A);
sl2(B); r2(B);

xl1(B) Denied

u2(A); u2(B);

xl1(B); r1(B); w1(B);
u1(A); u1(B);

● T1 and T2 can read A

at the same time

● T1 and T2 use 2PL, so

the schedule is conflict

serializable

Locking with several modes

● Compatibility matrix

12

Lock held

in mode

S

X

Lock requested

S X

Yes No

No No

Update locks

● If T reads and writes the same X, enable lock to upgrade from shared
to exclusive
○ Obviously allows more parallelism

● However, a simple upgrading approach may lead to deadlocks

13

sl1(A)
...

T1 T2

xl1(A) Denied

sl2(A)
...

xl2(A) Denied

Upgrade
Upgrade

Update locks

● Solution: introduce new type called update locks
● Only an update lock can be updated to an exclusive lock later

14

ul1(A)
...

T1 T2

xl1(A)
ul2(A) Denied

ul2(A)
…
xl2(A)

Upgrade

Upgrade

S

X

U

S X U

Yes No

No No

Yes

No

No No No

Compatibility matrix

uli(X): Ti requests an update lock on X

Locks With Multiple Granularity

So far, we haven’t explicitly defined which ”database elements” the
transaction should acquire locks on.

A few options:

● Relations → Least concurrency
● Pages or data blocks
● Tuples → Most concurrency, but also expensive

15

Having locks with multiple granularity could lead to unserializable behavior
● e.g., a shared lock on the relation + an exclusive lock on tuples

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

16

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

17

R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

18

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

19

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

20

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

21

T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

22

T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX

Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)

23

T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX

T2-X

Compatibility matrix

● For shared, exclusive, and intention locks

24

IS

IX

S

X

IS IX S X

Yes Yes

Yes Yes

Yes

No

Yes No Yes

No

No

No
No No No No

Holder

Requestor

Inserts and Deletes

Delete: get exclusive lock on X before deleting it

Insert: get exclusive lock on the parent of the new tuple
○ If no exclusive lock is held, then database can become

inconsistent due to “phantoms”

25

parent

key=1 key=2

T1-S

key=3 key=3

T2-S

Added by T1 Added by T2

Key constraint violation

In-class Exercise

● Given the hierarchy of objects, what is the sequence of lock requests by
T1 and T2 for the sequence of requests: r1(t5); w2(t5); w1(t4);

26

R1

B1 B2

t1 t2 t3 t4 t5

Locking scheduler architecture

● Part 1 takes stream of requests and inserts appropriate lock actions
● Part 2 executes the sequences from Part 1

27

lock
table

Scheduler (part 1)

Scheduler (part 2)

READ(A); WRITE(B); COMMIT(T); ...

l(A); READ(A); l(B); WRITE(B); ...

READ(A); WRITE(B); ...

DB

From transactions

Lock table

● Maps database elements to lock information

28

DB element A

Lock information of A

● Can implement with hash table
● If element is not in table, it is unlocked

Lock table

29

DB element A

Lock information of A

Hash Fn.

Deadlocks

Deadlock: Cycle of transactions waiting for locks to be released by
each other.

Two ways of dealing with deadlocks:

1. Deadlock detection

2. Deadlock prevention (see Database Systems Book Ch19.2)

Deadlock Detection: Example

First, T1 requests a shared lock
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2

Deadlock Detection: Example

Next, T2 requests a shared lock
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

Deadlock Detection: Example

T2 then requests an exclusive
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…

Deadlock Detection: Example

Finally, T1 requests an exclusive
lock on B to write to it- now T1 is
waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle =
DEADLOCK

Waiting…

Waiting…

Deadlock Detection

Create the waits-for graph:

• Nodes are transactions

• There is an edge from Ti → Tj if Ti is waiting for Tj to release a lock

Periodically check for (and break) cycles in the waits-for graph
• E.g., roll back transaction that introduces a cycle

2. Optimistic Concurrency
Control

36

Optimistic Concurrency Control

Optimistic methods
○ Two methods: validation (covered next), and timestamping
○ Assume no unserializable behavior
○ Abort transactions when violation is apparent
○ may cause transactions to rollback

In comparison, locking methods are pessimistic
○ Assume things will go wrong
○ Prevent nonserializable behavior
○ Delays transactions but avoids rollbacks

37

• Optimistic approaches are often better than lock when

transactions have low interference (e.g., read-only)

Concurrency Control by Validation

Each transaction T has a read set RS(T) and write set WS(T)

Three phases of a transaction
○ Read from DB all elements in RS(T) and store their writes in a private

workspace
○ Validate T by comparing RS(T) and WS(T) with other transactions
○ Write elements in WS(T) to disk, if validation is OK (make private

changes public)

Validation needs to be done atomically
○ Validation order = hypothetical serial order

38

To validate, scheduler maintains three sets

START: set of transactions that started, but have not validated

○ START(T), the time at which T started

VAL: set of transactions that validated, but not yet finished write phase

○ VAL(T), time at which T is imagined to execute in the hypothetical serial
order of execution

FIN: set of transactions that have completed write phase

○ FIN(T), the time at which T finished.

39

Validation rules (assume U validated)

40

U start T start U validate T validate

WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅

This violates rule 1 because T may be reading B before U writes B

Validation rules (assume U validated)

41

WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅

This satisfies rule 1

U start T startU validate T validateU finish

Validation rules (assume U validated)

42

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

Validation rules (assume U validated)

43

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

This violates rule 2 because T may write B before U writes B

Validation rules (assume U validated)

44

Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

This satisfies rule 2

U validate T validateU finish

Example: CC by Validation

45

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

START(U) VAL(U) FIN(U)

Example: CC by Validation

46

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

WSuccess

Example: CC by Validation

47

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Example: CC by Validation

48

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success Rule 1: if FIN(U) > START(T),

 RS(T) ∩ WS(U) = ∅

Example: CC by Validation

49

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Example: CC by Validation

50

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success

Rule 1: if FIN(U) > START(V),

 RS(V) ∩ WS(U) = ∅

Rule 2: if FIN(T) > VAL(V),

 WS(V) ∩ WS(T) = ∅

Rule 1: if FIN(T) > START(V),

 RS(V) ∩ WS(T) = ∅

Example: CC by Validation

51

RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W Rollback

Rule 1: if FIN(T) > START(W),

 RS(W) ∩ WS(T) ≠ ∅

Rule 2: if FIN(V) > VAL(W),

 WS(V) ∩ WS(W) = ∅

Rule 1: if FIN(V) > START(W),

 RS(W) ∩ WS(V) = ∅

3. Multi-version Concurrency
Control

52

MVCC Overview

The DBMS maintains multiple physical versions of a single logical
object in the database:

• When a TXN writes to an object, the DBMS creates a new version of
that object.

• When a TXN reads an object, it reads the newest version that existed
when the TXN started.

53

MVCC Overview

Each transaction is classified as reader or writer.
• Readers don’t block writers. Writers don’t block readers.

Read-only txns can read a consistent snapshot without
acquiring locks.

• Use timestamps to determine visibility.

Easily support time-travel queries.

54

MVCC

For each transaction T:
• a unique timestamp TS(T) when it begins

• Later transactions get higher timestamps

For each object O:
• a write-timestamp WT(O)
• a read-timestamp RT(O)

Each version of an object has
• its writer’s TS as its WT (WT is associated with versions of an element, and they

never change.)

• the timestamp of the transaction that most recently read this version as its RT

55

Example

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

56

Schedule

Version Value RT WT

A0 1000 1 0

Database

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

• A0 existed before the
transactions started

Example

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

57

Schedule

Version Value RT WT

A0 1000 1 0

Database

• A0 is the newest version
with WT <= TS(T1)

• Read A0

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

Example

58

Schedule

Version Value RT WT

A0 1000 1 0

A1 800 2 2

Database

• RT(A0) <= TS(T2)
• T2 creates a new version A1

• Set its WT, RT to TS(T2) = 2

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

Example

59

Schedule

Version Value RT WT

A0 1000 1 0

A1 800 2 2

Database

• A0 is the newest version with WT
<= TS(T1)

• Read A0

• Note that T1 operates on the
snapshot from when it started

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

Example

60

Schedule

Version Value RT WT

A0 1000 1 0

A1 800 3 2

Database

• A1 is the newest version
with WT <= TS(T3)

• Read A1

• Update RT to TS(T3)

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

Reader Transaction Protocol

For each object to be read:
• Finds newest version with WT < TS(T)

• Update RT if necessary (i.e., if TS(T) > RT, then RT = TS(T))

Assuming that some version of every object exists from the
beginning of time, Reader transactions are never restarted

• However, might block until writer of the appropriate version commits

61

timeline

T

old new

Writer Transaction Protocol

To read an object, follows reader protocol

To write an object:
• must make sure that the object has not been read by a ”later” transaction

• Finds newest version V s.t. WT(V) <= TS(T)

If RT(V) <= TS(T)：
• T makes a copy V’ of V, with a pointer to V, with WT(V’) = TS(T), RT(V’) =

TS(T)
• Write is buffered until T commits; other transactions can see TS values but

can’t read version V’

Else
• reject write

62

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Desirable Properties of Transactions: ACID
	Slide 3: Reading Materials
	Slide 4: Agenda

	lock
	Slide 5: 1. Lock-based Concurrency Control
	Slide 6: Enforce serializability with locks
	Slide 7: Enforce serializability with locks
	Slide 8: Two-phase locking (2PL)
	Slide 9: Two-phase locking (2PL)
	Slide 10: Locking with several modes
	Slide 11: Locking with several modes
	Slide 12: Locking with several modes
	Slide 13: Update locks
	Slide 14: Update locks
	Slide 15: Locks With Multiple Granularity
	Slide 16: Warning locks
	Slide 17: Warning locks
	Slide 18: Warning locks
	Slide 19: Warning locks
	Slide 20: Warning locks
	Slide 21: Warning locks
	Slide 22: Warning locks
	Slide 23: Warning locks
	Slide 24: Compatibility matrix
	Slide 25: Inserts and Deletes
	Slide 26: In-class Exercise
	Slide 27: Locking scheduler architecture
	Slide 28: Lock table
	Slide 29: Lock table
	Slide 30: Deadlocks
	Slide 31: Deadlock Detection: Example
	Slide 32: Deadlock Detection: Example
	Slide 33: Deadlock Detection: Example
	Slide 34: Deadlock Detection: Example
	Slide 35: Deadlock Detection
	Slide 36: 2. Optimistic Concurrency Control
	Slide 37: Optimistic Concurrency Control
	Slide 38: Concurrency Control by Validation
	Slide 39: To validate, scheduler maintains three sets
	Slide 40: Validation rules (assume U validated)
	Slide 41: Validation rules (assume U validated)
	Slide 42: Validation rules (assume U validated)
	Slide 43: Validation rules (assume U validated)
	Slide 44: Validation rules (assume U validated)
	Slide 45: Example: CC by Validation
	Slide 46: Example: CC by Validation
	Slide 47: Example: CC by Validation
	Slide 48: Example: CC by Validation
	Slide 49: Example: CC by Validation
	Slide 50: Example: CC by Validation
	Slide 51: Example: CC by Validation
	Slide 52: 3. Multi-version Concurrency Control
	Slide 53: MVCC Overview
	Slide 54: MVCC Overview
	Slide 55: MVCC
	Slide 56: Example
	Slide 57: Example
	Slide 58: Example
	Slide 59: Example
	Slide 60: Example
	Slide 61: Reader Transaction Protocol
	Slide 62: Writer Transaction Protocol

