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Desirable Properties of Transactions: ACID 

• Atomicity: A transaction is an atomic unit of processing; it is either 
performed in its entirety or not performed at all.

• Consistency: A correct execution of the transaction must take the 
database from one consistent state to another.

• Isolation: A transaction should not make its updates visible to other 
transactions until it is committed.

• Durability: Once a transaction changes the database and the changes 
are committed, these changes must never be lost because of 
subsequent failure.

This class: ensuring isolation via concurrency control 



Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 18 – Concurrency Control

Supplementary materials

Fundamental of Database Systems (7th Edition)

• Chapter 21 - Concurrency Control Techniques
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Acknowledgement: The following slides have been adapted from EE477 (Database 
and Big Data Systems) taught by Steven Whang.



Agenda 

1. Locking-based Concurrency Control

2. Optimistic Concurrency Control

3. Multi-version Concurrency Control 
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1. Lock-based Concurrency 
Control
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Enforce serializability with locks

Consistency of transactions
○ Can only read/write element if 

granted a lock
○ A locked element must later be 

unlocked

Legality of schedules
○ No two transactions may lock 

element at the same time
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Requests from transactions

SchedulerLock table

Serializable 

schedule of 

actions

li(X): Ti requests lock on X
ui(X): Ti releases lock on X



Enforce serializability with locks

● Legal, but not serializable schedule
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l1(A); r1(A);
A := A+100
w1(A); u1(A);

l2(B); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

50

250

150

l1(B); r1(B)
B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A); u2(A)



Two-phase locking (2PL)

● In every transaction, all lock actions precede all unlock actions
● Guarantees a legal schedule of consistent transactions is 

conflict serializable
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time
locks

acquired

First unlock



Two-phase locking (2PL)

● This is now conflict serializable
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l1(A); r1(A);
A := A+100
w1(A); l1(B); u1(A);

l2(B); u2(A); r2(B)
B := B*2
w2(B); u2(B)

T1 T2 BA

25 25

125

125

250

250

r1(B); B := B+100
w1(B); u1(B);

l2(A); r2(A)
A := A*2
w2(A);
l2(B) Denied



Locking with several modes

Using one type of lock is not efficient when reading and writing

Instead, use shared locks for reading and exclusive locks for writing

Requirements: analogous notions of consistent transactions, legal 
schedules, and 2PL
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sli(X): Ti requests shared lock on X
xli(X): Ti requests exclusive lock on X



Locking with several modes

● More efficient than previous schedule
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sl1(A); r1(A);

T1 T2

sl2(A); r2(A);
sl2(B); r2(B);

xl1(B) Denied

u2(A); u2(B);

xl1(B); r1(B); w1(B);
u1(A); u1(B);

● T1 and T2 can read A 

at the same time

● T1 and T2 use 2PL, so 

the schedule is conflict 

serializable



Locking with several modes

● Compatibility matrix
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Lock held

in mode

S

X

Lock requested

S          X

Yes No

No No



Update locks

● If T reads and writes the same X, enable lock to upgrade from shared 
to exclusive
○ Obviously allows more parallelism

● However, a simple upgrading approach may lead to deadlocks
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sl1(A)
...

T1 T2

xl1(A) Denied

sl2(A)
...

xl2(A) Denied

Upgrade
Upgrade



Update locks

● Solution: introduce new type called update locks
● Only an update lock can be updated to an exclusive lock later
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ul1(A)
...

T1 T2

xl1(A)
ul2(A) Denied

ul2(A)
…
xl2(A)

Upgrade

Upgrade

S

X

U

S      X     U

Yes No

No No

Yes

No

No No No

Compatibility matrix

uli(X): Ti requests an update lock on X



Locks With Multiple Granularity

So far, we haven’t explicitly defined which ”database elements” the 
transaction should acquire locks on.

A few options:

● Relations                           → Least concurrency
● Pages or data blocks
● Tuples                               → Most concurrency, but also expensive
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Having locks with multiple granularity could lead to unserializable behavior
● e.g., a shared lock on the relation + an exclusive lock on tuples 



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1 wants to read t3



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1 wants to read t3



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-ISR1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX



Warning locks

● Ordinary locks: S and X
● Warning locks: I (shows intention to lock)
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T1-IS
R1

B1 B2 B3

t1 t2 t3

Relations

Blocks

Tuples

T1-IS

T1-S

T1 wants to read t3

T2 wants to write B2

T2-IX

T2-X



Compatibility matrix

● For shared, exclusive, and intention locks
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IS

IX

S

X

IS      IX     S       X

Yes Yes

Yes Yes

Yes

No

Yes No Yes

No

No

No
No No No No

Holder

Requestor



Inserts and Deletes

Delete: get exclusive lock on X before deleting it

Insert: get exclusive lock on the parent of the new tuple
○ If no exclusive lock is held, then database can become 

inconsistent due to “phantoms”
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parent

key=1 key=2

T1-S

key=3 key=3

T2-S

Added by T1 Added by T2

Key constraint violation



In-class Exercise

● Given the hierarchy of objects, what is the sequence of lock requests by 
T1 and T2 for the sequence of requests:  r1(t5); w2(t5); w1(t4); 
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R1

B1 B2

t1 t2 t3 t4 t5



Locking scheduler architecture

● Part 1 takes stream of requests and inserts appropriate lock actions
● Part 2 executes the sequences from Part 1 
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lock 
table

Scheduler (part 1)

Scheduler (part 2)

READ(A); WRITE(B); COMMIT(T); ...

l(A); READ(A); l(B); WRITE(B); ...

READ(A); WRITE(B); ...

DB

From transactions



Lock table

● Maps database elements to lock information
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DB element A

Lock information of A



● Can implement with hash table
● If element is not in table, it is unlocked

Lock table
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DB element A

Lock information of A

Hash Fn.



Deadlocks

Deadlock: Cycle of transactions waiting for locks to be released by 
each other.

Two ways of dealing with deadlocks:

1. Deadlock detection

2. Deadlock prevention (see Database Systems Book Ch19.2)



Deadlock Detection: Example

First, T1 requests a shared lock 
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2



Deadlock Detection: Example

Next, T2 requests a shared lock 
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2



Deadlock Detection: Example

T2 then requests an exclusive 
lock on A to write to it- now T2 
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…



Deadlock Detection: Example

Finally, T1 requests an exclusive 
lock on B to write to it- now T1 is 
waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle = 
DEADLOCK

Waiting…

Waiting…



Deadlock Detection

Create the waits-for graph:

• Nodes are transactions

• There is an edge from Ti → Tj if Ti is waiting for Tj to release a lock

Periodically check for (and break) cycles in the waits-for graph
• E.g., roll back transaction that introduces a cycle



2. Optimistic Concurrency 
Control

36



Optimistic Concurrency Control

Optimistic methods 
○ Two methods: validation (covered next), and timestamping 
○ Assume no unserializable behavior
○ Abort transactions when violation is apparent
○ may cause transactions to rollback

In comparison, locking methods are pessimistic
○ Assume things will go wrong
○ Prevent nonserializable behavior
○ Delays transactions but avoids rollbacks
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• Optimistic approaches are often better than lock when 

transactions have low interference (e.g., read-only)



Concurrency Control by Validation

Each transaction T has a read set RS(T) and write set WS(T) 

Three phases of a transaction
○ Read from DB all elements in RS(T) and store their writes in a private 

workspace
○ Validate T by comparing RS(T) and WS(T) with other transactions
○ Write elements in WS(T) to disk, if validation is OK (make private 

changes public)

Validation needs to be done atomically
○ Validation order = hypothetical serial order
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To validate, scheduler maintains three sets

START: set of transactions that started, but have not validated

○ START(T), the time at which T started 

VAL: set of transactions that validated, but not yet finished write phase

○ VAL(T), time at which T is imagined to execute in the hypothetical serial 
order of execution

FIN: set of transactions that have completed write phase

○ FIN(T), the time at which T finished.
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Validation rules (assume U validated)
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U start T start U validate T validate

WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅ 

This violates rule 1 because T may be reading B before U writes B



Validation rules (assume U validated)
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WS(U) = {A, B} RS(T) = {B, C}

Rule 1: if FIN(U) > START(T), RS(T) ∩ WS(U) = ∅ 

This satisfies rule 1

U start T startU validate T validateU finish



Validation rules (assume U validated)
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Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish



Validation rules (assume U validated)
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Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

U validate T validate U finish

This violates rule 2 because T may write B before U writes B



Validation rules (assume U validated)
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Rule 2: if FIN(U) > VAL(T), WS(T) ∩ WS(U) = ∅

WS(U) = {A, B} WS(T) = {B, C}

This satisfies rule 2

U validate T validateU finish



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

START(U) VAL(U) FIN(U)



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

WSuccess



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success Rule 1: if FIN(U) > START(T), 

 RS(T) ∩ WS(U) = ∅ 



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W

Success

Rule 1: if FIN(U) > START(V), 

 RS(V) ∩ WS(U) = ∅ 

Rule 2: if FIN(T) > VAL(V),   

 WS(V) ∩ WS(T) = ∅ 

Rule 1: if FIN(T) > START(V), 

 RS(V) ∩ WS(T) = ∅ 



Example: CC by Validation 
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RS = {B}

WS = {D}

RS = {A,D}

WS = {A,C}

RS = {A,B}

WS = {A,C}

RS = {B}

WS = {D,E}

U

T V

W Rollback

Rule 1: if FIN(T) > START(W), 

 RS(W) ∩ WS(T) ≠ ∅ 

Rule 2: if FIN(V) > VAL(W),   

 WS(V) ∩ WS(W) = ∅ 

Rule 1: if FIN(V) > START(W), 

 RS(W) ∩ WS(V) = ∅ 



3. Multi-version Concurrency 
Control
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MVCC Overview

The DBMS maintains multiple physical versions of a single logical 
object in the database: 

• When a TXN writes to an object, the DBMS creates a new version of 
that object. 

• When a TXN reads an object, it reads the newest version that existed 
when the TXN started.
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MVCC Overview

Each transaction is classified as reader or writer. 
• Readers don’t block writers. Writers don’t block readers.

Read-only txns can read a consistent snapshot without 
acquiring locks. 

• Use timestamps to determine visibility.  

Easily support time-travel queries.
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MVCC

For each transaction T:
• a unique timestamp TS(T) when it begins

• Later transactions get higher timestamps

For each object O:
• a write-timestamp WT(O)
• a read-timestamp RT(O)

Each version of an object has
• its writer’s TS as its WT (WT is associated with versions of an element, and they 

never change.)

• the timestamp of the transaction that most recently read this version as its RT 
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Example

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

56

Schedule

Version Value RT WT

A0 1000 1 0

Database

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3

• A0 existed before the 
transactions started



Example

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT
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Schedule

Version Value RT WT

A0 1000 1 0

Database

• A0 is the newest version 
with WT <= TS(T1) 

• Read A0

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3



Example
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Schedule

Version Value RT WT

A0 1000 1 0

A1 800 2 2

Database

• RT(A0) <= TS(T2) 
• T2  creates a new version A1

• Set its WT, RT to TS(T2) = 2

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3



Example
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Schedule

Version Value RT WT

A0 1000 1 0

A1 800 2 2

Database

• A0 is the newest version with WT 
<= TS(T1) 

• Read A0

• Note that T1 operates on the 
snapshot from when it started

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3



Example
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Schedule

Version Value RT WT

A0 1000 1 0

A1 800 3 2

Database

• A1 is the newest version 
with WT <= TS(T3) 

• Read A1

• Update RT to TS(T3) 

T1 T2 T3

BEGIN

R1(A)

BEGIN

W2(A)

R1(A)

COMMIT

COMMIT

BEGIN

R3(A)

COMMIT

Ti
m
e

TS(T1) = 1
TS(T2) = 2
TS(T3) = 3



Reader Transaction Protocol

For each object to be read:
• Finds newest version with WT < TS(T)

• Update RT if necessary (i.e., if TS(T) > RT, then RT = TS(T))

Assuming that some version of every object exists from the 
beginning of time, Reader transactions are never restarted

• However, might block until writer of the appropriate version commits
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timeline

T

old new



Writer Transaction Protocol

To read an object, follows reader protocol

To write an object:
• must make sure that the object has not been read by a ”later” transaction

• Finds newest version V s.t. WT(V) <= TS(T)

If RT(V) <= TS(T)：
• T makes a copy V’ of V, with a pointer to V, with WT(V’) = TS(T), RT(V’) = 

TS(T) 
• Write is buffered until T commits; other transactions can see TS values but 

can’t read version V’ 

Else
• reject write 
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