
CS 6400 A

Database Systems
Concepts and Design

Lecture 13

10/07/24

Announcements

• Assignment 1 grades will be released today

• No class or OH this Wednesday (Oct 9)

• No class next Monday (Oct 14)

Reading Materials

Query execution (Chapters 15.1 - 15.6)
○ Physical operators
○ Implementing operators and estimating costs

Query optimization (Chapters 16.1 - 16.5)
○ Parsing
○ Algebraic laws
○ Parse tree -> logical query plan
○ Estimating result sizes
○ Cost-based optimization

3

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Physical Optimization

2. Estimating cost of a physical plan

3. Cost-based Query Optimization

4

Logical vs. Physical Optimization

Logical optimization:
• Find equivalent plans that are more efficient
• Intuition: Minimize # of tuples at each step by

changing the order of RA operators

Physical optimization:
• Find algorithm with lowest IO cost to

execute our plan
• Intuition: Calculate based on physical parameters

(buffer size, etc.) and estimates of data size
(histograms)

Execution

SQL Query

Relational

Algebra (RA)

Plan

Optimized

RA Plan

1. Physical Optimization

6

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

7

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

8

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical

query plan 1

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

9

πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical

query plan 2

Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations

10

πstarName

⋈

StarsIn Movies

(File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

(Index scan)

Physical

query plan 3

Select physical query plan

11

Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!

In general, there can be many possible physical plans

Physical Plans

Estimated Cost

Query execution

12

πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

The best physical plan is translated to actual machine code

Machine Code

(e.g., C)

2. Estimating cost of a physical plan

Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s

14

We already know how to do step 2 for joins!

Notation: Size parameters

B(R): # blocks to hold tuples in R

T(R): # tuples in R

V(R, a): # distinct values of attribute a in R

15

Notation: Size parameters

16

A B C

cat 1 2000

cat 1 2001

dog 1 2002

A: 10 byte string

B: 4 byte integer

C: 8 byte date

R

Suppose each block is 100 bytes

Then a block fits 4 tuples

If T(R) = 1000

Then B(R) = 1000 / 4 = 250

For πA(R), each block fits 10 tuples, so

B(R) = 1000 / 10 = 100

Example: T(R) = 3

V(R, A) = 2

V(R, B) = 1

V(R, C) = 3

Estimating size of selection

A selection generally reduces the number of tuples

17

Estimated result size

(without any additional information)

*Assumption: values in A = c are uniformly distributed over possible V(R, A) values

𝑆 = 𝜎𝐴=𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅

𝑉(𝑅, 𝐴)

Estimating size of selection

A selection generally reduces the number of tuples

18

Estimated result size

(without any additional information)

*Assumption: queries involving inequalities tend to retrieve a small fraction

of possible tuples

𝑆 = 𝜎𝐴<𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅

3

Example: postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h

Estimating size of selection

19

𝑆 = 𝜎𝐴=10 ∧ 𝐵<20 𝑅

If selection condition is AND of conditions, multiply all selectivity factors

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 =
𝑇 𝑅

50 × 3
= 67

Q: What is T(S)?

Estimating size of selection

20

𝑆 = 𝜎𝐴=10 ∨ 𝐵<20 𝑅

If selection condition is an OR of conditions, can assume independence
of conditions

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 = 𝑇 𝑅 (1 − 1 −
1

50
1 −

1

3
= 3466

Q: What is T(S)?

Estimating size of join

We study

Two simplifying assumptions
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is

a Y-value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

21

𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

Example when these assumptions are true:
Y is a key in S and the corresponding foreign key in R

Estimating size of join

Two simplifying assumptions
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-

value of S
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)

22

For each pair (r, s), we know that the Y-value of S

is one of the Y-values of R by containment of

value sets, so the probability of r having the

same Y-value is 1/V(R,Y)

𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

𝑪𝒂𝒔𝒆 𝟏: 𝑉 𝑅, 𝑌 ≥ 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑅, 𝑌)

𝑪𝒂𝒔𝒆 𝟐: 𝑉 𝑅, 𝑌 < 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑆, 𝑌)

𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/max(𝑉 𝑅, 𝑌 , 𝑉(𝑆, 𝑌))

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

23

R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100

T (C, D)

T (T) = 5000
V (T, C) = 500
V (T, D) = 200

Q: What is T(R ⋈ S) and V(R ⋈ S, C)?

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

24

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100

Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T

25

(R ⋈ S) ⋈ T

T ((R ⋈ S) ⋈ T)
= 40000 x 5000 / max{100, 500}
= 400000

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

T (C, D)

T (T) = 5000
V (T, C) = 500
V (T, D) = 200

Joins of many relations

Compute intermediate T, V results
Example: consider R ⋈ S ⋈ T

26

R ⋈ (S ⋈ T)

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
 = 400000

Assuming containment and preservation of value sets, the
estimated result size is the same regardless of how we

group and order the terms in a natural join of relations.

Natural joins with multiple join attributes

Same as R ⋈ S with single join attribute, but divide by max{V(R, A), V(S,
A)} for each joining attribute A

27

R(A, B, C) S(B, C, D)

T(R) = 1000
V(R, B) = 20
V(R, C) = 100

T(S) = 2000
V(S, B) = 50
V(S, C) = 50

R ⋈ S

T(R ⋈ S) = 1000 x 2000
 / max{20, 50}
 / max {100, 50}
 = 400

Further reading

• Using similar ideas, can estimate sizes of other operations like
union, intersect, difference, duplicate elimination, grouping

• Chapter 16.4.7

Obtaining estimates for size parameters

Scan entire relation R to obtain T(R), V(R, A), and B(R)

A DBMS may also compute histograms per attribute for more
accurate estimations

○ Equal-width and equal-depth histograms

29
10 20 30 40 50 12 18 25 33 50

Computation of statistics

Computed periodically or by request

Sampling used to compute approximate statistics quickly

Example:

○ ANALYZE command in Postgres

○ See also: https://www.postgresql.org/docs/current/planner-stats.html

30

https://www.postgresql.org/docs/current/planner-stats.html

Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s

31

Ex: Clustered vs. Unclustered Index

Cost to do a range query for M entries over N-page file
(P per page):

Clustered:

• To traverse: Logf(1.5N)

• To scan: 1 random IO +
𝑀−1

𝑃
 sequential IO

Unclustered:

• To traverse: Logf(1.5N)

• To scan: ~ M random IO

Suppose we are using a
B+ Tree index with:
• Fanout f
• Fill factor 2/3

Ex: Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

For each tuple in R, read all S blocks and join:

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)

B(R) + T(R)*B(S) + OUT

Cost(R ⋈ S): 1000 + 10000 x 500 = 5,001,000 I/O’s

Memory usage: 2 blocks

Ex: Block Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

Extra memory M=101:
• read 100 blocks of S at a time

B 𝑅 +
𝐵 𝑅

𝑀−1
𝐵(𝑆) + OUT

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

 for each M-1 pages pr of R:

 for page ps of S:

 for each tuple r in pr:

 for each tuple s in ps:

 if r[A] == s[A]:

 yield (r,s)

Total cost of S ⋈ R: 500 + 500/100 x 1000) = 5500 I/O’s

Memory Usage: M blocks

3. Cost-based Query
Optimization

Query Optimization Overview

Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost

36

The Three Parts of an Optimizer

Cost estimation
○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to

disk etc.

Search space
○ Algebraic laws, restricted types of join trees

Search algorithm
○ Example: Selinger algorithm

37

Search Space

38

Query: 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑅4

Logical plan space:
○ Several possible structures of the trees

○ Each tree can have n! permutations of relations on leaves

Physical plan space:
○ Different implementation (e.g., join algorithm) and scanning of

intermediate operators for each logical plan

Heuristic for pruning plan space

Apply predicates as early as possible

Avoid plans with cartesian products
● (𝑅 𝐴, 𝐵 ⋈ 𝑇(𝐶, 𝐷)) ⋈ S(𝐵, 𝐶)

Consider only left-deep join trees
● Studied extensively in traditional query optimization literature
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory

39

Search Algorithm

Selinger Algorithm: dynamic programming based
o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm
o Cost of a plan is I/O + CPU

Exploits ”principle of optimality”
○ Optimal for “whole” made up from optimal for ”parts”

Consider the search space of left-deep join trees
o Reduces search space but still n! permutations

40

41

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

42

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

43

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

44

Principle of Optimality

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Notation and Setup

OPT({R1, R2, R3}):
 Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
 Number of tuples in 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3

Simple Cost Model: Cost(𝑅 ⋈ 𝑆) = 𝑇(𝑅) + 𝑇(𝑆)
 All other operations have 0 cost

45

* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy

46

Cost Model Example

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

OPT({R1, R2, R3})=

47

OPT({R1, R2}) + T({R1, R2}) + T(R3)

OPT({R2, R3}) + T({R2, R3}) + T(R1)

OPT({R1, R3}) + T({R1, R3}) + T(R2)

* Valid only for the simple cost model

min

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

48

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

49

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

50

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

51

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

52

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Selinger Algorithm

53

Slides adapted from Duke CompSci 516 by Sudeepa Roy

Putting it all together: RDBMS Architecture

54

Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

How does a SQL engine work ?

Translate to RA expression and find

logically equivalent but more efficient

plans

Cost-based query optimization:

estimate cost and select physical

plan with the smallest cost

Query execution (e.g., run join

algorithms against tuples on disk)

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: Logical vs. Physical Optimization
	Slide 6: 1. Physical Optimization
	Slide 7: Select physical query plan
	Slide 8: Select physical query plan
	Slide 9: Select physical query plan
	Slide 10: Select physical query plan
	Slide 11: Select physical query plan
	Slide 12: Query execution
	Slide 13: 2. Estimating cost of a physical plan
	Slide 14: Estimating the cost of a physical query plan
	Slide 15: Notation: Size parameters
	Slide 16: Notation: Size parameters
	Slide 17: Estimating size of selection
	Slide 18: Estimating size of selection
	Slide 19: Estimating size of selection
	Slide 20: Estimating size of selection
	Slide 21: Estimating size of join
	Slide 22: Estimating size of join
	Slide 23: Joins of many relations
	Slide 24: Joins of many relations
	Slide 25: Joins of many relations
	Slide 26: Joins of many relations
	Slide 27: Natural joins with multiple join attributes
	Slide 28: Further reading
	Slide 29: Obtaining estimates for size parameters
	Slide 30: Computation of statistics
	Slide 31: Estimating the cost of a physical query plan
	Slide 32: Ex: Clustered vs. Unclustered Index
	Slide 33: Ex: Nested-loop Join
	Slide 34: Ex: Block Nested-loop Join
	Slide 35: 3. Cost-based Query Optimization
	Slide 36: Query Optimization Overview
	Slide 37: The Three Parts of an Optimizer
	Slide 38: Search Space
	Slide 39: Heuristic for pruning plan space
	Slide 40: Search Algorithm
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Notation and Setup
	Slide 46
	Slide 47: Selinger Algorithm
	Slide 48: Selinger Algorithm
	Slide 49: Selinger Algorithm
	Slide 50: Selinger Algorithm
	Slide 51: Selinger Algorithm
	Slide 52: Selinger Algorithm
	Slide 53: Selinger Algorithm
	Slide 54: Putting it all together: RDBMS Architecture

