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Announcements

• Assignment 1 grades will be released today 

• No class or OH this Wednesday (Oct 9)

• No class next Monday (Oct 14) 



Reading Materials

Query execution (Chapters 15.1 - 15.6)
○ Physical operators
○ Implementing operators and estimating costs

Query optimization (Chapters 16.1 - 16.5)
○ Parsing
○ Algebraic laws
○ Parse tree -> logical query plan
○ Estimating result sizes
○ Cost-based optimization
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Acknowledgement: The following slides have been adapted from EE477 (Database 
and Big Data Systems) taught by Steven Whang.



Agenda

1. Physical Optimization

2. Estimating cost of a physical plan

3. Cost-based Query Optimization
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Logical vs. Physical Optimization

Logical optimization:
• Find equivalent plans that are more efficient
• Intuition: Minimize # of tuples at each step by 

changing the order of RA operators

Physical optimization:
• Find algorithm with lowest IO cost to 

execute our plan
• Intuition: Calculate based on physical parameters 

(buffer size, etc.) and estimates of data size 
(histograms)

Execution

SQL Query

Relational 

Algebra (RA) 

Plan

Optimized 

RA Plan



1. Physical Optimization
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Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies



Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical 

query plan 1



Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

Physical 

query plan 2



Select physical query plan

A logical query plan is turned into a physical query plan
○ Algorithm for each operator
○ Order of execution
○ How to access relations
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πstarName

⋈

StarsIn Movies

(File scan)

(Nested loop join)

(On the fly)

(On the fly)

σyear = 2008 AND studioName = ‘Ghibli’

(Index scan)

Physical 

query plan 3



Select physical query plan
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Logical Query Plan

P1 P2 Pn...

C1 C2 Cn...

Pick best!

In general, there can be many possible physical plans

Physical Plans

Estimated Cost 



Query execution
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πstarName

σyear = 2008 AND studioName = ‘Ghibli’

⋈

StarsIn Movies

(File scan) (File scan)

(Nested loop join)

(On the fly)

(On the fly)

The best physical plan is translated to actual machine code

Machine Code 

(e.g., C)



2. Estimating cost of a physical plan



Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s
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We already know how to do step 2 for joins!



Notation: Size parameters 

B(R): # blocks to hold tuples in R

T(R): # tuples in R

V(R, a): # distinct values of attribute a in R
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Notation: Size parameters 
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A B C

cat 1 2000

cat 1 2001

dog 1 2002

A: 10 byte string

B: 4 byte integer

C: 8 byte date

R

Suppose each block is 100 bytes

Then a block fits 4 tuples

If T(R) = 1000

Then B(R) = 1000 /  4 = 250

For πA(R), each block fits 10 tuples, so 

B(R) = 1000 /  10 = 100

Example: T(R) = 3

V(R, A) = 2

V(R, B) = 1

V(R, C) = 3



Estimating size of selection

A selection generally reduces the number of tuples
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Estimated result size

(without any additional information)

*Assumption: values in A = c are uniformly distributed over possible V(R, A) values

𝑆 =  𝜎𝐴=𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅

𝑉(𝑅, 𝐴)



Estimating size of selection

A selection generally reduces the number of tuples

18

Estimated result size

(without any additional information)

*Assumption: queries involving inequalities tend to retrieve a small fraction 

of possible tuples

𝑆 =  𝜎𝐴<𝑐(𝑅) 𝑇 𝑆 =
𝑇 𝑅
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Example: postgres/src/include/utils/selfuncs.h

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h


Estimating size of selection
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𝑆 =  𝜎𝐴=10 ∧ 𝐵<20 𝑅

If selection condition is AND of conditions, multiply all selectivity factors  

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 =
𝑇 𝑅

50 × 3
= 67

Q: What is T(S)?



Estimating size of selection
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𝑆 =  𝜎𝐴=10 ∨ 𝐵<20 𝑅

If selection condition is an OR of conditions, can assume independence 
of conditions  

𝑇 𝑅 = 10,000
𝑉 𝑅, 𝐴 = 50

𝑇 𝑆 = 𝑇 𝑅 (1 − 1 −
1

50
1 −

1

3
= 3466

Q: What is T(S)?



Estimating size of join

We study

Two simplifying assumptions 
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is 

a Y-value of S 
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)
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𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

Example when these assumptions are true: 
Y is a key in S and the corresponding foreign key in R



Estimating size of join

Two simplifying assumptions 
○ Containment of value sets: if V(R,Y) ≤ V(S,Y), then every Y-value of R is a Y-

value of S 
○ Preservation of value sets: V(R ⋈ S, X) = V(R, X)
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For each pair (r, s), we know that the Y-value of S 

is one of the Y-values of R by containment of 

value sets, so the probability of r having the 

same Y-value is 1/V(R,Y)

𝑅 𝑋, 𝑌 ⋈ 𝑆(𝑌, 𝑍)

𝑪𝒂𝒔𝒆 𝟏: 𝑉 𝑅, 𝑌 ≥ 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑅, 𝑌)

𝑪𝒂𝒔𝒆 𝟐: 𝑉 𝑅, 𝑌 < 𝑉 𝑆, 𝑌
⇒ 𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/𝑉(𝑆, 𝑌)

𝑇 𝑅 ⋈ 𝑆 = 𝑇 𝑅 𝑇(𝑆)/max(𝑉 𝑅, 𝑌 , 𝑉(𝑆, 𝑌))



Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T
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R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100

T (C, D)

T (T ) = 5000
V (T, C) = 500
V (T, D) = 200

Q: What is T(R ⋈ S) and V(R ⋈ S, C)?



Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T
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R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

R (A, B) S (B, C)

T (R) = 1000
V (R, B) = 20

T (S) = 2000
V (S, B) = 50
V (S, C) = 100



Joins of many relations

Compute intermediate T, V results
Example: R ⋈ S ⋈ T
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(R ⋈ S ) ⋈ T 

T ((R ⋈ S) ⋈ T)
= 40000 x 5000 / max{100, 500}
= 400000

R ⋈ S (A, B, C)

T(R ⋈ S) = 40000
V(R ⋈ S, C) = 100

T (C, D)

T (T ) = 5000
V (T, C) = 500
V (T, D) = 200



Joins of many relations

Compute intermediate T, V results
Example: consider R ⋈ S ⋈ T
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R ⋈ (S ⋈ T) 

T(R ⋈ (S ⋈ T)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
                               = 400000

Assuming containment and preservation of value sets, the 
estimated result size is the same regardless of how we 

group and order the terms in a natural join of relations.



Natural joins with multiple join attributes

Same as R ⋈ S with single join attribute, but divide by max{V(R, A), V(S, 
A)} for each joining attribute A
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R(A, B, C) S(B, C, D)

T(R) = 1000
V(R, B) = 20
V(R, C) = 100

T(S) = 2000
V(S, B) = 50
V(S, C) = 50

R ⋈ S 

T(R ⋈ S) = 1000 x 2000
                           / max{20, 50}
                           / max {100, 50}
                   = 400



Further reading 

• Using similar ideas, can estimate sizes of other operations like 
union, intersect, difference, duplicate elimination, grouping 

• Chapter 16.4.7



Obtaining estimates for size parameters

Scan entire relation R to obtain T(R), V(R, A), and B(R)

A DBMS may also compute histograms per attribute for more 
accurate estimations

○ Equal-width and equal-depth histograms

29
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Computation of statistics

Computed periodically or by request

Sampling used to compute approximate statistics quickly

Example:

○ ANALYZE command in Postgres 

○ See also: https://www.postgresql.org/docs/current/planner-stats.html

30

https://www.postgresql.org/docs/current/planner-stats.html


Estimating the cost of a physical query plan

Step 1: Estimate the size of results
● Projection
● Selection
● Joins

Step 2: Estimate the # of disk I/O’s
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Ex: Clustered vs. Unclustered Index

Cost to do a range query for M entries over N-page file 
(P per page):

Clustered: 

• To traverse: Logf(1.5N)

• To scan: 1 random IO + 
𝑀−1

𝑃
 sequential IO

Unclustered: 

• To traverse: Logf(1.5N)

• To scan: ~ M random IO

Suppose we are using a 
B+ Tree index with:
• Fanout f
• Fill factor 2/3



Ex: Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

For each tuple in R, read all S blocks and join:

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:
  for r in R:
    for s in S:
      if r[A] == s[A]:
        yield (r,s)

B(R) + T(R)*B(S) + OUT

Cost(R ⋈ S): 1000 + 10000 x 500 = 5,001,000 I/O’s

Memory usage: 2 blocks



Ex: Block Nested-loop Join

Suppose (from estimates):
• T(R) = 10,000, T(S) = 5,000

Suppose 10 records fit in one block:
• B(R)=1000, B(S)=500

Extra memory M=101: 
• read 100 blocks of S at a time

B 𝑅 +
𝐵 𝑅

𝑀−1
𝐵(𝑆) + OUT

Compute R ⋈ 𝑆 𝑜𝑛 𝐴:

  for each M-1 pages pr of R:

    for page ps of S:

      for each tuple r in pr:

        for each tuple s in ps:

          if r[A] == s[A]:

            yield (r,s)

Total cost of S ⋈ R: 500 + 500/100 x 1000) = 5500 I/O’s

Memory Usage: M blocks



3. Cost-based Query 
Optimization



Query Optimization Overview

Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of I/Os)

o Without executing the plan!
o Choose plan with lowest cost
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The Three Parts of an Optimizer

Cost estimation 
○ Estimate size of results
○ Also consider whether output is sorted/intermediate results written to 

disk etc.

Search space 
○ Algebraic laws, restricted types of join trees

Search algorithm
○ Example: Selinger algorithm
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Search Space
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Query: 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑅4

Logical plan space: 
○ Several possible structures of the trees

○ Each tree can have n! permutations of relations on leaves 

Physical plan space: 
○ Different implementation (e.g., join algorithm) and scanning of 

intermediate operators for each logical plan



Heuristic for pruning plan space

Apply predicates as early as possible 

Avoid plans with cartesian products
● (𝑅 𝐴, 𝐵 ⋈ 𝑇(𝐶, 𝐷)) ⋈ S(𝐵, 𝐶) 

Consider only left-deep join trees
● Studied extensively in traditional query optimization literature 
● Works well with existing join algorithms such as nested-loop and hash join

● e.g., might not need to write tuples to disk if enough memory
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Search Algorithm

Selinger Algorithm: dynamic programming based 
o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm 
o Cost of a plan is I/O + CPU

Exploits ”principle of optimality”
○ Optimal for “whole” made up from optimal for ”parts”

Consider the search space of left-deep join trees 
o Reduces search space but still n! permutations 
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Principle of Optimality 

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Notation and Setup 

OPT({R1, R2, R3}):
 Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
 Number of tuples in 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 

Simple Cost Model: Cost(𝑅 ⋈ 𝑆) = 𝑇(𝑅) + 𝑇(𝑆) 
 All other operations have 0 cost
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* The simple cost model used for illustration only, it is not used in practice

Slides adapted from Duke CompSci 516 by Sudeepa Roy
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Cost Model Example

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 

OPT({R1, R2, R3})=
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OPT({R1, R2}) + T( {R1, R2} ) + T(R3)

OPT({R2, R3}) + T( {R2, R3} ) + T(R1)

OPT({R1, R3}) + T( {R1, R3} ) + T(R2)

* Valid only for the simple cost model

min

Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Selinger Algorithm 
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Slides adapted from Duke CompSci 516 by Sudeepa Roy



Putting it all together: RDBMS Architecture
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Parse Query

Select logical query plan

Query execution

Select physical plan

Disk

SQL query

How does a SQL engine work ?

Translate to RA expression and find 

logically equivalent but more efficient 

plans

Cost-based query optimization: 

estimate cost and select physical 

plan with the smallest cost 

Query execution (e.g., run join 

algorithms against tuples on disk)
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