Database Systems
Concepts and Design

Lecture 13
10/07/24

Announcements

* Assignment 1 grades will be released today
* No class or OH this Wednesday (Oct 9)

* No class next Monday (Oct 14)

Reading Materials

Query execution (Chapters 15.1 - 15.6)
o Physical operators
o Implementing operators and estimating costs

>4 33\‘,‘-" ..‘.« DATABASE

THE
o COMPLETE

Query optimization (Chapters 16.1 - 16.5) L ——
- Parsing RS,
o Algebraic laws
o Parse tree -> |logical query plan
o Estimating result sizes
- Cost-based optimization

Acknowledgement: The following slides have been adapted from EE477 (Database
and Big Data Systems) taught by Steven Whang.

Agenda

1. Physical Optimization
2. Estimating cost of a physical plan

3. Cost-based Query Optimization

Logical vs. Physical Optimization

Logical optimization:
* Find equivalent plans that are more efficient

* Intuition: Minimize # of tuples at each step by
changing the order of RA operators

Physical optimization:
* Find algorithm with lowest |O cost to
execute our plan

* Intuition: Calculate based on physical parameters
(buffer size, etc.) and estimates of data size
(histograms)

SQL Query

\ 4

Relational
Algebra (RA)
Plan

\ 4

Optimized
RA Plan

4

Execution

1. Physical Optimization

Select physical query plan

A logical query plan is turned into a physical query plan
o Algorithm for each operator
o Order of execution

- How to access relations
nstarName

Oyear = 2008 AND studioName = ‘Ghibli’

|

X

/\

Starsin Movies

Select physical query plan

A logical query plan is turned into a physical query plan
o Algorithm for each operator
o QOrder of execution
- How to access relations

TlstarName (On the fly)

Gyear = 2008 AND studioName = ‘Ghibli’ (On the f|y)

Physical ‘
ery plan 1
Simcib Al > (Hash join)

Starsin Movies
(File scan) (File scan)

Select physical query plan

A logical query plan is turned into a physical query plan
o Algorithm for each operator
o QOrder of execution
- How to access relations

TlstarName (Oﬂ the fly)

Oyear = 2008 AND studioName = ‘Ghibli’ (On the fly)
Physical |

lan 2
query plan > (Nested loop join)

Starsin Movies
(File scan) (File scan)

Select physical query plan

A logical query plan is turned into a physical query plan
o Algorithm for each operator
o QOrder of execution
- How to access relations

TlstarName (Oﬂ the ﬂy)

Oyear = 2008 AND studioName = ‘Ghibli’ (On the fly)
Physical |

lan 3
query plan > (Nested loop join)

Starsin Movies
(Index scan) (File scan)

10

Select physical query plan

Physical Plans

Estimated Cost

Logical Query Plan

e

P1 P2 ... Pn

\ l \
Cl c2 ... Cn

T

Pick best!

In general, there can be many possible physical plans

Query execution

TlstarName (Oﬂ the fly)

Oyear = 2008 AND studioName = ‘Ghibti (ON the Tly)

> (Nested loop join) » Machine Code

T~ (e.g., C)

Starsin Movies
(File scan) (File scan)

The best physical plan is translated to actual machine code

12

2. Estimating cost of a physical plan

—stimating the cost of a physical query plan

Step 1: Estimate the size of results
e Projection
o Selection
e Joins

Step 2: Estimate the # of disk 1/O’s

We already know how to do step 2 for joins!

Notation: Size parameters

B(R): # blocks to hold tuples in R
I(R): #tuplesin R

V(R, a): # distinct values of attribute a in R

Notation: Size parameters

Example:

R 1A B C
cat |1 2000
cat | 1 2001
dog |1 2002

A: 10 byte string
B: 4 byte integer

C: 8 byte date

Suppose each block is 100 bytes
Then a block fits 4 tuples

If T(R) = 1000

Then B(R) = 1000/ 4 = 250

For mia(R), each block fits 10 tuples, so
B(R) = 1000/ 10 =100

—stimating size of selection

A selection generally reduces the number of tuples

Estimated result size
(without any additional information)

T(R
S=o, () MWy T(S)=V(Igzl)

*Assumption: values in A = ¢ are uniformly distributed over possible V(R, A) values

17

—stimating size of selection

A selection generally reduces the number of tuples

Estimated result size
(without any additional information)

T(R)

S=o0 (R) » T(S) — T

*Assumption: queries involving inequalities tend to retrieve a small fraction
of possible tuples

Example: postgres/src/include/utils/selfuncs.h

18

https://github.com/postgres/postgres/blob/REL_14_STABLE/src/include/utils/selfuncs.h

—stimating size of selection

If selection condition is AND of conditions, multiply all selectivity factors

S=o0 (R) T(R) = 10,000
V(R,A) =50

Q: What is T(S)?

—stimating size of selection

If selection condition is an OR of conditions, can assume independence
of conditions

S=o0 (R) T(R) = 10,000
V(R,A) =50

Q: What is T(S)?

1 1
T(S) = T(R)(1 — (1 - %> (1 - §> = 3466

—stimating size of join
We study R(X,Y) x S(Y,Z)

Two simplifying assumptions
o Containment of value sets: if V(R,Y) < V(S,Y), then every Y-value of R is
a Y-value of S
o Preservation of value sets: V(R x S, X) = V(R, X)

Example when these assumptions are true:
Y is a key in S and the corresponding foreign key in R

—stimating size of join R(X,Y) = S(Y,Z)

Two simplifying assumptions
- Containment of value sets: if V(R,Y) < V(S,Y), then every Y-value of R is a Y-

value of S
o Preservation of value sets: V(R ™ S, X) = V(R, X)

Case1:V(R,Y) > V(S,Y) For each pair (1, s), we know that the Y-value of S
=>T(RXS) = T(R)T(S)/V(R, Y) IS one of the Y-values of R by containment of

value sets, so the probability of r having the

Case 2: V(R, y) < V(S, Y) same Y-value is 1/V(R,)Y)

= T(R x S) = T(R)T(S)/V(S,Y)

T(R x S) = T(R)T(S)/max(V(R,Y),V(S,Y))

22

Joins of many relations

Compute intermediate T, V results
Example: R S T

R (A, B) S(B 0)
T(R) = 1000 T(S) = 2000
V(R B) =20 V(s B) =50

V(S C) =100

Q: Whatis T(R @ S) and V(R @ S, C)?

r(GD)

T(T) = 5000
V(T, C) =500
V(T, D) =200

Joins of many relations

Compute intermediate T, V results
Example: R S T

R(4 B) S(B 0
T(R) = 1000 T(S) = 2000
V(R B) =20 V(S B)=50

V(s 0 =100

R~ S(A, B C)

T(R® S) = 40000
NRm S C) =100

24

Joins of many relations

Compute intermediate T, V results
Example: R S T

Rx S(A B C) 7(C D) (R S)x T
T(R™ S) =40000 7(T)=5000 T(Rx ST
MRx S C0) =100 V(T,) =500 = 40000 x 5000 / max{100, 500}

V(T, D) =200 = 400000

25

Joins of many relations

Compute intermediate T, V results
Example: consider R @ S < T

Rx (Sxa T)

T(Rx (S 7)) = 1000 x (2000 x 5000 / max{100, 500}) / max{20, 50}
= 400000

Assuming containment and preservation of value sets, the
estimated result size is the same regardless of how we
group and order the terms in a natural join of relations.

26

Natural joins with multiple join attributes

Same as R »x S with single join attribute, but divide by max{V(R, A), V(S,
A)} for each joining attribute A

R(A, B, 0) S(B, C D) RX S
T(R) = 1000 7(S) = 2000 T(R™ 8) = 1000 x 2000
R, B) =20 S, B) = 50 / max{20, 50}
V(R) =100 S, ©) =50 / max {100, 50}

=400

Further reading

« Using similar ideas, can estimate sizes of other operations like
union, intersect, difference, duplicate elimination, grouping

* Chapter 16.4.7

B COMPLETE

BOOK

Obtaining estimates for size parameters
Scan entire relation R to obtain T(R), V(R, A), and B(R)

A DBMS may also compute histograms per attribute for more

accurate estimations
o Equal-width and equal-depth histograms

o4-22(R)

10 20 30 40 50 12 18 25 33 50

|

29

Computation of statistics

Computed periodically or by request
Sampling used to compute approximate statistics quickly

Example:
o ANALYZE command in Postgres

o See also: https://www.postgresqgl.org/docs/current/planner-stats.htmil

30

https://www.postgresql.org/docs/current/planner-stats.html

—stimating the cost of a physical query plan

Step 1: Estimate the size of results
e Projection
o Selection
e Joins

Step 2: Estimate the # of disk 1/O’s

-X: Clustered vs. Unclustered Index

Cost to do a range query for M entries over N-page file
(P per page):

Suppose we are using a
Clustered: B+ Tree index with:

* To traverse: Log{(1.5N) * Fanoutf

» To scan: 1 random 10 + [?} sequential 10 > Il iEEer 2/

Unclustered:
* To traverse: Log«{1.5N)
e To scan: ~ M random IO

-X. Nested-loop Join

Compute R @ S on A:

Suppose (from estimates): f?grrsi?nRé_
+ T(R) = 10,000, T(S) = 5,000 AL e S[AL

Suppose 10 records fit in one block: vield (r,s)
» B(R)=1000, B(S)=500

B(R) + T(R)*B(S) + OUT

For each tuple in R, read all S blocks and join:

Cost(R = S): 1000 + 10000 x 500 = 5,001,000 I/O’s
Memory usage: 2 blocks

-X: Block Nested-loop Join

Compute R < S on A:
Suppose (from estimates): for each M-1 pages pr of R:
« T(R) =10,000, T(S) = 5,000 for page ps of S:
Suppose 10 records fit in one block: for each tuple rin pr:
« B(R)=1000, B(S)=500 for each tuple sin ps:
Extra memory M=101: if r{A] ==s[A]:
 read 100 blocks of S at a time yield (r,s)
B(R
B(R) + =2 B(S) + OUT

Total cost of S @ R: 500 + 500/100 x 1000) = 5500 1/O’s
Memory Usage: M blocks

3. Cost-based Query
Optimization

Query Optimization Overview
Output: A good physical query plan

Basic cost-based query optimization algorithm
o Enumerate candidate query plans (logical and physical)
o Compute estimated cost of each plan (e.g., number of |/Os)
o Without executing the plan!
o Choose plan with lowest cost

36

The Three Parts of an Optimizer

Cost estimation

- Estimate size of results
o Also consider whether output is sorted/intermediate results written to
disk etc.

Search space
- Algebraic laws, restricted types of join trees

Search algorithm
o Example: Selinger algorithm

Search Space
Query: R1 x R2 x R3 ™ R4 >
S
] <
N/ I > g \R4
ANV o
R3 R R2 R4 R1
Bushy plan Left-deep plan

Logical plan space:

o Several possible structures of the trees

o Each tree can have n! permutations of relations on leaves
Physical plan space:

o Different implementation (e.g., join algorithm) and scanning of
intermediate operators for each logical plan

N
R2

38

Heuristic for pruning plan space
Apply predicates as early as possible

Avoid plans with cartesian products
e (R(A,B)xT(C,D)) = S(B,C)

Consider only left-deep join trees
o Studied extensively in traditional query optimization literature
e Works well with existing join algorithms such as nested-loop and hash join
e €.g., might not need to write tuples to disk if enough memory

Search Algorithm

Selinger Algorithm: dynamic programming based
o Based on System R (aka Selinger) style optimizer [1979]
o Consider different logical and physical plans at the same time
o Limited to joins: join reordering algorithm
o Costofaplanis /O + CPU

Exploits "principle of optimality”
o Optimal for “whole” made up from optimal for "parts”

Consider the search space of left-deep join trees
o Reduces search space but still n! permutations

Principle of Optimality

Query: R1D><t R2D><1 R3 DI R4 ><1 R5

R3 R2 Suppose,
this is an Optimal Plan
for joining R1...R5:

Principle of Optimality

Query: R1D<1 R2D><1 R3 ><I R4 < R5

This has to be the
optimal plan for joining R3, R2, R4, R1

42

Principle of Optimality

Query: R1D><I R2D><1 R3 bt R4 ><1 R5

/ N
We are using the ’/'/><\ S R1
associativity and R4 S
commutativity of joins /.’/><\ R4 ,
(RD<IS)DAT=RD(SAT) |, :

RI<IS=5DIR /" R3 R2

This has to be the
optimal plan for joining R3, R2, R4

Principle of Optimality

Query: R1D><1 R2 > > Rn
Both are giving the same result > Suppose you chose
the sub-optimal one
R2 <1 R3 DI R1 = R3 <1 R1 D1 R2
<1 . Ri

| /><\ .",. 3. "Rj
/\ | . \'\.\ Leads to sub-Optimal
/><\ § /><\ /><\ R2 7 for joining R1,...,Rn

R2 R3 R3 R1 . R3 RT 7
Optimal Sub-Optimal
for joining R1, R2, R3 " forjoining R7, R2, R3

44

Notation and Setup

OPT({R1, R2, R3}):
Cost of optimal plan to join R1, R2, R3

T({R1, R2, R3}):
Number of tuples in R1 »x R2 >4 R3

Simple Cost Model: Cost(R < S) =T(R) + T(S)
All other operations have 0 cost

* The simple cost model used for illustration only, it is not used in practice

Cost Model Example

X e T+ T(T)

> T
/ \ TR +T(S)
R S

Total Cost: T(R) + T(S) + T(T) + T(X)

Selinger Algorithm

" OPT({R1, R2}) + T({R1, R2}) + T(R3)

OPT({R1, R2, R3})= min - OPT({R2, R3}) + T({R2, R3}) + T(R1)
 OPT({R1, R3}) + T({R1, R3}) + T(R2)

* Valid only for the simple cost model

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D<I R4

Progress
of
{R1, R2, R3, R4} algorithm

[R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

fR1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

bz

{R1} {R2} { R3} {R4}

48

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D1 R4

Suppose this path is chosen by the algorithm Progress
How to translate to a query plan? of
{R1, R2, R3, R4} algorithm

[R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3, R4}

[R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN

{R1} {R2} { R3} {R4}

49

Selinger Algorithm

Query: R1D>< R2D><1 R3 <1 R4

Q. How to optimally compute join of {R1, R2, R3, R4}?

Progress
Ans: First optimally join {R1, R3, R4} then join with R2 as inner. of
{R1,R2, R3, R4 } algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3, R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

RN

{R1} {R2} {R3} {R4}

50

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D><I R4

Q. How to optimally compute join of {R1, R3, R4}?

Progress
Ans: First optimally join {R1, R3}, then join with R4 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3, R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

RN

{R1} {R2} {R3} {R4}

51

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D><I R4

Q. How to optimally compute join of {R1, R3}?

Progress
Ans: First optimally join {R3}, then join with R1 as inner. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

f{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN

{R1} {R2} {R3} {R4}

62

Selinger Algorithm

Query: R1D><1 R2D><1 R3 D><I R4

Q. How to optimally compute join of {R3}?

Progress
Ans: Single relation — so optimally scan R3. of
{R1, R2, R3, R4} algorithm

{R1,R2,R3} {R1,R2,R4} {R1,R3 R4} {R2 R3 R4}

{R1,R2} {R1,R3} {R1,R4} {R2 R3} {R2 R4} {R3, R4}

DN

{R1} {R2} { R3} {R4}

53

Putting it all together: RDBMS Architecture

How does a SQL engine work 7

SQL
Cfuery Translate to RA expression and find
[Parse Query] logically equivalent but more efficient

plans

[Select logical query plan]

} Cost-based query optimization:
[select physical plan | estimate cost and select physical
plan with the smallest cost

{ Query execution]

Query execution (e.g., run join

algorithms against tuples on disk)

54

	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Announcements
	Slide 3: Reading Materials
	Slide 4: Agenda
	Slide 5: Logical vs. Physical Optimization
	Slide 6: 1. Physical Optimization
	Slide 7: Select physical query plan
	Slide 8: Select physical query plan
	Slide 9: Select physical query plan
	Slide 10: Select physical query plan
	Slide 11: Select physical query plan
	Slide 12: Query execution
	Slide 13: 2. Estimating cost of a physical plan
	Slide 14: Estimating the cost of a physical query plan
	Slide 15: Notation: Size parameters
	Slide 16: Notation: Size parameters
	Slide 17: Estimating size of selection
	Slide 18: Estimating size of selection
	Slide 19: Estimating size of selection
	Slide 20: Estimating size of selection
	Slide 21: Estimating size of join
	Slide 22: Estimating size of join
	Slide 23: Joins of many relations
	Slide 24: Joins of many relations
	Slide 25: Joins of many relations
	Slide 26: Joins of many relations
	Slide 27: Natural joins with multiple join attributes
	Slide 28: Further reading
	Slide 29: Obtaining estimates for size parameters
	Slide 30: Computation of statistics
	Slide 31: Estimating the cost of a physical query plan
	Slide 32: Ex: Clustered vs. Unclustered Index
	Slide 33: Ex: Nested-loop Join
	Slide 34: Ex: Block Nested-loop Join
	Slide 35: 3. Cost-based Query Optimization
	Slide 36: Query Optimization Overview
	Slide 37: The Three Parts of an Optimizer
	Slide 38: Search Space
	Slide 39: Heuristic for pruning plan space
	Slide 40: Search Algorithm
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Notation and Setup
	Slide 46
	Slide 47: Selinger Algorithm
	Slide 48: Selinger Algorithm
	Slide 49: Selinger Algorithm
	Slide 50: Selinger Algorithm
	Slide 51: Selinger Algorithm
	Slide 52: Selinger Algorithm
	Slide 53: Selinger Algorithm
	Slide 54: Putting it all together: RDBMS Architecture

