CS 6400 A Database Systems Concepts and Design

Lecture 12 10/02/24

Announcements

Midterm stats:

- max: 89
- median: 73.5
- mean: 71.55
- std: 10.94

Answer posted on canvas

• Files->Midterm solution

Reading Materials

Database Systems: The Complete Book (2nd edition)

• Chapter 2.4: An Algebraic Query Language

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big Data Systems) taught by Peter Bailis.

Recap: The Relational Model

- 1. Relational Algebra: Basic Operators
- 2. Relational Algebra Pt. II
- 3. Logical Optimization

The Relational Model: Schemata

• Relational Schema:

The Relational Model: Data

Student

An <u>attribute</u> (or <u>column</u>) is a typed data entry present in each tuple in the relation

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

The number of attributes is the <u>arity</u> of the relation

The Relational Model: Data

Student

name	gpa
Bob	3.2
Joe	2.8
Mary	3.8
Alice	3.5
	name Bob Joe Mary Alice

The number of tuples is the <u>cardinality</u> of the relation

A <u>tuple</u> or <u>row</u> (or record) is a single entry in the table having the attributes specified by the schema

The Relational Model: Data

Student

sid	name	gpa
001	Bob	3.2
002	Joe	2.8
003	Mary	3.8
004	Alice	3.5

Recall: In practice DBMSs relax the set requirement, and use multisets.

A <u>relational instance</u> is a set of tuples all conforming to the same schema

To Reiterate

 A <u>relational schema</u> describes the data that is contained in a <u>relational instance</u>

Let $R(f_1:Dom_1,...,f_m:Dom_m)$ be a <u>relational schema</u> then, an <u>instance</u> of R is a subset of $Dom_1 \times Dom_2 \times ... \times Dom_n$

In this way, a <u>relational schema</u> R is a total function from attribute names to types

A relational database

- A *relational database schema* is a set of relational schemata, one for each relation
- A *relational database instance* is a set of relational instances, one for each relation

<u>Two conventions</u>:
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the <u>domain constraints</u>

2nd Part of the Model: Querying

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

We don't tell the system how or where to get the data- just what we want, i.e., Querying is <u>declarative</u>

"Find names of all students with GPA > 3.5"

To make this happen, we need to translate the declarative query into a series of operators... we'll see this next!

1. Relational Algebra

RDBMS Architecture

How does a SQL engine work ?

Declarative query (from user) Translate to relational algebra expression

Find logically equivalent- but more efficient- RA expression Execute each operator of the optimized plan!

RDBMS Architecture

How does a SQL engine work ?

Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!

Relational Algebra (RA)

• Five basic operators:

- 1. Selection: σ
- 2. Projection: Π
- 3. Cartesian Product: ×
- 4. Union: \cup
- 5. Difference: -
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

We'll look at these first!

And also at one example of a derived operator (natural join) and a special operator (renaming)

Note: RA operates on sets!

- RDBMSs use *multisets*, however in relational algebra formalism we will consider <u>sets!</u>
- Also: we will consider the *named perspective*, where every attribute must have a <u>unique name</u>
 - \rightarrow attribute order does not matter...

Now on to the basic RA operators...

1. Selection (σ)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{Salary > 40000}$ (Employee)
 - $\sigma_{name = "Smith"}$ (Employee)
- The condition c can be =, <, \leq , >, \geq , <>

RA:

$$\sigma_{gpa > 3.5}(Students)$$

Another example:

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

2. Projection (Π)

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

Students(sid,sname,gpa)

Another example:

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

 $\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	200000
John	600000

Note that RA Operators are Compositional!

Students(sid,sname,gpa)

```
SELECT DISTINCT
   sname,
   gpa
FROM Students
WHERE gpa > 3.5;
```

How do we represent this query in RA?

 $\Pi_{sname,gpa}(\sigma_{gpa>3.5}(Students))$

```
\sigma_{gpa>3.5}(\Pi_{sname,gpa}(Students))
```

Are these logically equivalent?

3. Cross-Product (x)

- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *
FROM Students, People;

RA: Students × People

Another example: People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

Students × People

X

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Renaming (ρ)

- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: $\rho_{B1,...,Bn}$ (R)
- Note: this is shorthand for the proper form (since names, not order matters!):
 - ρ _{A1→B1,...,An→Bn} (R)

Students(sid,sname,gpa)

We care about this operator because we are working in a named perspective

Another example:

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

 $\rho_{studId,name,gradePtAvg}(Students)$

Students

studId	name	gradePtAvg
001	John	3.4
002	Bob	1.3

Natural Join (⋈)

- $R_1 \bowtie R_2$: Joins R_1 and R_2 on equality of all shared attributes
 - If R_1 has attribute set A, and R_2 has attribute set B, and they share attributes $A \cap B = C$, can also be written: $R_1 \bowtie_c R_2$
- Our first example of a *derived* RA operator:
 - $\mathsf{R}_1 \bowtie \mathsf{R}_2 = \prod_{\mathsf{A} \cup \mathsf{B}} (\sigma_{\mathsf{C}=\mathsf{D}} (\rho_{\mathsf{C} \to \mathsf{D}} (\mathsf{R}_1) \times \mathsf{R}_2))$
 - Where:
 - The rename $\rho_{C \to D}$ renames the shared attributes in one of the relations
 - The selection $\sigma_{\text{C=D}}$ checks equality of the shared attributes
 - The projection $\Pi_{A\,\cup\,B}\,\text{eliminates}$ the duplicate common attributes

Students(sid,name,gpa)
People(ssn,name,address)

SQL:
SELECT DISTINCT
ssid, S.name, gpa,
ssn, address
FROM
Students S,
People P
WHERE S.name = P.name;

Another example:

Students S						
sid	S.name	gpa				
001	John	3.4				

Bob

002

People P

ssn	P.name	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

Students ⋈ People

 \bowtie

1.3

sid	S.name	gpa	ssn	address
001	John	3.4	1234545	216 Rosse
002	Bob	1.3	5423341	216 Rosse

Just to check your understanding

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R

 ∧ S ?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

Example: Converting SFW Query -> RA

Students(sid,sname,gpa)
People(ssn,sname,address)

SELECT DISTINCT

```
gpa,
address
FROM Students S,
People P
WHERE gpa > 3.5 AND
sname = pname;
```

How do we represent this query in RA?

 $\Pi_{gpa,address}(\sigma_{gpa>3.5}(S \bowtie P))$

2. Relational Algebra Pt. II

Relational Algebra (RA)

- Five basic operators:
 - 1. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: ×

We'll look at these

- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

And also at some of these derived operators

1. Union (\cup) and 2. Difference (–)

- R1 \cup R2
- Example:
 - ActiveEmployees \cup RetiredEmployees
- R1 R2
- Example:
 - AllEmployees -- RetiredEmployees

What about Intersection (\cap) ?

- It is a derived operator
- R1 \cap R2 = R1 (R1 R2)
- Also expressed as a join!
- Example
 - UnionizedEmployees \cap RetiredEmployees

Theta Join (\bowtie_{θ})

- A join that involves a predicate
- R1 \bowtie_{θ} R2 = σ_{θ} (R1 × R2)
- Here θ can be any condition

Note that natural join is a theta join + a projection.

Students(sid,sname,gpa)
People(ssn,pname,address)

RA:

SQL: SELECT * FROM Students,People WHERE θ;

Students \bowtie_{θ} People

Equi-join ($\bowtie_{A=B}$)

- A theta join where $\boldsymbol{\theta}$ is an equality
- R1 $\bowtie_{A=B}$ R2 = $\sigma_{A=B}$ (R1 × R2)
- Example:
 - Employee ⋈ _{SSN=SSN} Dependents

Most common join in practice!

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

Semijoin (⋈)

- $R \ltimes S = \prod_{A1,...,An} (R \Join S)$
- Where A_1, \ldots, A_n are the attributes in R
- Example:
 - Employee ➤ Dependents

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

Semijoins in Distributed Databases

Semijoins are often used to compute natural joins in distributed databases

3. Logical Optimization

RDBMS Architecture

How does a SQL engine work ?

We saw how we can transform declarative SQL queries into precise, compositional RA plans

Logical vs. Physical Optimization

Logical optimization:

- Find equivalent plans that are more efficient
- Intuition: Minimize # of tuples at each step by changing the order of RA operators

Physical optimization:

- Find algorithm with lowest IO cost to execute our plan
- Intuition: Calculate based on physical parameters (buffer size, etc.) and estimates of data size (histograms)

RDBMS Architecture

How is the RA "plan" executed?

RA Plan Execution

- Natural Join / Join:
 - Next lecture: how to use **memory & IO cost** considerations to pick the correct algorithm to execute a join with (BNLJ, SMJ, HJ...)!

• Selection:

- We saw how to use indexes to aid selection
- Can always fall back on scan / binary search as well
- Projection:
 - The main operation here is finding *distinct* values of the project tuples; we briefly discussed how to do this with e.g. **hashing** or **sorting**

We already know how to execute all the basic operators!

RDBMS Architecture

How does a SQL engine work ?

We'll look at how to then optimize these plans now

Note: We can visualize the plan as a tree

Bottom-up tree traversal = order of operation execution!

A simple plan

What SQL query does this correspond to?

Are there any logically equivalent RA expressions? "Pushing down" projection

Why might we prefer this plan?

Takeaways

- This process is called logical optimization
- Many equivalent plans used to search for "good plans"
- Relational algebra is an important abstraction.

Commutative and associative laws

Example:

 $egin{aligned} R imes S &= S imes R \ (R imes S) imes T &= R imes (S imes T) \end{aligned}$

- Same holds for \bowtie , U, \bigcap
- Holds for both set and bag semantics

Laws involving projection and selection

- The basic commutators:
 - Push projection through (1) selection, (2) join
 - Push selection through (3) selection, (4) projection, (5) join
- Note that this is not an exhaustive set of operations
 - This covers local re-writes; global re-writes possible but much harder
 - Additional reading: Chapter 16.2

This simple set of tools allows us to greatly improve the execution time of queries by optimizing RA plans!

Optimizing the SFW RA Plan

Logical Optimization

- Heuristically, we want selections and projections to occur as early as possible in the plan
 - Terminology: "push down selections" and "pushing down projections."
- Intuition: We will have fewer tuples in a plan.
 - Could fail if the selection condition is very expensive (say runs some image processing algorithm).
 - Projection could be a waste of effort, but more rarely.

 $\Pi_{A.D}(T \bowtie (\sigma_{A<10}(R) \bowtie S))$

 $R(A,B) \quad S(B,C) \quad T(C,D)$

Push down selection on A so it occurs earlier

 $\Pi_{A.D}(T \bowtie (\sigma_{A<10}(R) \bowtie S))$

 $R(A,B) \quad S(B,C) \quad T(C,D)$

Push down projection so it occurs earlier

