
CS 6400 A
Database Systems
Concepts and Design

Lecture 12
10/02/24

Announcements
Midterm stats:
• max: 89
• median: 73.5
• mean: 71.55
• std: 10.94

Answer posted on canvas
• Files->Midterm solution

Reading Materials

Database Systems: The Complete Book (2nd edition)
• Chapter 2.4: An Algebraic Query Language

3

Acknowledgement: The following slides have been adapted from CS145 (Intro to Big
Data Systems) taught by Peter Bailis.

Agenda
Recap: The Relational Model

1. Relational Algebra: Basic Operators

2. Relational Algebra Pt. II

3. Logical Optimization

4

The Relational Model: Schemata
• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc. are the
domains of the attributes

Relation name

6

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or
column) is a typed
data entry present
in each tuple in the
relation

The number of
attributes is the arity
of the relation

7

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single
entry in the table having the attributes
specified by the schema

The number
of tuples is
the cardinality
of the relation

8

The Relational Model: Data
Student

A relational instance is a set of tuples all
conforming to the same schema

Recall: In practice
DBMSs relax the
set requirement,
and use multisets.

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

• A relational schema describes the data that is contained in
a relational instance

To Reiterate

Let R(f1:Dom1,…,fm:Domm) be a relational schema then,
an instance of R is a subset of Dom1 x Dom2 x … x Domn

In this way, a relational schema R is a total function from
attribute names to types

A relational database
• A relational database schema is a set of relational schemata, one

for each relation

• A relational database instance is a set of relational instances, one
for each relation

Two conventions:
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the domain constraints

2nd Part of the Model: Querying

“Find names of all students
with GPA > 3.5”

We don’t tell the system how or where
to get the data- just what we want, i.e.,
Querying is declarative

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to
translate the declarative query into a
series of operators… we’ll see this next!

1. Relational Algebra

12

RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative
(SQL) queries into precise and optimizable expressions!

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural,equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these first!

And also at one example
of a derived operator
(natural join) and a special
operator (renaming)

Note: RA operates on sets!
• RDBMSs use multisets, however in relational algebra formalism

we will consider sets!

• Also: we will consider the named perspective, where every
attribute must have a unique name
• àattribute order does not matter…

Now on to the basic RA operators…

• Returns all tuples which satisfy a
condition
• Notation: sc(R)
• Examples
• sSalary > 40000 (Employee)
• sname = “Smith” (Employee)

• The condition c can be =, <, £,
>, ³, <>

1. Selection (𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎!"#	%&.((𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:

• Eliminates columns, then
removes duplicates
• Notation: P A1,…,An (R)
• Example: project social-security

number and names:
• P SSN, Name (Employee)
• Output schema: Answer(SSN,

Name)

2. Projection (Π)

SELECT DISTINCT
 sname,
 gpa
FROM Students;

SQL:

RA:
Π)*#+,,!"#(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:

Note that RA Operators are Compositional!

SELECT DISTINCT
 sname,
 gpa
FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π!"#$%,'(#(𝜎'(#)*.,(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎'(#)*.,(Π!"#$%,'(#(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

• Each tuple in R1 with each tuple
in R2
• Notation: R1 ´ R2
• Example:
• Employee ´ Dependents

• Rare in practice; mainly used to
express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

• Changes the schema, not the
instance
• A ‘special’ operator- neither basic

nor derived
• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
• r A1àB1,…,AnàBn (R)

Renaming (𝜌)

SELECT
 sid AS studId,
 sname AS name,
 gpa AS gradePtAvg
FROM Students;

SQL:

RA:
𝜌!"#$%$,'()*,+,($*-"./+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌!"#$%$,'()*,+,($*-"./+(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

• R1 ⋈	R2: Joins R1 and R2 on equality of all
shared attributes
• If R1 has attribute set A, and R2 has attribute set

B, and they share attributes A ⋂ B = C, can also
be written: R1 ⋈ 𝐶	R2

• Our first example of a derived RA operator:
• R1 ⋈ R2 = PA U B(s C=D (𝜌!→#(R1) ´ R2))
• Where:

• The rename 𝜌!→# renames the shared attributes in
one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

Natural Join (⋈)

SELECT DISTINCT
 ssid, S.name, gpa,
 ssn, address
FROM
 Students S,
 People P
WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

Just to check your understanding

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R
⋈	S ?

• Given R(A, B, C), S(D, E), what is R ⋈	S ?

• Given R(A, B), S(A, B), what is R ⋈	S ?

Example: Converting SFW Query -> RA

SELECT DISTINCT
 gpa,
 address
FROM Students S,
 People P
WHERE gpa > 3.5 AND
 sname = pname;

How do we represent
this query in RA?

Π'(#,#--.%!!(𝜎'(#)*.,(𝑆 ⋈ 𝑃))

Students(sid,sname,gpa)
People(ssn,sname,address)

2. Relational Algebra Pt. II

30

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
• Intersection, complement
• Joins (natural, equi-join, theta join, semi-join)
• Renaming: r
• Division

Relational Algebra (RA)

We’ll look at these

And also at some of
these derived
operators

1. Union (È) and 2. Difference (–)

• R1 È R2
• Example:
• ActiveEmployees È RetiredEmployees

• R1 – R2
• Example:
• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

What about Intersection (Ç) ?
• It is a derived operator
• R1 Ç R2 = R1 – (R1 – R2)
• Also expressed as a join!
• Example

• UnionizedEmployees Ç RetiredEmployees

R1 R2

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM
 Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈/ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

Equi-join (⋈	A=B)
• A theta join where q is an equality
• R1 ⋈	A=B R2 = s A=B (R1 ´ R2)
• Example:
• Employee ⋈	SSN=SSN Dependents

SELECT *
FROM
 Students S,
 People P
WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈)*#+,0"*#+, 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join
in practice!

Semijoin (⋉)
• R ⋉ S = P A1,…,An (R ⋈ S)
• Where A1, …, An are the attributes in R
• Example:
• Employee ⋉	Dependents

SELECT DISTINCT
 sid,sname,gpa
FROM
 Students,People
WHERE
 sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Semijoins in Distributed Databases
• Semijoins are often used to compute natural joins in distributed

databases

SSN Name
.

SSN Dname Age
.

Employee

Dependents

network

Employee ⋈	ssn=ssn (s age>71 (Dependents))

T = P SSN (s age>71 (Dependents))
R = Employee ⋉	T

Answer = R ⋈	Dependents

Send less data
to reduce
network
bandwidth!

3. Logical Optimization

38

RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

We saw how we can transform declarative SQL queries
into precise, compositional RA plans

Logical vs. Physical Optimization

Logical optimization:
• Find equivalent plans that are more efficient
• Intuition: Minimize # of tuples at each step by

changing the order of RA operators

Physical optimization:
• Find algorithm with lowest IO cost to

execute our plan
• Intuition: Calculate based on physical parameters

(buffer size, etc.) and estimates of data size
(histograms)

Execution

SQL Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan

RDBMS Architecture
How is the RA “plan” executed?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

RA Plan Execution
• Natural Join / Join:
• Next lecture: how to use memory & IO cost considerations to pick the

correct algorithm to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:
• We saw how to use indexes to aid selection
• Can always fall back on scan / binary search as well

• Projection:
• The main operation here is finding distinct values of the project tuples; we

briefly discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!

RDBMS Architecture
How does a SQL engine work ?

SQL
Query

Relational
Algebra

(RA) Plan
Optimized
RA Plan Execution

We’ll look at how to then optimize these
plans now

Note: We can visualize the plan as a tree

Π1

R(A,B) S(B,C)

Π1(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up tree traversal = order of operation execution!

RA Expressions Can Get Complex!

 Person Purchase Person Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

A simple plan

Π1

R(A,B) S(B,C)

What SQL query does this
correspond to?

Are there any logically
equivalent RA
expressions?

“Pushing down” projection

Π1

R(A,B) S(B,C)

Π1

R(A,B) S(B,C)

Π1

Why might we prefer this plan?

Takeaways
• This process is called logical optimization

• Many equivalent plans used to search for “good plans”

• Relational algebra is an important abstraction.

Commutative and associative laws
Example:

● Same holds for ⋈, ∪, ⋂
● Holds for both set and bag semantics

49

Laws involving projection and selection
• The basic commutators:
• Push projection through (1) selection, (2) join
• Push selection through (3) selection, (4) projection, (5) join

• Note that this is not an exhaustive set of operations
• This covers local re-writes; global re-writes possible but much harder
• Additional reading: Chapter 16.2

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

Optimizing the SFW RA Plan

Π.,0

R(A,B) S(B,C)

T(C,D)

sA<10

Π2,3(𝜎2456 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating to RA

Logical Optimization
• Heuristically, we want selections and projections to occur as early

as possible in the plan
• Terminology: “push down selections” and “pushing down projections.”

• Intuition: We will have fewer tuples in a plan.
• Could fail if the selection condition is very expensive (say runs some

image processing algorithm).
• Projection could be a waste of effort, but more rarely.

Π.,0

R(A,B) S(B,C)

T(C,D)

sA<10

Π2,3(𝜎2456 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
selection on A so
it occurs earlier

Π.,0

R(A,B)
S(B,C)

T(C,D)

Π2,3 𝑇 ⋈ 𝜎2456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
selection on A so
it occurs earlier

sA<10

Π.,0

R(A,B)
S(B,C)

T(C,D)

Π2,3 𝑇 ⋈ 𝜎2456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan Push down
projection so it
occurs earlier

sA<10

Π.,0

R(A,B)
S(B,C)

T(C,D)

Π2,3 𝑇 ⋈ Π2,7 𝜎2456(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B
 AND S.C = T.C
 AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing RA Plan We eliminate B
earlier!

sA<10

Π.,1

