
CS 6400 A

Midterm Review

Lecture 10

09/23/24

Midterm Logistics

• Midterm will be held Wednesday
Sep 25th from 5pm - 6:15pm
(during class time).

• Please arrive early - the exam is
going to start at 5PM.

• Open notes, but no laptops.

SQL

4

SQL Query

• Basic form (there are many many more bells and whistles)

Call this a SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

5

LIKE: Simple String
Pattern Matching

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

DISTINCT: Eliminating
Duplicates

SELECT DISTINCT Category
FROM Product

ORDER BY: Sorting the Results

SELECT PName, Price
FROM Product
WHERE Category=‘gizmo’
ORDER BY Price, PName

6

Joins

PName Price Category Manuf

Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country

GWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

PName Price

SingleTouch $149

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 AND Price <= 200

An example of SQL semantics

7

SELECT R.A
FROM R, S
WHERE R.A = S.B

A

1

3

B C

2 3

3 4

3 5

A B C

1 2 3

1 3 4

1 3 5

3 2 3

3 3 4

3 3 5

Cross
Product

A B C

3 3 4

3 3 5

A

3

3

Apply
ProjectionApply

Selections /
Conditions

Output

8

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An Unintuitive Query

Computes R (S T)

But what if S = ?

S T

R

Go back to the semantics!

INTERSECT

9

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2 Q1 Q2

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

10

Nested queries: Sub-queries Returning Relations

SELECT c.city
FROM Company c
WHERE c.name IN (
 SELECT pr.maker
 FROM Purchase p, Product pr
 WHERE p.product = pr.name
 AND p.buyer = ‘Joe Blow‘)

“Cities where

one can find

companies that

manufacture

products bought

by Joe Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

11

Nested Queries

SELECT c.city
 FROM Company c,
 Product pr,
 Purchase p
 WHERE c.name = pr.maker
 AND pr.name = p.product
 AND p.buyer = ‘Joe Blow’

Are these queries equivalent?

Beware of duplicates!

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product
 AND p.buyer = ‘Joe Blow‘)

Nested Queries: Operator Semantics

SELECT name
FROM Product
WHERE price > ALL(X)

Product(name, price, category, maker)

Price must be > all entries

in multiset X

ALL

SELECT name
FROM Product
WHERE price > ANY(X)

ANY

SELECT name
FROM Product p1
WHERE EXISTS (X)

EXISTS

Price must be > at least

one entry in multiset X

X must be non-empty

*Note that p1 can be

referenced in X (correlated

query!)

Nested Queries: Operator Semantics

SELECT name
FROM Product
WHERE price > ALL(
 SELECT price
 FROM Product
 WHERE maker = ‘G’)

Product(name, price, category, maker)

Find products that are

more expensive than all

products produced by “G”

ALL

SELECT name
FROM Product
WHERE price > ANY(
 SELECT price
 FROM Product
 WHERE maker = ‘G’)

ANY

SELECT name
FROM Product p1
WHERE EXISTS (
 SELECT *
 FROM Product p2
 WHERE p2.maker = ‘G’
 AND p1.price =
 p2.price)

EXISTS

Find products that are more

expensive than any one

product produced by “G”

Find products where there

exists some product with the

same price produced by “G”

14

Correlated Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(
 SELECT year
 FROM Movie
 WHERE title = m.title)

Movie(title, year, director, length)

Find movies whose

title appears more

than once.

Note the scoping
of the variables!

Correlated ueries

In terms of execution
• Regular: executed once for the entire outer query

• Correlated: executed once for each row processed by the outer query
(due to the dependence between inner and outer queries)

This means that correlated subqueries are usually very slow
• When possible, rewrite using JOINs for better performance

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(
 SELECT year
 FROM Movie
 WHERE title = m.title)

SELECT DISTINCT m1.title
FROM Movie m1 JOIN Movie m2
 ON m1.title = m2.title
WHERE m1.year <> m2.year

16

Simple Aggregations

Purchase

Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 1*20 + 1.50*20)

17

Grouping & Aggregations: GROUP BY

Find total sales after
10/1/2005, only for

products that have

more than
10 total units sold

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

Whereas WHERE clauses condition on individual tuples…

18

Order of Operations

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

Whereas WHERE clauses condition on individual tuples…

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

19

GROUP BY: (1) Compute FROM-WHERE

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

Craisins 11/1 2 5

Craisins 11/3 2.5 3

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

FROM
WHERE

20

GROUP BY: (2) Aggregate by the GROUP BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

GROUP BY
Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

Craisins 11/1 2 5

Craisins 11/3 2.5 3

Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

Craisins
11/1 2 5

11/3 2.5 3

21

GROUP BY: (3) Filter by the HAVING clause

HAVING

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 30

Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

Craisins
11/1 2 5

11/3 2.5 3

Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

22

GROUP BY: (3) SELECT clause

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Product TotalSales

Bagel 50

Banana 15

SELECT
Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

23

General form of Grouping and Aggregation

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the attributes in
R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. Apply HAVING condition C2 to each group (may have aggregates)

4. Compute aggregates in SELECT, S, and return the result

24

General form of Grouping and Aggregation

• S = Can ONLY contain attributes a1,…,ak and/or aggregates over other attributes

• C1 = is any condition on the attributes in R1,…,Rn

• C2 = is any condition on the aggregate expressions

SELECT S
FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

E/R Diagram

Entity Set

Product

Name
Price

A key is a minimal set of attributes that uniquely identifies an entity.

Relationship

MakesProduct

name category

price

Company

name

A relationship is between two entities

○ Represented by diamonds

What is a Relationship?

28

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany

C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company C × Product P

C.name P.name

GizmoWorks Gizmo

GizmoWorks GizmoLite

GadgetCorp Gadget

Makes
MakesProduct

name category

price

Company

name

A relationship between entity sets P and C is a

subset of all possible pairs of entities in P and C,

with tuples uniquely identified by P and C’s keys

Modeling something as a relationship
makes it unique

Q: What does this say?

A: A person can only buy a specific product once (on one date)

29

PurchasedProduct

name category

price

Person

name

date

Modeling something as a relationship
makes it unique

Q: What about this way?

A: Now we can have multiple purchases per product, person pair!

30

Product

name category

price

Person

name

date

Purchase

quantityPID#

ProductOf BuyerOf

31

1

2
3

a

b
c
d

One-to-one:

1

2
3

a

b
c
d

Many-to-one:

1

2
3

a

b
c
d

One-to-many:

1

2
3

a

b
c
d

Many-to-many:

Multiplicity of binary relationships

Indicated using
arrows

32

EnrollsStudent Course

Has PassportPerson

What’s Wrong?

Participation Constraints: Partial v. Total

33

• Partial participation (single line): Some entities may exist without being

associated with the relationship.

• Total participation (double line): all entities must be associated with at least

one instance of the relationship.

EnrollsStudent Course

• Every student must enroll in at least one course

• Some courses might not have any students.

Design Theory

Student Course

Mary CS145

Joe CS145

Sam CS145

.. ..

Course Room

CS145 B01

CS229 C12

Eliminate anomalies by

decomposing relations.

• Redundancy

• Update anomaly

• Delete anomaly

• Insert anomaly

Data Anomalies

Student Course Room

Mary CS145 B01

Joe CS145 B01

Sam CS145 B01

..

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies

Equivalent to asking: Given a set of FDs, F = {f1,…fn},
does an FD g hold?

Inference problem: How do we decide?

Three simple rules called Armstrong’s Rules.

1. Reflexivity,

2. Augmentation, and
3. Transitivity…

Finding Functional Dependencies

● Does AB → D follow from the FDs below?

Armstrong’s axioms

38

AB → C

BC → AD

D → E

CF → B

1. AB → C (given)

2. BC → AD (given)

3. AB → BC (Augmentation on 1)

4. AB → AD (Transitivity on 2,3)

5. AD → D (Reflexivity)

6. AB → D (Transitivity on 4,5)

39

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} → B

{name} → {color}
{category} → {department}
{color, category} → {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

40

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

 if {B1, …, Bn} → C is entailed by F

 and {B1, …, Bn} ⊆ X

 then add C to X.

Return X as X+

Closure algorithm

Initial set of

attributes

Closure

Helps to split the FD’s of F so

each FD has a single

attribute on the right

Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have {A1, …, An} → B

A key is a minimal superkey

I.e. all attributes are
functionally determined
by a superkey

Meaning that no subset of
a key is also a superkey

Computing Keys and Superkeys

• Superkey?
• Compute the closure of A

• See if it = the full set of
attributes

• Key?
• Confirm that A is superkey

• Make sure that no subset of
A is a superkey
• Only need to check one

‘level’ down!

IsSuperkey(A, R, F):
A+ = ComputeClosure(A, F)
Return (A+==R)?

IsKey(A, R, F):
If not IsSuperkey(A, R, F):
 return False
For B in SubsetsOf(A, size=len(A)-1):
 if IsSuperkey(B, R, F):
 return False
return True

Let A be a set of attributes, R set
of all attributes, F set of FDs:

43

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if {A1, ..., An} → B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

R(A,B,C,D,E)

Example

{A} → {B,C}
{C} → {D}

BCNFDecomp(R):

• Find an FD X → Y that violates BCNF

 (X and Y are sets of attributes)

• Compute the closure X+

• let Y = X+ - X, Z = (X+)C

decompose R into R1(X Y) and R2(X Z)

• Recursively decompose R1 and R2

Lossy vs. Lossless

45

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

Name Price Category

Gizmo 19.99 Gadget

OneClick 19.99 Camera

OneClick 24.99 Camera

Gizmo 19.99 Camera

Gizmo 24.99 Camera

Lossy vs. Lossless

46

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Recorder

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Recorder

Price Category

19.99 Gadget

24.99 Camera

19.99 Recorder

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Recorder

{Category} → {Name}

47

A Problem with BCNF

{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} → {Unit}!!

Unit Company Product

… … …

Unit Company

… …

Unit Product

… …

{Unit} → {Company}

Third normal form (3NF)

Example:
○ The keys are AB and AC
○ B → C is a BCNF violation, but not

a 3NF violation because C is prime
(part of the key AC)

48

A relation R is in 3NF if:

For every non-trivial FD A1, ..., An → B, either

• {A1, ..., An} is a superkey for R

• B is a prime attribute (i.e., B is part of some candidate key of R)

R(A,B,C)

AC → B
B → C

BCNF vs 3NF

● Given a non-trivial FD X → B (X is a set of attributes)
○ BCNF: X must be a superkey
○ 3NF: X must be a superkey or B is prime

● Use 3NF over BCNF if you need dependency preservation
● However, 3NF may not remove all redundancies and anomalies

49

3NF

BCNF

MVD Example

Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Scarlett Johansson Los Angeles Black Widow

Scarlett Johansson Los Angeles Her

Scarlett Johansson Paris Black Widow

Scarlett Johansson Paris Her

• Independence: The set of
addresses is independent of
the set of movies for a given
movie star.

• Redundancy: Notice how each
movie is repeated for every
address that the star lives in,
and vice versa.

MVD Example

Movie_ Star (A) Address (B) Movie (C)

Leonardo DiCaprio Los Angeles Titanic

Leonardo DiCaprio Los Angeles Inception

Leonardo DiCaprio New York Titanic

Leonardo DiCaprio New York Inception

Scarlett Johansson Los Angeles Black Widow

Scarlett Johansson Los Angeles Her

Scarlett Johansson Paris Black Widow

Scarlett Johansson Paris Her

We write A ↠ B if for any
tuples t1,t2 s.t. t1[A] = t2[A]
there is a tuple t3 s.t.
• t3[A] = t1[A]
• t3[B] = t1[B]

• and t3[R\B] = t2[R\B]

Where R\B is “R minus B” i.e.
the attributes of R not in B.

t1

t2

t3

Multi-Value Dependencies (MVDs)

One less formal, literal way to phrase the definition of an MVD:

The MVD 𝐗 ↠ 𝒀 holds on R if for any pair of tuples with the same X
values, the tuples with the same X values, but the other
permutations of Y and A\Y values, is also in R

x y z

1 0 1

1 1 0

1 0 0

1 1 1

x y z

1 0 1

1 1 0 For 𝑿 ↠ 𝒀 to hold
must have…

Ex: X = {x}, Y = {y}:

	Default Section
	Slide 1: CS 6400 A Midterm Review
	Slide 2: Midterm Logistics

	SQL
	Slide 3: SQL
	Slide 4: SQL Query
	Slide 5: LIKE: Simple String Pattern Matching
	Slide 6: Joins
	Slide 7: An example of SQL semantics
	Slide 8: An Unintuitive Query
	Slide 9: INTERSECT
	Slide 10: Nested queries: Sub-queries Returning Relations
	Slide 11: Nested Queries
	Slide 12: Nested Queries: Operator Semantics
	Slide 13: Nested Queries: Operator Semantics
	Slide 14: Correlated Queries
	Slide 15: Correlated ueries
	Slide 16: Simple Aggregations
	Slide 17: Grouping & Aggregations: GROUP BY
	Slide 18: Order of Operations
	Slide 19: GROUP BY: (1) Compute FROM-WHERE
	Slide 20: GROUP BY: (2) Aggregate by the GROUP BY
	Slide 21: GROUP BY: (3) Filter by the HAVING clause
	Slide 22: GROUP BY: (3) SELECT clause
	Slide 23: General form of Grouping and Aggregation
	Slide 24: General form of Grouping and Aggregation

	Lecture 4
	Slide 25: E/R Diagram
	Slide 26: Entity Set
	Slide 27: Relationship
	Slide 28: What is a Relationship?
	Slide 29: Modeling something as a relationship makes it unique
	Slide 30: Modeling something as a relationship makes it unique
	Slide 31: Multiplicity of binary relationships
	Slide 32
	Slide 33: Participation Constraints: Partial v. Total

	Lecture 5,6
	Slide 34: Design Theory
	Slide 35: Data Anomalies
	Slide 36: FDs for Relational Schema Design
	Slide 37: Finding Functional Dependencies
	Slide 38: Armstrong’s axioms
	Slide 39: Closure of a set of Attributes
	Slide 40: Closure algorithm
	Slide 41: Keys and Superkeys
	Slide 42: Computing Keys and Superkeys

	Lecture 6
	Slide 43: Boyce-Codd Normal Form
	Slide 44
	Slide 45: Lossy vs. Lossless
	Slide 46: Lossy vs. Lossless
	Slide 47: A Problem with BCNF
	Slide 48: Third normal form (3NF)
	Slide 49: BCNF vs 3NF
	Slide 50: MVD Example
	Slide 51: MVD Example
	Slide 52: Multi-Value Dependencies (MVDs)

