
CS 6400 A

Database Systems
Concepts and Design

Lecture 1

08/19/24

Agenda

1. Course logistics and overview

2. Why study relational databases?

3. Relational data model

2

The essentials

Instructor: Kexin Rong
• Office: Klaus 3322

TAs:
• Rajveer Bachkaniwala
• Shreyas Kanjalkar
• Sashankh Chengavalli Kumar

3

How to reach us: cs6400-staff@groups.gatech.edu

• The above email reaches all of the course staff. You are strongly

encouraged to use this, instead of emailing individual course staff.

mailto:cs6400-staff@groups.gatech.edu

The essentials

Course website: https://kexinrong.github.io/fa24-cs6400/

 schedule, assignments, and course material

Canvas/Gradescope: submitting assignments

Piazza: discussing course contents and finding teammates
• https://piazza.com/class/lzkp9kbomoc60h

Email: special requests; mention CS6400 in the email title

OH: Starting next week. Time will be announced.

4

https://kexinrong.github.io/fa24-cs6400/
https://piazza.com/class/lzkp9kbomoc60h

Course materials

● Textbooks:

○ Database Systems: The Complete
Book (2nd edition)

○ Fundamentals of Database Systems

○ Can use interchangeably

● Both books have international
versions and have PDFs
searchable online

5

Grading

Assignments – 45%
• Mix of individual and team

Course Project – 20%
• Team-based

Exams – 35%
• Midterm 1– 20%

• Midterm 2 – 15%

6
Details: https://kexinrong.github.io/fa24-cs6400/grading/

https://kexinrong.github.io/fa24-cs6400/grading/

Assignment 0: Questionnaire

Available on canvas

Due next Monday (Aug 26) @ 11:59PM

Tell us about your database background

* Assignment not graded

7

Programming Assignments

Assignment 1: JSON to SQLite (15%)
• Schema design, bulk loading and querying with SQL
• Programming language: Python and SQL

Assignment 2: Memstore (15%)
• Storage and access methods

• Programming language: Java

Done individually; A1 will be posted on Wednesday

8

Paper Assignments

Assignment 3: Research paper presentation (10%)
• group in-class presentation

Assignment 4: Research paper review (5%)
• Individual

• Write a critique on the paper you’ve presented

9

Course Project

One of the following:
• Novel database applications

• Implementation and improvement of some aspects of a database system

• Benchmarking of database management systems or components

• *Exception: research projects with other faculty members; need to check
with the instructor

Requirements
• Need to use database systems

• Groups of 3-5, depending on size of the class

Examples of past projects can be found on Canvas
• Files -> Sample Projects

10

Exams

• Written tests based on material covered in lectures,
assignments and readings
• Midterm-1: in-class (Sep 25)

• Midterm-2: take-home

• Midterm-2 will cover the entire course, but focus on the
second half

11

12

Attendance

I dislike mandatory attendance.

But in the past we noticed…
• People who did not attend did worse

• People who did not attend used more course resources

• People who did not attend were less happy with the course

This year’s policy: voluntary attendance
• Except during classes that you need to present

Course Policy - IMPORTANT

Follow the Georgia Tech Honor Code!

Late policy: One automatic late day without penalty. Otherwise 10%
deduction per 24 hours.

Generative AI policy: Clearly attribute AI-generated contents (e.g.,
direct quotes, different color text). Do not use generative AI tools to
write code for you.

13
Details: https://kexinrong.github.io/fa24-cs6400/policy/

https://kexinrong.github.io/fa24-cs6400/policy/

Why study relational
databases?

14

Why study relational databases?

Most important computer applications
must manage, update and query datasets

• Bank, store, search app…

Data quality, quantity & timeliness
becoming even more important with AI

• Machine learning = algorithms that
generalize from data

15
Adapted from Stanford CS245 from Matei Zaharia

Relational databases => data-intensive systems

Relational databases are the most popular type of data-intensive
system (MySQL, Oracle, etc)

Many other systems facing similar concerns: key-value stores,
streaming systems, ML frameworks, your custom app?

16
Adapted from Stanford CS245 from Matei Zaharia

Goal:

• Learn how to use and design relational databases

• Get a taste of the main issues and principles that span

all data-intensive systems

Typical System Challenges

Reliability in the face of hardware crashes, bugs, bad user
input, etc

Concurrency: access by multiple users

Performance: throughput, latency, etc

Access interface from many, changing apps

Security and data privacy (not covered in this course)

17
Adapted from Stanford CS245 from Matei Zaharia

Scientific Interest

Interesting algorithmic and design ideas

In many ways, data systems are the highest-level
successful programming abstractions

18
Adapted from Stanford CS245 from Matei Zaharia

Programming: The Dream

19
Adapted from Stanford CS245 from Matei Zaharia

Programming: The Reality

20
Adapted from Stanford CS245 from Matei Zaharia

Programming with databases

21

Actually manages:

• Durability

• Concurrency

• Query optimization

• Security

• …

Adapted from Stanford CS245 from Matei Zaharia

Case study: building a book-selling website

• E.g., your own version of mini-Amazon

• Large data! (think about all books in the world or even in English)

22

Where do we get started?

Adapted from Duke CompSci 316 from Sudeepa Roy

Q1: Who are the key people?

• At least two types:
• Database admin (assuming they own all copies of all the books)

• Customers who purchase books

• Let’s proceed with these two only

• Other people:
• Sellers

• Who deal with the warehouse of the books

• …

23
Adapted from Duke CompSci 316 from Sudeepa Roy

Q2: What should the user be able to do?

• i.e., what does the interface look like? (think about Amazon)

24

1. Search for books
• According to author, title, price range, …

2. Purchase books

3. Add to wishlist

4. …

Adapted from Duke CompSci 316 from Sudeepa Roy

Q3: What should the platform do?

25

1. Returns books as searched by the authors

2. Check that the payment method is valid

3. Update no. of copies as books are sold

4. Manage total money it has

5. Add new books as they are published

6. …

Adapted from Duke CompSci 316 from Sudeepa Roy

Q4: What are the desired and necessary
properties of the platform?
• Should be able to handle a large amount of data

• Should be efficient and easy to use (e.g., search with authors as well as title)

• If there is a crash or loss of power, information should not be lost or
inconsistent

• Imagine a user was in the middle of a transaction when a crash happened, paid
the money, but the book has not been purchased

• No surprises with multiple users logged in at the same time

• Imagine one last copy of a book that two users are trying to purchase at the
same time

• Easy to update and program

• For the admin

26
Adapted from Duke CompSci 316 from Sudeepa Roy

That was the design phase (a basic one though)

27
Adapted from Duke CompSci 316 from Sudeepa Roy

Image source: https://www.flaticon.com/free-icon/girl_5986069

Let’s implement this!

How about:
• Your favorite programming

language

• On data stored in large files

https://www.flaticon.com/free-icon/girl_5986069

Sounds simple!

• Text files – for books, customers, ..

• Books listed with title, author, price and no. of copies

• Fields separated by #’s

28
Adapted from Duke CompSci 316 from Sudeepa Roy

Query by programming

• James Morgan wants to buy “To Kill a Mockingbird”

• A simple script
• Scan through the book files
• Look for the line containing “To Kill a Mockingbird”
• Check if there are more than 1 copy left
• Charge James $7.20 and reduce the number of copies by 1

29
Adapted from Duke CompSci 316 from Sudeepa Roy

Better idea than scanning?

Binary search (with file

sorted on titles)

What if he changes the “query” and wants to buy a book by Victor Hugo?

Revisit: What are the desired and
necessary properties of the platform?

30
Adapted from Duke CompSci 316 from Sudeepa Roy

• Should be able to handle a large amount of data

• Should be efficient and easy to use (e.g., search with authors
as well as title)

• If there is a crash or loss of power, information should not be
lost or inconsistent
• Imagine a user was in the middle of a transaction when a crash

happened, paid the money, but the book has not been
purchased

• No surprises with multiple users logged in at the same time
• Imagine one last copy of a book that two users are trying to

purchase at the same time

• Easy to update and program
• For the admin

Try to open a 10-

100 GB file

Try to search both

on a large flat file

Imagine

programmer’s

task

Imagine adding a new

book or updating copies

(+ allow search) on a

10-100 GB text file

Solution?

DBMS = Database Management System

31
Adapted from Duke CompSci 316 from Sudeepa Roy

What is a DBMS?

A large, integrated collection of data

Models a real-world enterprise
• Entities (e.g., Customers, Books)

• Relationships (e.g., James purchases a tale of two cities)

A Database Management System (DBMS) is a
piece of software designed to store and
manage databases

32

A DBMS takes care of all of the following
(and more): In an easy-to-use, efficient, and robust way

33

• Should be able to handle a large amount of data

• Should be efficient and easy to use (e.g., search with
authors as well as title)

• If there is a crash or loss of power, information should not
be lost or inconsistent

• No surprises with multiple users logged in at the same
time

• Easy to update and program
* We will learn these in

this course!

Programming: The Dream

34
Adapted from Stanford CS245 from Matei Zaharia

This course gives an (advanced) intro to DBMS

35

1. How can one use a DBMS (programmer’s/designer’s perspective)
• Run queries, update data (SQL, Relational Algebra)

• Design a good database (ER diagram, design theory)

2. How does a DBMS work (system’s perspective, also for programmers

for writing better queries)
• Storage and index

• Query processing and optimizations

• Transactions: recovery and concurrency control

3. Glimpse of advanced topics and other DBMS
• Map Reduce, Spark, NewSQL

• Selected research papers

Should I take this class?

You are expected to be comfortable programming in languages
such as Python and Java, but not in SQL.

The class does NOT assume prior background in databases.

Check out our syllabus - if you have sufficient undergraduate
database coursework, consider taking CS6422: Database System
Implemnt instead

36

Relational Model

37

Early Data Management

At first, each application did its own data management directly
against storage (e.g., our book-selling website example)

38
Adapted from Stanford CS245 from Matei Zaharia

Problems with App Storage Management

• How should we lay out and navigate data?

• How do we keep the application reliable?

• What if we want to share data across apps?

39
Adapted from Stanford CS245 from Matei Zaharia

Every app is solving the same problems!

1960s – IBM IMS

• Information Management System

• Early database system developed to keep track of purchase
orders for Apollo moon mission.
• Hierarchical data model.

• Programmer-defined physical storage format.

• Tuple-at-a-time queries.

40
Acknowledgement: Prof. Andy Pavlo, CMU

Hierarchical Data Model

41
Acknowledgement: Prof. Andy Pavlo, CMU

Schema Instance

1970s - Relational data model

• Ted Codd was a mathematician working at
IBM Research. He saw developers spending
their time rewriting IMS programs every time
the database's schema or layout changed.

• Database abstraction to avoid this
maintenance:
• Store database in simple data structures.
• Access data through set-at-a-time high-level

language.
• Physical storage left up to implementation.

42

Codd

Turing Award 1981

Acknowledgement: Prof. Andy Pavlo, CMU

Relational Data Model - schema

43
Acknowledgement: Prof. Andy Pavlo, CMU

Relational Data Model - instance

44
Acknowledgement: Prof. Andy Pavlo, CMU

Data independence

Concept: Applications do not need to worry about how the data is
structured and stored

Logical data independence:
protection from changes in the
logical structure of the data

Physical data independence:
protection from physical layout
changes

One of the most important reasons to use a DBMS 45

I.e. should not need to ask: can we add a
new table, or remove a field in a table
without rewriting the application?

I.e. should not need to ask: which disks
are the data stored on? Is the data
indexed?

Data model

A notation for describing data or information

Consists of:
○ Structure of the data
○ Operations on the data
○ Constraints on the data

46

Adapted from KAIST EE477 from Steven Whang

Structure of the data

● Referred to as a “conceptual model” of the data
● Higher level than “physical models” or data structures like

arrays and lists
● Example: a relation consists of a schema, attributes, and tuples

47

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

Adapted from KAIST EE477 from Steven Whang

Operations on the data

Usually a limited set of operations that can be performed
○ Queries (operations that retrieve information)
○ Modifications (operations that change the database)
○ Relation algebra

This is a strength, not a weakness
○ Programmers can describe operations at a very high level
○ The DBMS implements them efficiently
○ Not easy to do when coding in C

48

SELECT *
FROM Movies
WHERE studioName = ‘Disney’
AND year = 2013;

Adapted from KAIST EE477 from Steven Whang

Constraints on the data

Usually have limitations on the data; helpful for data quality

Examples
○ Day of a week is an integer between 1 and 7
○ Age is larger than 0
○ Student IDs are unique

49

Adapted from KAIST EE477 from Steven Whang

Data models

● Relational
● Key/Value
● Graph
● Document (Semi-structured)
● Column-family
● Array/Matrix
● Hierarchical
● Network

50

Most DBMS’s

No SQL

Machine Learning

Obsolete

Adapted from KAIST EE477 from Steven Whang

The relational model

● Structure
○ Based on tables (relations)
○ Looks like an array of structs in C, but this is just one possible

implementation
○ In database systems, tables are not stored as main-memory structures

and must take into account the need to access relations on disk

51

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

Adapted from KAIST EE477 from Steven Whang

The relational model

● Operations
○ Relational algebra
○ E.g., all the rows where genre is “anime”

● Constraints
○ E.g., Genre must be one of a fixed list of values,

no two movies can have the same title

52

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

Adapted from KAIST EE477 from Steven Whang

The semi-structured model

Structure
○ Resembles trees or graphs, rather than tables

or arrays
○ Represent data by hierarchically nested tagged

elements

Operations
○ Involve following path from element to

subelements

Constraints
○ Involve types of values associated with tags
○ E.g., <Length> tag values are integers,

each <Movie> element must have a <Length>

53

<Movies>
 <Movie title=”Oldboy”>
 <Year>2003</Year>
 <Length>120</Length>
 <Genre>mystery</Genre>
 </Movie>
 <Movie title=”Ponyo”>
 <Year>2008</Year>
 …
</Movies>

Adapted from KAIST EE477 from Steven Whang

The key-value model

● Structure
○ (key, value) pairs
○ Key is a string or integer
○ Value can be any blob of data

● Operations
○ get (key), put(key, value)
○ Operations on values not supported

● Constraints
○ E.g., key is unique, value is not NULL

54

key value

1000 (oldboy, 2003)

1001 (ponyo, 2008)

1002 (frozen, 2013)

Adapted from KAIST EE477 from Steven Whang

Comparison of modeling approaches

● Relational model
○ Simple and limited, but reasonably versatile
○ Limited, but useful operations
○ Efficient access to large data
○ A few lines of SQL can do the work of 1000’s of lines of C code
○ Preferred in DBMS’s

● Semi-structured model
○ More flexible, but slower to query

● Key-value model
○ Even more flexible, but cannot query

55

Adapted from KAIST EE477 from Steven Whang

Basics of the relational model

• A database is a collection of relations (or tables)

• Each relation has a set of attributes (or columns)

• Each attribute has a name and a domain (or type)
• Set-valued attributes are not allowed (e.g., you cannot store a list/set of

bars in a cell, all cells have to contain atomic values)

• Each relation contains a “set” of tuples (or rows)
• Each tuple has a value for each attribute of the relation

• Ordering of rows doesn’t matter (even though output is always in some
order)

56

Basics of the relational model

● Relation: two-dimensional table containing data
● Schema: relation name and set of attributes

○ Movies(title, year, length, genre)

● Database schema: set of schemas for the relations of a database
● A tuple has one component for each attribute

○ (Oldboy, 2003, 120, mystery)

57

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

columns /

attributes /

fields

rows /

tuples /

records

Adapted from KAIST EE477 from Steven Whang

Equivalent representations of a relation

● A relation is a set of tuples (not a list)
● A schema is a set of attributes (not a list)
● Hence, the order of tuples or attributes of a relation is immaterial

58

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

year genre title length

2013 anime Frozen 102

2003 mystery Oldboy 120

2008 anime Ponyo 103

Adapted from KAIST EE477 from Steven Whang

In-class exercise

How many ways are there to represent this relation?

59

title year length genre

Oldboy 2003 120 mystery

Ponyo 2008 103 anime

Frozen 2013 102 anime

Adapted from KAIST EE477 from Steven Whang

	Default Section
	Slide 1: CS 6400 A Database Systems Concepts and Design
	Slide 2: Agenda

	logistics
	Slide 3: The essentials
	Slide 4: The essentials
	Slide 5: Course materials
	Slide 6: Grading
	Slide 7: Assignment 0: Questionnaire
	Slide 8: Programming Assignments
	Slide 9: Paper Assignments
	Slide 10: Course Project
	Slide 11: Exams
	Slide 12: Attendance
	Slide 13: Course Policy - IMPORTANT

	why database
	Slide 14: Why study relational databases?
	Slide 15: Why study relational databases?
	Slide 16: Relational databases => data-intensive systems
	Slide 17: Typical System Challenges
	Slide 18: Scientific Interest
	Slide 19: Programming: The Dream
	Slide 20: Programming: The Reality
	Slide 21: Programming with databases
	Slide 22: Case study: building a book-selling website
	Slide 23: Q1: Who are the key people?
	Slide 24: Q2: What should the user be able to do?
	Slide 25: Q3: What should the platform do?
	Slide 26: Q4: What are the desired and necessary properties of the platform?
	Slide 27: That was the design phase (a basic one though)
	Slide 28: Sounds simple!
	Slide 29: Query by programming
	Slide 30: Revisit: What are the desired and necessary properties of the platform?
	Slide 31: Solution?
	Slide 32: What is a DBMS?
	Slide 33: A DBMS takes care of all of the following (and more):
	Slide 34: Programming: The Dream
	Slide 35: This course gives an (advanced) intro to DBMS
	Slide 36: Should I take this class?

	relational model
	Slide 37: Relational Model
	Slide 38: Early Data Management
	Slide 39: Problems with App Storage Management
	Slide 40: 1960s – IBM IMS
	Slide 41: Hierarchical Data Model
	Slide 42: 1970s - Relational data model
	Slide 43: Relational Data Model - schema
	Slide 44: Relational Data Model - instance
	Slide 45: Data independence
	Slide 46: Data model
	Slide 47: Structure of the data
	Slide 48: Operations on the data
	Slide 49: Constraints on the data
	Slide 50: Data models
	Slide 51: The relational model
	Slide 52: The relational model
	Slide 53: The semi-structured model
	Slide 54: The key-value model
	Slide 55: Comparison of modeling approaches
	Slide 56: Basics of the relational model
	Slide 57: Basics of the relational model
	Slide 58: Equivalent representations of a relation
	Slide 59: In-class exercise

