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Current Optimizations

-> Focused on filtering via approximate predicates
4 NOSCOPE and TAHOMA

-> Do not handle aggregate and limit queries.
-> Still require non-expert users to write complex code to
deploy.



A video analytics system with a

declarative query language and two
B I a Z e I t novel optimizations for aggregation

and limit queries.
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FrameQL Query




System Overview

Configuration, TMAS, Proxy Model and specialized NNs
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Configuration

-> Target object detection method OD (frame) — Set<Tuple<class, box>>
- Entity resolution
€ Takes neary frames and boxes, returns true if referring to the same object
-> Both can be changed and personalized to the query at hand
= UDFs

€ Functions that accept a timestamp, mask, and rectangular set of pixels
€ Used to answer more complex queries
e determine color, object size/location, etc.
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Target-model annotated set (TMAS)

-> At ingestion time, using NN, object detection is performed on a small sample

of frames
€ metadata is stored as FrameQL tuples (TMAS)

-> Object detection is performed only once at data ingestion
- TMAS is split between training data and held out data
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Proxy models and specialized NNs

-

Proxy models are used to speed up query execution while providing a

guaranteed accuracy
€ Blazelt can infer proxy models/filters from query predicates (need to be trained from data)

Use specialized NNs (mini ResNet) as proxy models
€ Specialized NNs run faster than their counterpart NNs

Blazelt figures out when specialized NN needs to be used
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Limitations

TMAS

BLAZEIT requires the
object detection method
(a bottleneck) to be run
over a portion of the data
for training specialized
NNs and filters as a
preprocessing step.

Model Drift

When the data
distribution may change,
BLAZEIT will still provide
accuracy guarantees but
performance may be
reduced.

Mitigate with labels on
new data, might require
continuous retraining

Object Detection

BLAZEIT depends on the
target object detection
method and does not
support object classes
beyond what the method
returns.

Mitigate with UDFs



FRAMEQL: EXPRESSING
COMPLEX SPATIOTEMPORAL
VISUAL QUERIES

FRAMEQLSs syntax, data model, query format, and examples
Comparison to prior languages



FrameQL Syntax

SELECT x | expression [, ...]
FROM table_name

L T e T s B e B s B |

WHERE condition ]

GROUP BY expression [, ...] ]
HAVING condition [, ...] ]
LIMIT count ]

GAP count ]

ERROR WITHIN tol AT CONFIDENCE conf

]

ntactic o
Sy Description
element
FCOUNT Frame-averaged count (equivalent to

ERROR WITHIN
FPR WITHIN
FNR WITHIN
CONF IDENCE
GAP

time-averaged count), i.e.,

COUNT (*) / MAX (timestamp)
Absolute error tolerance

Allowed false positive rate

Allowed false negative rate

Confidence level

Minimum distance between returned frames




FrameQL Data Model

-> Uses videos as virtual relations
-> Each tuple = one obj in a frame

Field Type Description
timestamp float Time stamp
class string Object class (e.g., bus, car)
mask (float, float)*  Polygon containing the object
of interest, typically a rectangle
trackid int Unique identifier for a continuous
time segment when the
object is visible
content float* Content of pixels in mask
features float* The feature vector output by the

object detection method.
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-> Uses videos as virtual relations

- Each tuple = one obj in a frame content

= Automatically populates
€ nask,class,and features from object detection method
€ <trackid from entity resolution method
€ timestamp and content from video's metadata
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The feature vector output by the
object detection method.




Field Type Description

timestamp float Time stamp
FrameQ L Da'ta MOdel class string Object class (e.g., bus, car)
mask (float, float)*  Polygon containing the object
of interest, typically a rectangle
trackid int Unique identifier for a continuous
- Uses videos as virtual relations time segment when the
o object is visible
- Each tUple = one Obj in a frame content float* Content of pixels in mask
. features float* The feature vector output by the
-> AUtO m atlcal |y pOPU IateS object detection method.

€ nask,class,and features from object detection method
€ <trackid from entity resolution method
€ timestamp and content from video's metadata
-> Ability to overwrite
€ Object detection methods
€ Entity resolution methods
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Syntactic
element
FCOUNT Frame-averaged count (equivalent to
F ra m e Q L Q u e ry FO rm at time-averaged count), i.e.,
COUNT (%) / MAX (timestamp)
ERROR WITHIN | Absolute error tolerance

Description

FPR WITHIN Allowed false positive rate
FNR WITHIN Allowed false negative rate
- GAP CONFIDENCE Confidence level
¢ Set GAP to an integ er GAP Minimum distance between returned frames

€ Ensures the returned frames are at least GAP frames apart when user selects timestamps

=> ERROR WITHIN
€ Specify error bounds (maximum absolute error, false positive error, and false negative error)
and confidence levels
€ Supplies fast responses to exploratory queries and may tolerate some error
=> FCOUNT

€ Shortcut to return a frame averaged count
€ Normalized way to compute errors
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Comparison to prior languages

-> Proposed schemas and assume relation is already populated
€ Data created by humans

-> Blazelt automatically populates FrameQLs relation
-> FrameQLls schema is virtual

€ Rows only populated when needed for specific queries
€ Allows for variety of optimizations




Query
Optimization

Optimizing Aggregates, Optimizing Limit Queries



Optimizing Aggregate Queries

Data: TMAS, unseen video,
uerr <— user’s requested error rate,
conf < user’s confidence level
Result: Estimate of requested quantity
if training data has instances of object then
train specialized NN on TMAS;
err < specialized NN error rate;
T < average of specialized NN over unseen video;
if P(err < uerr) < conf then
| return T;
else
M4 m=m+c-(a—a)
return m;
end

else
] Return result of random sampling.;
end
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Optimizing Aggregate Queries

1. Process TMAS training data
2. Isthere less than 1% of training data has instances of the object
a. Not enough data (i.e. <= 1%)?
i. Default to random sampling (an adaptive sampling algorithm incorporating info from
query and TMAS)
b. Enough data (i.e. >1%)?
i. Train the specialized NN by selecting the number of classes equal to the highest count
that is at least 1% of the video plus one
ii. Estimate the error rate on TMAS held out data
1. Error smaller than specified error at confidence level?
a. Trained specialized NN is accurate enough and can be executed on unseen
data and returns an answer
2.  Error larger?
a. Trained specialized NN is not accurate enough and instead used as a control
variate to approximate the statistic



Optimizing Aggregate Queries

-> If aggregation query has predicates (ex: count num of large red buses)
€ Similar to original algorithm
€ First applies predicates to training data
e Not enough data?

o Instead generate a specialized NN to count the most selective set of
predicates that contains enough data (ex: num of large buses OR num or
red buses)

o No training data still?
€ Standard sampling
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performing the object detection method over every frame and applying applicable
filters as in prior work (random sampling is also possible).

€ If there are examples, BLAZEIT will train a specialized NN to recognize frames that
satisfy the query.

€ BLAZEIT rank orders the unseen data by the confidence from the
specialized NN.

€ BLAZEIT will perform object detection in the rank order until

the requested number of events is found.
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Physical Operator and Selection

->  We train the specialized NN to predict counts rather than as a binary classifier of the
frames that satisfy the predicate or not
€ Alleviates class imbalance issue
€ Allows the trained specialized NN to be reused for other queries such as aggregation.

EX:
The user wants to find frames with at least one bus and at least five cars.

Then, BLAZEIT trains a single specialized NN to separately count buses and cars.
BLAZEIT use the sum of the probability of the frame having at least
one bus and at least five cars as its signal.

BLAZEIT takes the most confident frames until the requested
number of frames is found.



Physical Operator and Selection

=>» Multiple Object Classes: BLAZEIT trains a single NN to predict
each object class separately
€ e.g. Instead of jointly predicting “car” and “bus”’, the
specialized NN would return a separate confidence for “car
and “bus”
€ This results in fewer weights and typically higher
performance.

4

-> After results are sorted, full object detector is applied
until the requested number of events is found
or all the frames are searched.




Limit Queries with Multiple Predicates

- If there is sufficient training data in the TMAS, BLAZEIT can
execute the procedure above.

=> If there is not sufficient training data, BLAZEIT will train a
specialized NN to search for the most selective set of

predicates that contains enough data in a similar fashion to

generating an aggregation specialized NN.




Implementation

Video ingestion, Specialized NN training, Identifying objects across frames



Technologies Used

-

Languages

€ Python 3.5and C++
Framework

€ PyTorch v1.0, FGFA, Detectron

Libraries
€ OpenCV, MXNet v1.2

Algorithms
4 Mask R-CNN

Hardware

€4 1 NVIDIA Tesla P100 GPU
€ 2 Intel Xeon E5-2690v4 CPUs (56 threads)
€ System has 504 GB of RAM.




Implementation

-> Video ingestion
€ Resizes videos for NNs to 65x65 for specialized NNs, short side of 600 pixels for object
detection methods using standard ImageNet normalization

=> Specialized NN training
€ Train using PyTorch
€ Use tiny ResNet” architecture
e Modified version of standard ResNet

-> Identifying objects across frames

€ Use motion I0U to compute trackid
e Ex: with a set of objects in 2 consecutive frames, compute
pairwise |IOU for each object in two frames to detect similarity




Evaluation

Experimental Setup, Aggregate Queries, Cardinality-limited Queries, Specialized
Neural Networks



Experimental Setup

- 6 videos scraped from YouTube
- 6-11 hours of video per day where object
detection method can perform well
- Varying in object classes (car, bus, boat),
occupancy (12 to 90%), and average duration
(1.4s to 10.7s)
- 3 days of video for each webcam
- Training labels
- Threshold Computation
- Testing




Experimental Setup

; ; Avg. duration Distinct Detection
Video name Object  Occupancy of ob%ect inscene  count Length (hrs)

taipei 11.9%
64.4%

night-street 28.1%
rialto 89.9%
grand-canal 57.7%
amsterdam 44.7%
archie 51.8%

Target object detection methods
- Used pre-trained object detection
- Mask R-CNN pretrained on MS-COCO, FGFA pretrained on
ImageNet-Vid, and YOLOvZ pretrained on MS-COCO



Experimental Setup

Avg. duration Distinct Length (hrs) Detection Thresh

VSRR ORjese  GSaHAney of object in scene  count method

taipei bus 11.9% 2.82s 1749 33 FGFA 0.2
car 64.4% 1.43s 32367
night-street car 28.1% 3.94s 3191 27 Mask 0.8

rialto boat 89.9% 10.7s 5969 24 Mask 0.8
grand-canal boat 57.7% 9.50s 1849 18 Mask 0.8
amsterdam car 44.7% 7.88s 3096 33 Mask 0.8
archie car 51.8% 0.30s 90088 33 Mask 0.8

Data Preprocessing
- Only considered regions where objects are large relative the the size of the
frame
- Manually selected confidence thresholds for each video and object class
for when to consider an object present



Experimental Setup

Avg. duration Distinct Detection
of object in scene  count RSSOl R method el
taipei bus 11.9% 2.82s 1749 720p 33 FGFA 0.2
car 64.4% 1.43s 32367

Video name Object  Occupancy

night-street car 28.1% 3.94s 3191 720p 27 Mask 0.8
rialto boat 89.9% 10.7s 5969 720p 24 Mask 0.8
grand-canal boat 57.7% 9.50s 1849 1080p 18 Mask 0.8
amsterdam car 44.7% 7.88s 3096 720p 33 Mask 0.8
archie car 51.8% 0.30s 90088 2160p 33 Mask 0.8

Evaluation Metrics

- Object detection = ground truth
- -> absolute error & -> throughput
- Throughput was measured by timing the complete end-to-end system
excluding the time to decode the video
- Considered accuracy at the frame level
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Aggregate Queries

- 6 aggregate queries across 6 videos

- 5 variants of each query
1. - object detection on every frame
2. - object detection on every frame

with the object class present

3. - randomly sampled from the video
4, - use specialized NNs and control variates
5 - excluded the training time




Aggregate Queries - Query rewriting

b) night-street .
- End-to-end runtime of aggregate

queries where BLAZEIT rewrote

the query with a specialized

d) grand-canal network

- measured in seconds (log
scale)

- BLAZEIT outperforms all
baselines
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Aggregate Queries - Query rewriting

b) night-street

Runtime (s)

d) grand-canal
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Using Specialized NNs

Table S: Average error of 3 runs of query-rewriting using a spe-
cialized NN for counting. These videos stayed within € = 0.1.

Video Name Error
taipei 0.043
night-street  0.022
rialto -0.031

grand—-canal 0.081
amsterdam 0.050



Aggregate Queries - Sampling and controlvariates

a) taipei b) night-street

— - Sample complexity of random
| BEANS sampling and BLAZEIT with
control variates

) rialto d) grand-canal

e) amsterdam f) archie

61«

Error (absolute) Error (absolute)



Aggregate Queries - Sampling and controlvariates

a) taipei b) night-street

— - Sample complexity of random
convol | 15 sampling and BLAZEIT with
control variates
) rialto d) grand-canal
- Control variates via specialized
NNs can deliver up to 1.7 times
reduction in sample complexity

e) amsterdam f) archie

61«

Error (absolute) Error (absolute)



a) taipei

c) rialto

e) amsterdam

{V < D H
g & &3

Error (absolute)

b) night-street

d) grand-canal

f) archie

> v O
S &S

Error (absolute)

Aggregate Queries - Sampling and controlvariates

Sample complexity of random
sampling and BLAZEIT with
control variates

Control variates via specialized
NNs can deliver up to 1.7 times
reduction in sample complexity

As the correlation between the
specialized NNs and object
detection method decreases, the
sample complexity increases



Aggregate Queries - Sampling with predicates

Runtime (s)

Runtime (s)
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b) night-street

3.6x 35X 4.6x  4.6x

d) grand-canal

Runtime of BLAZEIT and baselines for
aggregation queries with predicates

Control variates via specialized NNs
can deliver up to 1.5 times speedup
compared to naive AQP



Aggregate Queries - Sampling with predicates

Runtime (s)
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b) night-street

36X 35 o 46

d) grand-canal

5.2x

ﬁ] 7.4x  7.4x

e) amsterdam f) archie

Runtime of BLAZEIT and baselines for
aggregation queries with predicates

Control variates via specialized NNs
can deliver up to 1.5 times speedup
compared to naive AQP



Cardinality-limited Queries

- Frames of interest are returned to the user, up to the requested
number of frames

- Selected rare events with at least 10 instances

- If user queries more than max # of frames, BLAZEIT must inspect
every frame

Video name Object Number Instances
taipei car 70
night-street car 29
rialto boat 51

grand-canal boat 23
amsterdam car 86
archie car 102




Cardinality-limited Queries '

- Report the runtime and sample complexity ‘
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Cardinality-limited Queries

- Report the runtime and sample complexity
- 5variants of each query

1.

2.

3.

o B

- object detection sequentially until requested # of frames
is found
- object detection over the frames containing
object class(es) of interest until requested # of frames is found
- randomly sampled the video until requested # of

frames is found

- specialized NNs as a proxy signal to rank the frames

- assume the specialized NN has been trained

and run over the remaining data



Cardinality-limited Queries - Single Object Class

b) night-street

Runtime (s)

d) grand-canal

5.5x
43.4x
182.4x 232.3x
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e) amsterdam f) archie

Runtime (s)

14.8x 15.3x

BLAZEIT can achieve over a 1000
times speedup compared to
baselines
- BLAZEIT's specialized NNs can
serve as a high-fidelity signal



Cardinality-limited Queries - Single Object Class

b) night-street
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f) archie

Runtime (s)

BLAZEIT can achieve over a 1000
times speedup compared to
baselines
- BLAZEIT's specialized NNs can
serve as a high-fidelity signal

BLAZEIT's sample complexity
remains nearly constant forup to 5
cars (search for common objects)
- Shows efficacy of biased
sampling



Cardinality-limited Queries - Multiple Object Class
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Cardinality-limited Queries - Multiple Object Class

- End-to-end runtime of finding at
12.0x least 1 bus and 5 cars in ‘taipei’

Runtime (s)

Naive Binary Sampling Blazelt Blazelt
Oracle (indexed)

| - Sample complexity when searching
//" i for at least 1 bus and 5 cars
Oracle
= Sampling
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Cardinality-limited Queries - Limit queries with|predicates

a) taipei b) night-street

- Runtime of BLAZEIT and baselines
on limit queries with predicates
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- Especially outperforms
baselines on queries that have
few matches
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Specialized Neural Networks

Effect of NN type
- ResNet (referred to as TRN10)
- Requires significantly fewer

samples compared to
NOSCOPE NN

Effect of Training Data
- Error decreases until 150,000
training samples
- Increases potentially due
to overfitting

Abs. error

100 150
Data (thousands)




Results '

1. BLAZEIT achieves up to 14 times speedup ‘
over AQP on aggregation queries

2. BLAZEIT achieves up to an 83 times speedup
compared to the next best method for video
limit queries
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Blazelt

-> There was a need for a speed up in querying videos for semantic information
with less emphasis on complex coding




Blazelt

-> There was a need for a speed up in querying videos for semantic information

with less emphasis on complex coding
€ The answer is BLAZEIT!




Blazelt
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There was a need for a speed up in querying videos for semantic information
with less emphasis on complex coding

€ The answer is BLAZEIT!

Uses FrameQL as its declarative language

Optimizations for aggregation and limit querying

€ 14x speedup on aggregation queries
€ 83x speedop on limit queries

Retains accuracy guarantees despite potential inaccurate specialized NNs




Thank you!



Related Works



Related Works

> AQP
€ Result of query returned quickly by subsampling the data
€ Blazelt uses variance reduction with control variates through specialized NNs to reduce the
cost of creating a tuple
-> Visual Data Management

€ Use classic computer vision techniques for semantic queries
€ Blazelt uses FrameQL, an extension of SQL, to automatically populate these fields

-> Modern Video Analytics
€ NOSCOPE, Focus, and Tahoma cannot adapt to user queries or optimize training time on
specialized NNs
€ Blazelt has optimizations to allow for aggregation and limit querying




Optimizations

Query Specific NNs Problem statement

Lorem ipsum dolor sit Ut enim ad minim Excepteur sint occaecat
amet, consectetur veniam, quis nostrud cupidatat non proident,
adipiscing elit, sed do exercitation sunt in culpa qui officia
eiusmod tempor deserunt mollit anim id
incididunt ut labore et * Duis aute irure dolor est laborum.

dolore magna aliqua. in reprehenderit in

voluptate velit
Ut enim ad minim
veniam, quis nostrud




Challenges deep-dive

Challenge 1 Challenge 2 Challenge 3

Expand audience

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit, sed do
eiusmod tempor
incididunt ut labore et
dolore magna aliqua.

Up 30-day actives

Ut enim ad minim
veniam, quis nostrud
exercitation

Duis aute irure dolor
in reprehenderit in
voluptate velit

Increase conversion

Excepteur sint occaecat
cupidatat non proident,
sunt in culpa qui officia
deserunt mollit anim id
est laborum.



Use Cases

-

e 2
e 4
e 2

Urban planning

Autonomous vehicle analysis
Store planning

Ornithology



Lorem ipsum dolor sit Lorem ipsum dolor sit Lorem ipsum dolor sit
amet, consectetur amet, consectetur amet, consectetur
adipiscing elit adipiscing elit adipiscing elit

T

Lorem ipsum dolor sit Lorem ipsum dolor sit
amet, consectetur amet, consectetur
adipiscing elit adipiscing elit
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Impact

XX% sales increase




Why does specialized NN work??

 “| want to know when buses pass by this intersection in Taipei
using YOLOv2”
* Who cares about toilets, cats, skis, ...?

* Who cares about buses from different perspectives?
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Why does specialized NN work??

 “| want to know when buses pass by this intersection in Taipel
using YOLOv2”

Buses are similar from the
perspective of the webcam!



Exploiting scene-specific locality:
specialized CNNs
* |dea: train smaller, faster scene-specific CNN

* 1. Run big CNN over stream to obtain labels
« 2. Train smaller, specialized CNN over labels
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Proxy models are much smaller

Mask R-CNN Blazelt proxy model
e 152 convolutional |ayer8 10 convolutional |ayers
« 64-1024 filters per layer 16-64 filters per layer
e 3 fps
15,000 fps
~150 billion FLOPS ~10 million FLOPS

15,000x fewer FLOPS
5,000x faster execution



Specialization = Model Compression

Model compression/distillation: lossless models
. Goal: smaller model for same task as reference model
. Result: typically 2-10x faster execution

Specialization: perform “lossy” compression of reference model
. A specialized model does not generalize to other videos...
. ...but is accurate on target video, can be 100-1000x faster



Physical Representation-base

Optimization for a Visual Analyt

Modern content extraction techniques are
accurate but expensive — can we reduce
the cost of visual content queries using
inexpensive classifiers?

Evaluates a large number of cascade
classifiers to optimize both the CNN
architecture and input data
representation

Introduces the idea of using specialized
candidate binary-classification CNNs to
reduce inference cost

Predicate

ics Database

2019 IEEE 35th International Conference on Data Engineering (ICDE)

Physical Representation-based Predicate
Optimization for a Visual Analytics Database

Michael R. Anderson Michael Cafarella
University of Michigan University of Michigan
mrander@umich.edu michjc@umich.edu

Abstract—Querying the content of images and video requires
expensive content extraction methods. Modern extraction tech-
niques are based on deep convolutional neural networks (CNNs)
and can classify objects within images with astounding accuracy.
Unfortunately, these methods are slow: processing a single image
can take about 10 milliseconds on modern GPU-based hardware.
As massive video libraries become ubiquitous, running a content-
based qum over millions of video frames is prohibitive.

One g approach to reduce the runtime cost of queries
of visus content 1 6o use  hierarchical model, such a5 a cascade,
where simple cases are handled by an inexpensive classifier.
Prior work has sought to design cascades that optimize the
computational cost of inference by, for example, using smaller
CNNs. However, we observe that there are critical factors besides

time. Notably, by treating the ph;
image as part of our query optimization—that is, by including
image transformations such as resol scaling or color-depth
reduction within the cascade—we can optimize data handling
costs and enable drastically more efficient classifier cascades.
In this paper, we propose TAHOMA, which generates and
evaluates many potential classifier cascades that jointly optimi:
the architecture and input data representation. Our ex-
periments on a subset of ImageNet show that TAHOMA’s input
transformations speed up cascades by up to 35 times. We also
find up to a 98x speedup over the ResNet50 classifier with no loss
in accuracy and a 280x speedup if some accuracy is sacrificed.

1. INTRODUCTION

Recent developments in computer vision have made feasible
a long-term dream for the database community: a visual

Thomas F. Wenisch
University of Michigan
twenisch@umich.edu

German Ros*
Intel Labs
german.ros @intel.com

CNN was first used [28]. Recent results have lowered the error

rate to 2% [20), rivaling or exceeding human performance.
Unfortunately, deep networks pose a considerable compu-
tational challenge when deployed in an analytical database
system: a model’s inference for a single image can require a
lengthy series of large tensor multiplications. For example,
YOLOV2, an object detection system designed for speed,
requires 8.52 billion operations per single 416x416 pixel image,
processing about 67 images per second on a modern GPU [38].
Since GPU hardware is far more expensive than most image
sensors, data from multi-camera applications will soon outpace
g capabil Simply, to query huge amounts of

we need drastically lower processing cost:

essing queries over a corpus of image data fits a more
general loop-and-test pattern that is common to many machine
learning tasks: the processor loops over the data, executing an
expensive operator on each element to find those satisfying the
ask’s constraints. In this case, content is extracted from each
image by the expensive inference stage of a deep network to
determine if the image satisfies a binary predicate specified in a
user’s quer, While a loop-and-test process can be shortened by
processing fewer items overall—using simple sampling or more
sophisticated input selection [4]—we focus here on speeding

up the zest phase by reducing the per-image inference cost.
Recent work has reduced inference times for these types of
deep leamning systems (c.g., [17], [26]). However, we note that
all of the visual data system optimizations to date suffer from
a critical defect: they concentrate only on computation and
ignore the inevitable data-handling costs, such as loading and




NoScope: Optimizing N
over Video at Scale

Accelerating neural network video
analysis via inference-optimized
model search

Trains a cascade of difference
detectors and specialized models to
mimic the behavior of a reference
model but three orders of magnitude
faster

Integrates these two types of models
using cost-based optimization to
match a target accuracy

eural Network Queries

~
—
S
N
&n
=
<
o0
—
/M
A
7]
o
—_

NoScope: Optimizing Neural Network Queries
over Video at Scale

ohn Emmons, Firas Abuzaid, Peter Bailis, Matei Zaharia
Stanford InfoLab
noscope@cs.stanford.edu

ABSTRACT

Recent advances in computer vision—in the form of deep neural
networks—have made it possible to query increasing volumes of
video data with high accuracy. However, neural network inference is
computationally expensive at scale: applying a state-of-the-art object
detector in real time (i.e., 30+ frames per second) to a single video
requires a $4000 GPU. In response, we present NOSCOPE, a system
for querying videos that can reduce the cost of neural network video
analysis by up to three orders of magnitude via inference-optimized
model search. Given a target video, object to detect, and reference
neural network, NOSCOPE automatically searches for and trains a
sequence, or cascade, of models that preserves the accuracy of the
reference network but is specialized to the target video and are there-
fore far less computationally expensive. NOSCOPE cascades two
types of models: specialized models that forego the full generality of
the reference model but faithfully mimic its behavior for the target
video and object; and difference detectors that highlight temporal
differences across frames. We show that the optimal cascade architec-
ture differs across videos and obje: 0 NOSCOPE uses an efficient
cost-based optimizer to search across models and cascades. With
NOSCOPE achieves two to three order of magnitude
26 ,500 real-time) on binary classification tasks
ngle webcam and surveillance video while maintaining

ithin 1-5% of state-of-the-art neural networks.

INTRODUCTION
Video represents a rich source of high-value, high-volume data:
video comprised over 70% of all Internet traffic [2] in 2015 and over
300 hours of video are uploaded to YouTube every minute [3]. We
can leverage this video data to answer queries about the physical
world, our lives and relationships, and our evolving society.
Itis increasingly infeasible—both too costly and too slow—to rely

Tracitional Deep Neural Network Inference (Frame by Frame)

Diference Detector  Specialized Model
100K fos 7K fps

Gascade Architecture Search via Cost-Based Optimization

Figure 1: NOSCOPE is tem for accelerating neural network ana

videos via inference-optimized model search. Given an input video, target
object, and reference neural network, NOSCOPE automatically searches for
and trains a cascade of models—including difference detectors and specialized
networks—that can reproduce the binarized outputs of the reference network
with high accuracy—but up to three orders of magnitude faster.

vision methods due to their incredible accuracy—often rivaling or ex-
ceeding human capabilities—in visual analyses ranging from object
classification [82] to image-based cancer diagnosis [31,95].
Unfortunately, applying NN to video data is prohibitively expen-
sive at scale. The fastest NNs for accurate object detection run at
30-80 frames per second (fps), or 1-2.5x real time (e.g., 50 fps on
an NVIDIA K80 GPU, ~$4000 retail, $0.70-0.90 per hour on clou
80 fps on an NVIDIA P100, ~$4600 retail) [79-81]." Given con-
tinued decreases in image sensor costs (e.g., < $0.65 for a 640x480
'VGA CMOS sensor), the computational overheads of NNs lead to
a three order-of-magnitude imbalance between the cost of data ac-
quisition and the cost of data processing. Moreover, state-of-the-art
NN continue to get deeper and more costly to evaluate; for example,




Optimizing Video Analytics with Declarative

Model Relationships

Previous optimizations are difficult to
use on complex queries with multiple
predicates and models

Proposes the idea of Relational
Hints, which suggests ML model
relationships based on domain
knowledge (CAN REPLACE / CAN
FILTER)

VIVA is a new visual analytics system
that uses relational hints to optimize
video dataset queries

Optimizing Video Analytics with Declarative Model Relationships

Francisco Romero”

Johann Hauswald" Aditi Partap

Stanford University Stanford University & Stanford University

faromero@stanford.edu Sutter Hill Ventures

aditi712@stanford.edu

johannh@stanford.edu

Daniel Kang Matei Zaharia

Christos Kozyrakis

Stanford University Stanford University Stanford University

ddkang@cs stanford.edu
ABSTRACT

The availability of vast video collections and the accuracy of ML
models has generated significant interest in video analytics sys-
tems. Since naively processing all frames using expensive models
is impractical, researchers have proposed optimizations such as
selectively using faster but less accurate models to replace or filter
frames for expensive models. However, these optimizations are
difficult to apply on queries with multiple predicates and models, as
users must manually explore a large optimization space. Without
significant systems expertise or time investment, an analyst may
manually create an execution plan that is unnecessarily expensive
and/or terribly inaccurate.

We propose Relational Hints, a declarative interface that allows
users to suggest ML model relationships based on domain knowl-
edge. Users can express two key relationships: when a model can
replace another (CAN REPLACE) and when a model can be used
to filter frames for another (CAN FILTER). We aim to design an
interface to express model relationships informed by domain specific
knowledge and define the constraints by which these relationships
hold. We then present the VIVA video analytics system that uses
relational hints to optimize SQL queries on video datasets. VIVA
automatically selects and validates the hints applicable to the query,
generates possible query plans using a formal set of transformations,
and finds the best performance plan that meets a user’s accuracy
requirements. VIVA relieves users from rewriting and manually
optimizing video queries as new models become available and exe-
cution environments evolve. We evaluate VIVA implemented on

ark and show that hints improve performance up to 16.6X
without sacrificing accuracy.

PVLDB Reference Form:

matei@cs.stanford.edu

christos@cs.stanford.edu

1 INTRODUCTION

Video analytics, the ability to extract insights from video, is enabled
by increasingly accurate machine learning (ML) models and ac-
cess to large archives of professionally produced content or videos
captured by devices like cellphones, security cameras, and video-
conference systems. While we can already answer queries over
videos like “have any cars passed this intersection that match an
AMBER alert?”, several challenges remain before video analytics
are as practical and as performant over analytics on structured data.
For complex video analytics queries with multiple predicates or ML
models, users must manually optimize their queries to avoid the
high cost of naively executing large models on every frame using
expensive hardware. For example, it takes over 14 GPU-months to
process 100 camera-months of video using a very accurate YOLOVS
model for object detection [55

Consider an analyst studying political coverage of major ca-
ble news channels that writes a query to find instances of Bernie
Sanders, a politician, reacting angrily to Jake Tapper, a TV news
host [20]. Their query may use object detection to find scenes with
two people, face recognition to find instances of Jake Tapper and
Bernie Sanders, and emotion detection to detect angry reactions.
This query can take minutes to execute using unnecessarily ac-
curate models, even on small video inputs, making it challenging
for the analyst to interactively explore their dataset. To improve
performance, the analyst may use domain knowledge to explore
the following model optimizations:
® Replacement: use a different model for a task, such as a cheaper

but less urate object detector [25, 27, 28, 47).
 Input Filtering: use a fast model to filter inputs to an expensive

model [26, 36, 63]. For example, insert a binary classifier to detect




RECL: Responsive Resource-Efficient

ontinuous Learning for Video

Extend visual analytics frameworks to
support continuous learning
capabilities (model reusing and online
retraining)

Creates a “model zoo” of previously
trained expert models, enabling
historical model reuse — selects a
highly accurate expert model from
this model zoo — dynamically
optimizes GPU allocation for
retraining

Analytics

RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics

Mehrdad Khani'2, Ganesh Ananlhanarayananz, Kevin Hsieh?, Junchen J iang", Ravi Netravali®,
Yuanchao Shu®, Mohammad Alizadeh!, Victor Bahl?
University of Chicago, * Princeton University, Zhejiang University

Abstract

Continuous learning has recently shown promising results
for video analytics by adapting a lightweight “expert” DNN
model for each specific video scene to cope with the data drift
in real time. However, current adaptation approaches either
rely on periodic retraining and suffer its delay and significant
compute costs or rely on selecting historical models and
incur accuracy loss by not fully leveraging the potential of
persistent retraining. Without dynamically optimizing the
resource sharing among model selection and retraining, both
approaches have a diminishing return at scale. RECL is
a new video-analytics framework that carefully integrates
model reusing and online model retraining, allowing it
to quickly adapt the expert model given any video frame
samples. To do this, RECL (i) shares across edge devices
a (potentially growing) “model zoo” that comprises expert
models previously trained for all edge devices, enabling history
model reuse across video sessions, (ii) uses a fast procedure to
online select a highly accurate expert model from this shared
model zoo, and (iii) dynamically optimizes GPU allocation
among model retraining, model selection, and timely updates
of the model zoo. Our evaluation of RECL over 70 hours of
real-world videos across two vision tasks (object detection and
cation) shows substantial performance gains compared
, further amplifying over the system lifetime.

1 Introduction
Video analytics with deep neural networks (DNNs) is a
g technology adopted in a wide range of applications
such as enterprise security, retail, traffic management, and
transportation [1,2]. Across these applications, it is often
imperative to run analy s directly on edge devices

DNNG [15-18]. However, owing to their inherent limits on the
number of object appearances and scenes they can learn in their
condensed structures, such specialized DNNs require contin-
uous retraining to cope with dynamic scenes (data drifts) in
order to maintain high inference accuracy. Recent work in the
computer vision and systems communities [19-21] has shown
the effectiveness of this approach for edge video analytics, de-
livering both high resource efficiency and accuracy in results.

Though promising, continuous retraining and deploying
specialized DNNs has two fundamental limitations. First,
continuous retraining consumes the vast majority of compute
resources in these video analytics systems (70%—90% in our
study) [20, 21], making model retraining the key bottleneck
in scaling video analytics to more video streams with limited
compute resources. Our study (Fig. 2) shows that accuracy
drops sharply (by 40% in object detection) as 4x more
cameras share the GPU cycles to retrain their models (§2.2).
Second, it takes time to retrain specialized DNNs, and abrupt
video scene changes inevitably lead to drastic accuracy drops
until the retraining is completed (see Fig. 3 for an example).
He fundamentally challenging to uphold the accuracy
lower tail during the retraining.

Our goal in this work is to address the above two fundamen-
tal limitations so that video analytics are scalable with more
consistent accuracy. As retraining specialized DNNs requires
resources and takes time, we aim to minimize the necessity
of retraining by judiciously reusing historical specialized
DNNss that are trained with past video segmen ji
behind our approach is that video streams typically exhibit
spatio-temporal correlations (e.g., a car drives back on
the same street or another car has been on the same street
before) . Thus, it is likely that the current video segment




Semantic Indexes for Machine
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Queries over Unstructured Data [SIGMO

* Downsides of query-specific proxy models

« have to be trained per query
* require non-trivial amount of labels

D'22)]

e can not easily share computation across different queries or query types.

* TASTI: Learn embeddings to cluster semantically similar records
* e.9., video frames with similar object types and object positions are close
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Blazelt: Optimizing Declarative Aggregation
and Limit Queries for Neural Network-Based
Video Analytics

Industry Practitioner - Ankith Reddy Chitti (Kroger)




What is Blazelt:

Blazelt is a system that optimizes queries concerning spatiotemporal information of objects
in video. It uses the novel FrameQL to accept queries and enable video specific query
optimization.

Unlike prior work Blazelt is mainly aimed at optimizing aggregation and limit queries:

e Uses Neural Networks as control variates to optimize aggregation queries.
e Forlimit queries, specialized Neural Networks are used to bias search towards regions
with a high probability of the event.

Blazelt focuses on batch setting and can deliver up to 83x speedups over similar systems on
video analytics.



Blazelt for store planning:

Retail Video Analytics:

e Discovery, interpretation, and communication of meaningful patterns in data from video content, and

applying those patterns towards effective decision-making.
e Provides retailers with insightful business intelligence such as store traffic statistics and queue data.

Benefits:
e Maximize store layout and navigation.
e Manage store traffic.
e Streamline checkout.
e Optimize promotions and product displays.



Kroger’s spent just under $100 million on promotional material regarding new product launches, cross
merchandising and discount sales across all its stores in 2023 alone.

However in the most recent quarter, the company posted a net loss of $180 million. It is imperative we start to look
at ways to cut down our losses and generate more revenue.

blazelT

Blazelt with its optimizations for aggregation and limit queries can provide valuable insights that can be used
to formulate effective promotions and display designs.

Both of BLAZEIT’s novel optimizations share a key property: Accuracy guarantees are always upheld.

Empirical tests show Blazelt runs upto 83X faster compared to other similar systems in the domain.

[1] https://advertisers.mediaradar.com/kroger-advertising-profile#NewProducts
[2] https://www.cnbc.com/2023/09/08/kroger-kr-earnings-q2-2023.html



https://advertisers.mediaradar.com/kroger-advertising-profile#NewProducts

Blazelt and in-store marketing campaign

Rapidly changing consumer behavior and preferences are leading retail chains to overhaul their marketing campaigns and In-store
marketing tactics.

According to Gartner, nearly 30% of marketing leaders believe lack of agility and flexibility negatively impacts marketing execution.
The Gartner survey also concluded that marketers are under immense pressure to deliver insights faster than ever before.

Video analytics via Blazelt not only gives us an accurate, and rapid real-time view of how consumer preferences are changing but
also allows us to execute marketing programs with a high degree of confidence.

Sample use-case wherein we can get the list of store_lanes for each hour that had a high customer footfall.

SELECT timestamp, store lane

FROM kroger atl

GROUP BY store lane

HAVING COUNT (class='customer')>=15
GAP 108000 // assume fps is 30.

This could help us streamline marketing operations and analyze customer dwell times / hotspots at specific locations.


https://www.gartner.com/en/newsroom/press-releases/2020-05-14-gartner-says-nearly-30--of-marketing-leaders-believe-

Another potential use-case

Blazelt can provide reliable data on footfalls for the entire store or for a specific department by date and time.
The information can be used to schedule in-house promotional displays effectively.

sssss

Gount Provious Wook [l Solectod Wook

[1] https://interfacesystems.com/blog/retail-video-analytics/



One potential drawback of Blazelt

Blazelt works best in the batch setting. Due to our continuous inflow of new video data, as the distribution might change,
Blazelt is susceptible to degraded execution. Note that the accuracy requirements will always be met irrespective of the
data.

This is not a big cause of concern since it can be mitigated by labeling a portion of new data or continuous retraining.

In summary, by integrating Blazelt, Kroger can improve its overall store efficiency, enhance
the shopping experience for its customers, and make data-driven decisions to remain
competitive in the highly competitive grocery industry



Thank You!




Discussion

How are FrameQL queries different from standard aggregate
gueries in AQP?

« UDFs that extract relational columns from unstructured inputs are
often very expensive
« Traditional query optimization (e.g., predicate pushdown) doesn’t work
* pre-computing is wasteful, especially to support ad-hoc queries

* UDFs and predicates are not deterministic
» Performance accuracy tradeoft

* Even "ground truth” object detection models contain errors



Discussion

ls FrameQL/SQL a good language for video analytics?

* Much better than working with raw pixel data

Does not require knowledge of neural network
—amiliar to SQL users

Declarativity allows for query optimization opportunities



Discussion

Is SQL a good language for video analytics?

« SOme queries might be hard to specify:

» Event/Action queries:

» A player passes the ball to one of his teammates but an opponent player tries to
intercept the ball

 Trajectory queries:
* A car turns left and then right
« Other query interfaces?
* Natural language
« Scene graph



