
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 25

11/21/22

1

Logistics
What’s happening in the rest of the semester:

11/23 (Wed): No class (Thanksgiving)

11/28 (Mon): additional OH during class time

11/30 (Wed): draft paper (due 4PM) and peer review (in class)

12/05, 12/07: final presentation (in class)

12/09 (Fri): final paper (due 5PM)

Grading breakdown
Project: 50%
• Proposal: 5%

• Progress Report: 5%

• Evaluation Plan: 5%

• Draft Paper + Peer Review: 5%

• Final Presentation: 10%

• Final Paper: 20%

Draft Paper
Due 11/30 @ 4PM
• Paper outline:

section and subsection header, main figures

• Draft paper:

expect some contents in the methods and evaluation sections

other sections can stay in outline form

https://www.overleaf.com/read/qrrzhwjvtqhq

Final Presentation
12/05, 12/07 in class
• 10 min + 2min questions

• 6 groups per class, randomized order (TBA next week)

• Attendance for both sessions are mandatory

• Grading will be based on course staff evaluation + peer evaluation

Final Paper
Due 12/09 @ 5PM
• >= 4 pages for one-person teams, >= 6 pages for everyone else

• no more than 8 pages

• Link to code

• Team Dynamics Assessment Form

Today’s class
Falx: Synthesis-Powered Visualization Authoring

Authors: Vishnu

Reviewer: Sankalp

Archaeologist: Yiheng

Falx: Synthesis-

Powered Visualization

Authoring

Presented by: Vishnu Krishnan

Chenglong Wang, Yu Feng, Rastislav
Bodik, Isil Dillig, Alvin Cheung, Amy J. Ko

What is Visualization?

What is Visualization?

Visualizations are mappings from data columns to

geometric properties.

- “The Grammar of Graphics” [Wilkinson 1999]

What is Visualization?

Visualizations are mappings from data columns to

geometric properties.

- “The Grammar of Graphics” [Wilkinson 1999]

Visualization in Practice

Can you find the problem?

Visualization in Practice

Problem – There exists a mismatch between the design

and the input data layout -> The input data layout

requires data transformations.

?

Usage Scenario

User Experience in R -

Layer – 1 transformation and visualization

Usage Scenario

User Experience in R -

Layer – 2 transformation and visualization

Usage Scenario

User Experience in Falx – Visualization by Example

Usage Scenario

User Experience in Falx – Visualization by Example

Similarly, the user creates a bar object.

User creates a Line object.

Usage Scenario

User Experience in Falx – Visualization by Example

System Architecture - Background

Program Synthesis –

• Programming-by-example (PBE) is a branch of program

synthesis that aims to synthesize programs that satisfy

input-output examples provided by the user

• Common technique - enumerative search using some cost

metric

• Cost metric can be a statistical models that estimate

likelihood of the program being correct or even models that

measures simplicity of programs.

System Architecture

System Architecture

Steps 1 – Visualization Decomposition

• Infers visualization layers from the user example.

• Partitions based on geometric type and property

• Creates 1 visualization layer for each group

• Creates one basic visualization and an example table.

• example table contains the same number of columns as the

number of visual channels in this layer

• visualization is specified as encodings(map columns to visual

channels)

• Fills table with values for each example table.

System Architecture

• Steps 1 – Visualization Decomposition

System Architecture

Steps 2 - Data Transformation Synthesis

• For each example table, the synthesizer aims to synthesize

a transformation program Pt, which can transform the input

table into a table that contains the example table

• Constructs sketches of transformation programs and

iteratively expands search tree and fills arguments in these

partial programs.

• Uses deduction pruning to prune infeasible partial

programs for efficiency. (dramatically reduces search

space)

System Architecture

Steps 2 - Data Transformation Synthesis

• Concrete programs encountered are added to candidate

pool and are sent to the post processor.

• Terminates on search space exhaustively searched or

search time budget reached.

System Architecture

Steps 2 - Data Transformation Synthesis

• Optimizations –

• Falx memorizes abstract interpretation results for partial

programs to allow reusing then whenever possible. (abstract

interpretation programs run expensive operators like

aggregation and pivoting on big tables.)

• Uses different Falx solver threads with different starting

program sketches to search different portions of the search

space in parallel allowing a larger pool findings. Made use of

timeout to enable responsivity.

System Architecture

Steps 2 - Data Transformation Synthesis

System Architecture

Steps 3 - Processing Synthesized Visualizations

• Generates visualizations by combining the visualization

program generated in step 1 with table transformation

programs generated in step 2.

System Architecture

Steps 3 - Processing Synthesized Visualizations

• For each data transformation program, Falx applies the

table transformation program on the input data to obtain a

transformed output and unifies the output table schema

with the schema in the visualization program.

• Instantiates previously omitted visualization details(scale,

domain, etc) and compiles the visualization program into

Vega-Lite (or R) script through syntax-directed translation.

• Finally, Falx groups and ranks the visualizations based on

the complexity of the programs (numbers of expressions).

Evaluation: User Study

Participants – 2 groups

Falx

16 participants (10 M, 5 F, 1 Unknown, Ages 23-51)

6 experienced(10+) , 8 moderate (1-10), 2 beginner (0)

Baseline

17 participants(12 M, 4 F, Ages 19-60)

8 experienced(10+) ,9 moderate (1-10), knew R

Evaluation: User Study

Conducted user study with 4 different scenarios –

Evaluation: User Study

Conducted user study with 4 different scenarios –

Evaluation: User Study

• We chose R as the baseline tool due to its popularity

among data analysts and its ability to support both data

transformations and visualizations.

• We provided as input a table that can be directly imported

into the tools

• Explicitly described visualization designs to the participants

in text he same context.

• Outcomes –

• Correct

• Wrong

• Give up

Evaluation: User study results

Falx users

performed better

and more

consistently

statistically

significant

difference in

the completion

rate in the car
sales

visualization

(p < 0.05)

Evaluation: User study results

• Using Wilcoxon rank sum test with Holm’s sequential

Bonferroni procedure for p value correction significant

improvement in user efficiency for car sales visualization

and electric usage visualization

• While Falx participants were also generally faster in the

other two tasks no significant difference.

Qualitative Interview Results

Task Experience -

• Finding the right visualization function

• Data transformation

• Learning to create expressive visualizations.

Workflow Implications –

• Create visualizations for discussions and presentations

• Prototyping complex analysis

• Reduce team collaboration effort

Limitations –

• “very high standard visualizations”

• “deep integration with other tools” – data cleaning

Conclusion

Falx users were able to effectively adopt Falx to solve

visualization tasks that they could otherwise cannot solve,

and in some cases, they do so more quickly.

Visualization Learning – Help beginner analysts learn

Bootstrapping Complex Data Analysis - Falx could expose

synthesized programs during the synthesis process and allow

users to steer the synthesis process to better disambiguate

results.

Future Work

Falx: Synthesis-Powered
Visualization Authoring

Wang et.al. (CHI 2021)

Reviewer role : Sankalp

Summarizing…
● Extremely common scenario: input data format —- mismatch —- intended visualization
● Expertise in data transformation tool/language needed to remove mismatch
● Falx : a tool that takes a small example visualization as input, and shows candidate visualizations
● Automates data transformation steps and visualization program creation steps

● Flow:
○ Example visualization -> visualization program + example table T
○ Start from input table Tin, find a sequence of operations Pt s.t. Pt(Tin) contains T
○ If candidate sequence found, combine it with visualization program and

recommend to user

Strong Points
● Extremely well written paper and easy to follow. Section 2 (Usage Scenario) provides great introduction
● Use of common running example throughout paper -> few cognitive context switches needed
● Relevance of problem: I could immediately relate to it. Data transformation is not fun!
● Reusability: Even if input comes with different layout, process of demonstrating a visualization example

remains same
● Quick ramp up: Multiple participants in user study mentioned that they learnt to use Falx quickly
● Approach of “X by example” seems to have established validity across domains:

○ Programming-by-example systems (PBE)
○ Query-by-example (QBE) systems for querying relational databases

● Seems to keep responsiveness in mind. Has used time budgets of 5-20 seconds.
● Power of technique well-illustrated. Converts construction problem to demonstration + verification

problem (easier)
● User study well-designed to test the claim of “enables novice data analysts (beginners in R) to create

visualizations fast”. Uses statistical significance tests while discussing results.

Opportunities for improvement
● After reading paper, no idea where approach fails

○ Paper talks of computational complexity blowup, but don’t know when / at what point / in what
scenario

○ A plot on “number of operators in data transformation” versus “time to generate sequence” would
have helped

○ User study examples do not require too many transformations, can’t glean information from this
● Data transformation synthesizer (step 2 in 3-step process) uses efficient algorithm to search for data

transformation programs
○ Would have appreciated more examples on pruning. Only one concrete example given (prune

cumsum operator path since leads to increase in # columns)
● Is the system customizable enough? Meaning, is the set of operators in tidyverse library to construct data

transformation pipeline complete? Not sure, and not clarified in paper
● Power users of R (one of two groups in the user study) could have been asked to then use Falx and see

their impressions on it

Overall evaluation?

Accept!
A well-written paper identifying a relevant

problem and reusing techniques from multiple
disparate fields to solve it.

Thank you!

(also to Professor Rong and Kaushik for a well
conducted course! I enjoyed it :))

Falx: Synthesis-Powered
Visualization Authoring

Archaeologist: Yiheng Mao

Short summary of the paper

The paper presents a synthesis-powered visualization tool called Falx,
which enable users to create a visualization design and receive
suggestions for the design using visual encoding examples without the
need to manually specifying the visualization or spending significant
effort on data transformation.

Empirical studies show users were able to effectively adopt Falx to solve
visualization tasks that were very difficult, and in some cases, do so in
greater efficiency.

Timeline of synthetic visualization studies

Visualization by example

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022

https://www.overleaf.com/read/qrrzhwjvtqhq

Visualization by example

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022

From a program synthesis perspective, automating
visualization tasks poses two challenges:
First, because many visualization tasks require data
wrangling in addition to generating plots from a given
table, we need to decompose the end-to-end synthesis
task into two separate sub-problems. Second, because the
intermediate specification that results from the
decomposition is necessarily imprecise, this makes the
data wrangling task particularly challenging.

This paper implements a visualization-by-example
approach in a tool called Viser, that address these
problems by developing a new compositional
visualization-by-example technique that decomposes the
end-to-end task into two different synthesis problems over
different domain-specific languages and leverages
bi-directional program analysis to deal with the complexity
that arises from having an imprecise intermediate
specification.

Visualization by example

Scout: Interface Layout Exploration

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022

This paper presents Scout, a system that helps
visualization designers to rapidly explore alternatives
through mixed-initiative interaction with high-level
constraints and design feedback.

Prior constraint-based layout systems use low-level spatial
constraints and generally produce a single design. Scout
introduces high-level constraints based on design
concepts (e.g.,~semantic structure, emphasis, order) and
formalizes them into low-level spatial constraints that a
solver uses to generate potential layouts.

Visualization by example

Testing query execution engines with
mutations

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022 One challenge query optimizer engines face is that the
high cost of testing query execution engines often
prevents developers from making fast iteration during the
development process, which can increase the
development cycle or lead to production-level bugs.

To address this challenge, the authors propose a tool called
MutaSQL, that can quickly discover correctness bugs in
SQL execution engines.

MutaSQL generates test cases by mutating a query Q over
database D into a query Q′ that should evaluate to the
same result as Q on D. MutaSQL then checks the
execution results of Q′ and Q on the tested engine.

Visualization by example

Program Synthesis Using Deduction-Guided
Reinforcement Learning

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022 This paper presents a new program synthesis
algorithm based on reinforcement learning.
Given an initial policy (i.e. statistical model)
trained off-line, the algorithm uses this policy to
guide its search and gradually improves it by
leveraging feedback obtained from a deductive
reasoning engine.

Specifically, the authors formulate program
synthesis as a reinforcement learning problem
and propose a new variant of the policy gradient
algorithm that can incorporate feedback from a
deduction engine into the underlying statistical
model.

Visualization by example

Synthesizing analytical SQL queries from
computation demonstration

Scout: Interface Layout
Exploration

Query execution engines with
mutations

Program Synthesis Using
Deduction-Guided Reinforcement
Learning

Falx: Synthesis-Powered
Visualization Authoring

Synthesizing analytical SQL
queries from computation
demonstration

Dec 2019

April 2020

June 2020 July 2020

May 2021

May 2022

The partitioning and grouping operators in analytical SQL
could be challenging for novice users. Unfortunately,
programming by example, shown effective on standard
SQL, are less attractive because examples for analytical
queries are more laborious to solve.

To make demonstrations easier to author, they designed a
new end-user specification implemented as Sickle, that
allows the user to demonstrate the task using a (possibly
incomplete) cell-level computation trace, which, through a
new abstraction-based synthesis algorithm, allows the
system to prune the search tree.

Visualization by example

Thank you!

Any questions?

Additional reading
Transform-data-by-example (TDE): an extensible search engine for data
transformations

• Support data transformation functions crawled from GitHub

The data visualization landscape

Discussion
What’re your favorite papers in this section and what have you learned
from the paper?

• Explanation: MacroBase, Slice Finder, Domino

• Recommendation: SeeDB, Lux, MCP

• Interfaces: Vega-lite, Qetch, Falx

Next class
What’s happening next:

11/23 (Wed): No class (Thanksgiving)

11/28 (Mon): Additional OH during class time

11/30 (Wed): Draft paper (due 4PM) and peer review (in class)

Happy Thanksgiving!

