
CS 8803-MDS
Human-in-the-loop Data
Analytics
Lecture 23

11/14/22

1

Logistics
Office hour change

10-11AM this Friday

Evaluation plan due this Friday

Today’s class
Investigating the Effect of the Multiple Comparisons Problem in Visual
Analysis

Archaeologist: Akshay

Vega-lite: A grammar of interactive graphics

Authors: Yanhao, Yiheng

Reviewer: Qiandong

Archaeologist: Haotian

Practioner: Aniruddha

Visualization design: the big picture
task

data

domain

physical type
float, int, etc.

abstract type
nominal, ordinal etc.

image

processing
algorithms

mapping

question & hypothesis

visual encoding

metadata, semantics

What: Data
Nominal (labels)

Fruits: Apples, oranges, …

Ordinal (rank-ordered, sorted)

Quality of meat: Grade A, AA, AAA

Interval (location of zero arbitrary)

Only differences (i.e. intervals) may be compared

Ratio (location of zero fixed)

Physical measurement: Length, Mass, Temp, … Counts and amounts

Why: Tasks

How: Visual Encodings
Position

Size

Value

Texture

Color

Orientation

Shape

…

Choosing a visual encoding
Challenge
Assume 8 visual encodings and n data attributes. We would like to pick
the “best” encoding among a combinatorial set of possibilities with size n8

Principle of Consistency
The properties of the image (visual variables) should match the properties
of the data.

Principle of Importance Ordering
Encode the most important information in the most effective way.

Violation of consistency
Incorrect use of a bar
chart. The lengths of bars
are interpreted as a
quantitative value.

Design Criteria (Machinlay, APT, 1986)
Effectiveness

A visualization is more effective than another visualization if the
information conveyed by one visualization is more readily perceived
than the information in the other visualization.
Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e.
the visualizations) in the language express all the facts in the set of
data, and only the facts in the data.

Mackinlay’s ranking

Conjectured
effectiveness of
the encoding

Which one is better?

Source: Vega-Lite Tutorial UC Davis

Which one is better?

Source: Vega-Lite Tutorial UC Davis

Which one is better?

Source: Vega-Lite Tutorial UC Davis

APT: Automatic Chart Construction
User formally specifies data model
APT searches over design space

Tests expressiveness of each visual encoding

Generates image for encodings that pass test

Tests perceptual effectiveness of resulting image

Outputs most effective visualization

Today’s class
Investigating the Effect of the Multiple Comparisons Problem in Visual
Analysis

Archaeologist: Akshay

Vega-lite: A grammar of interactive graphics

Authors: Yanhao, Yiheng

Reviewer: Qiandong

Archaeologist: Haotian

Practioner: Aniruddha

Vega-Lite: A
Grammar of
Interactive Graphics
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer

Presentor: Yanhao Wang, Yiheng Mao

Content

Intro and Background

01. 03.
Vega-Lite Compiler

02.
Vega-Lite Grammar Design

04.
Example Visualizations

• What’s Vega-lite
• Why Vega-lite

• Single View Specification
• Multi-view Composition
• Interactions

• Architecture

• Seven categories of
techniques

05.
Discussions & Conclusion

• Limitations
• Future work

Vega-Lite is a high-level grammar of interactive

graphics. It provides a concise, declarative JSON

syntax to create an expressive range of visualizations

for data analysis and presentation.

What’s Vega-Lite?

Vega-Lite is a high-level grammar of interactive

graphics. It provides a concise, declarative JSON syntax

to create an expressive range of visualizations for data

analysis and presentation.

What’s Vega-Lite?

Grammar of
graphics

Leland Wilkinson. “The Grammar of Graphics”

Grammar of graphics: ggplot

Wickham H. “ggplot2: Elegant Graphics for Data Analysis.”

Grammar of graphics: Vega-Lite

Axes & legends that visualize scales.

Functions that map data values to visual values.

Filter, aggregation, binning, etc.

Mapping between data and mark properties.

Data-representative graphics.

Input data source to visualize.

Vega-Lite is a high-level grammar of interactive

graphics. It provides a concise, declarative JSON syntax

to create an expressive range of visualizations for data

analysis and presentation.

What’s Vega-Lite?

Expressive, most flexibility
Verbose specification
Fine-grained control
Explanatory data analysis

Concise, least effort
Limited expressiveness
Rapid iteration
Exploratory data analysis

Visualization Building Block Stack

Visualization Building Block Stack

Vega-Lite is a high-level grammar of interactive graphics.

It provides a concise, declarative JSON syntax to create

an expressive range of visualizations for data analysis

and presentation.

What’s Vega-Lite?

Vega-Lite is a high-level grammar of interactive

graphics. It provides a concise, declarative JSON syntax

to create an expressive range of visualizations for data

analysis and presentation.

What’s Vega-Lite?

Support for interactivity is limited in existing high-level
languages
Use a predefined set of common techniques

Need to customize imperative event handling callbacks

 Linked selection, panning, zooming, etc.

Error-prone, require complex static analysis

Reactive Vega formulated declarative interaction
primitives, but…
Remains to be a low-level abstraction

Verbose specification, impedes rapid authoring and hinders systematic exploration of alternative designs

Vega-Lite is a high-level grammar of interactive graphics.

It provides a concise, declarative JSON syntax to create

an expressive range of visualizations for data analysis

and presentation.

What’s Vega-Lite?

Single-view
plots

Histogram

Stripplot

Multi-series Line Chart

Slope Graph

Wind Vector Map

Area Chart

Multi-view
plots &
Layered
plots

Layered View (Candlestick) Scatterplot Matrix

Faceted View
Concatenated View

Interactiv
e plots

Cross-Filtering

Brush Focus & Context

High-level visualization grammar like Vega-lite can serve as an
intermediate representation for…

A defined search space for potential
visualizations; textual, semantic
representation

Visualization generation

Enables filtering and
ranking visualizations

Recommendation
Enables systematic enumeration
of data transforms

Search & Inference

Why Vega-Lite?

Content

Intro and Background

01. 03.
Vega-Lite Compiler

02.
Vega-Lite Grammar Design

04.
Example Visualizations

• What’s Vega-lite
• Why Vega-lite

• Single View Specification
• Multi-view Composition
• Interactions

• Architecture

• Seven categories of techniques

05.
Discussions & Conclusion

• Limitations
• Future work

Single view specification

date temp. pp. weather

1/1 10.6 10.9 “rain”

1/2 11.7 0.8 “drizzle”

1/3 12.2 10.2 “rain”

… … … …

?

Bar chart, x=binned temp., y=count

Single view specification

date temp. pp. weather

1/1 10.6 10.9 “rain”

1/2 11.7 0.8 “drizzle”

1/3 12.2 10.2 “rain”

… … … …

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

Bar chart, x=binned temp., y=count

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

date temp. pp. weather

1/1 10.6 10.9 “rain”

1/2 11.7 0.8 “drizzle”

1/3 12.2 10.2 “rain”

… … … …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 "transform": [
 {"calculate": "datum.temp*1.8+32", "as": "f_temp"},
 {"filter": "datum.f_temp >= 86"}
],
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "f_temp",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

Transforms
• Aggregate
• Bin
• Calculate
• Filter
• …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "tick",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Channels
• X
• Y
• Color
• Shape
• Size
• Text
• Key
• Order
• Facet
• …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 },
 color: {

field: "weather",
type: "nominal"

 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Channels
• X
• Y
• Color
• Shape
• Size
• Text
• Key
• Order
• Facet
• …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 },
 color: {

field: "weather",
type: "nominal"

 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 },
 color: {

field: "weather",
type: "nominal"

 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Data Types
• Quantitative
• Nominal
• Ordinal
• Temporal

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 },
 color: {

field: "weather",
type: "nominal"

 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Functions
• Binning
• Aggregation
• Sorting
• …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {

 bin: true,
 field: "temperature",
 type: "quantitative”

 },
 y: {
 aggregate: "count",
 type: "quantitative"
 },
 color: {

field: "weather",
type: "nominal"

 }
 }
}

encoding := (channel, field, data-type, value, functions, scale, guide)

Scale:
f(data domain) -> Visual Range

Guide:
Visualize the scale (legend/axis)

Both with sensible default based
on channel & data-type

• Palette (continuous/discrete)
• Axis (linear/ordinal)
• …

Single view specification
unit := (data, transforms, mark-type, encodings)

{
 data: {url: "weather-seattle.json"},
 mark: "bar",
 encoding: {
 x: {...},
 y: {...},
 color: {

field: "weather",
type: "nominal",
scale: {
 domain: ["sun", "fog", "drizzle" ,"rain",

"snow"],
 range: ["#e7ba52", "#c7c7c7", "#aec7e8",

"#1f77b4", "#9467bd"]
}

 }

encoding := (channel, field, data-type, value, functions, scale, guide)

Layered & Multiview Specification

Concatenation Repeat

Layer Facet

Composition
Operators

Layer
layer ([unit1, unit2, ...], resolve)

{...
 "layer": [
 {
 "mark": "bar",
 "encoding": {
 "x": {"field": "date", "type": "temporal", "timeUnit": "month"},
 "y": {
 "field": "precipitation",
 "type": "quantitative",
 "aggregate": "mean",
 "axis": {"grid": false}
 },
 "color": {"value": "#77b2c7"}
 }
 },
 {
 "mark": "line",
 "encoding": {
 "x": {"field": "date", "type": "temporal", "timeUnit": "month"},
 "y": {
 "field": "temp_max",
 "type": "quantitative",
 "aggregate": "mean",
 "axis": {"grid": false}
 },
 "color": {"value": "#ce323c"}
 }
 }
]
}

Composite views
cannot be layered Default: shared scales, merged guides

Layer
layer ([unit1, unit2, ...], resolve)

{...
 "layer": [
 {
 "mark": "bar",
 "encoding": {
 "x": {"field": "date", "type": "temporal", "timeUnit": "month"},
 "y": {
 "field": "precipitation",
 "type": "quantitative",
 "aggregate": "mean",
 "axis": {"grid": false}
 },
 "color": {"value": "#77b2c7"}
 }
 },
 {
 "mark": "line",
 "encoding": {
 "x": {"field": "date", "type": "temporal", "timeUnit": "month"},
 "y": {
 "field": "temp_max",
 "type": "quantitative",
 "aggregate": "mean",
 "axis": {"grid": false}
 },
 "color": {"value": "#ce323c"}
 }
 }
],
 "resolve": {"scale": {"y": "independent"}}
}

Composite views
cannot be layered

Default: shared scales, merged guides
Specify (channel, scale/guide, independent/union)
to override the default behavior

Concatenation
{
 ...
 "vconcat": [
 {
 "mark": "bar",
 "encoding": {
 "x": {
 "timeUnit": "month",
 ...
 },
 "y": {
 "aggregate": "mean",
 ...
 }
 }
 },
 {
 "mark": "point",
 "encoding": {
 "x": {
 "field": "temp_min",
 ...
 },
 "y": {
 "field": "temp_max",
 ...
 },
 "size": {
 "aggregate": "count",
 ...
 }
 }
 }
]
}

hconcat([view1, view2, ...], resolve)
vconcat([view1, view2, ...], resolve)

Default: shared scale and
axis, if aligned spatial
channel have matching
data types

Facet
{
 ...
 "encoding": {
 "x": {"bin": true, "field": "temp_max", "type": "quantitative"},
 "y": {"aggregate": "count", "type": "quantitative"},
 "color": {"field": "weather", "type": "nominal", "scale": {
 "domain": ["sun", "fog", "drizzle", "rain", "snow"],
 "range": ["#e7ba52", "#c7c7c7", "#aec7e8", "#1f77b4", "#9467bd"]
 }},
 "facet": {"field": "weather", "type":"nominal"}
 }
}

facet(channel, data, field, view, scale, axis, resolve)
Layout direction
(row/column)

Partition using distinct
values on field

Shared scales and guides for
quantitative fields; avoid empty
categories for ordinal scales

Repeat
Default: independent scales
and axes, shared legends
when data fields coincides

repeat(channel, values, scale, axis, view, resolve)

{

 "repeat": { "column": ["temp_max","temp_min"] },

 "spec": {

 "data": {"url": "data/seattle-weather.csv"},

 "mark": "bar",

 "encoding": {

 "x": {"bin": true, "field": {"repeat": "column"},

"type": "quantitative"},

 "y": {"aggregate": "count", "type": "quantitative"}

 }

 }

}

Nested Views
VConcat

HConcat

Repeat
Prec, Temp, Wind

Repeat
Prec, Temp, Wind

Layer

Facet
Weather

Interactions

To support specification of interaction techniques,

Vega-Lite extends the definition of unit specifications

to also include a set of selections. Selections identify

the set of points a user is interested in manipulating.

Selection Components
Formal definition: selection := (name, type, predicate, domain|range, event, init, transforms, resolve)

When an input event
occurs, the selection is
populated with backing
points of interest. These
points are the minimal
set needed to identify all
selected points.

Selection Components
Formal definition: selection := (name, type, predicate, domain|range, event, init, transforms, resolve)

{
 "data": {"url": "data/cars.json"},
 "mark": "circle",
 "select": {
 "id": {"type": "point"}
 },
 "encoding": {
 "x": {"field": "Horsepower", "type": "Q"},
 "y": {"field": "MPG", "type": "Q"},
 "color": [
 {"if": "id", "field": "Origin", "type": "N"},
 {"value": "grey"}
],
 "size": {"value": 100}

}

Selection Components Example
How points are highlighted in a scatterplot using point and list selections

Adding a single point
selection to parameterize
the fill color of a
scatterplot’s circle mark.

Selection Components Example
How points are highlighted in a scatterplot using point and list selections

Switching to a list
selection, with the toggle
transform automatically
added (true enables
default shift-click event
handling).

"id": {"type": "list", "toggle": true}

Selection Components Example
How points are highlighted in a scatterplot using point and list selections

Specifying a custom event
trigger: the first point is
selected on mouseover and
subsequent points when the
shift key is pressed
(customizable via the toggle
transform).

"id": {"type": "list", "on": "mouseover", "toggle": true}

Selection Components Example
How points are highlighted in a scatterplot using point and list selections

Using the project transform
with a single-point selection
to highlight all points with a
matching Origin

"id": {"type": "point", "project": {"fields": ["Origin"]}}

Selection Components Example
How points are highlighted in a scatterplot using point and list selections

Combining it with a list
selection to select
multiple Origins

"select": {
 "id": {"type": "list", "toggle": true, "project": {"fields": ["Origin"]}}
}, ...

Selection Transforms

Selection Transforms are composable operators that
modify a selection's components.

We have identified five types of transforms as a
minimal set to support both common and custom
interaction techniques.

Selection Transforms
● project(fields, channels): Alters a selection’s predicate function to determine

inclusion by matching only the given fields.

● toggle(event): When the event occurs, the corresponding point is added or removed
from a list selection’s backing dataset.

● translate(events, by): Offsets the spatial properties (or corresponding data fields) of
backing points by an amount determined by the coordinates of the sequenced
events.

● zoom(event, factor): Applies a scale factor, determined by the event, to the spatial
properties (or corresponding data fields) of backing points.

● nearest(): Computes a Voronoi decomposition, and augments the selection’s event
processing, such that the data value or visual element nearest the selection’s
triggering event is selected.

Selection-Driven Visual Encodings
Selections parameterize visual encodings to make them interactive — visual
encodings are automatically reevaluated as selections change. Selections have
three main uses:

● Selections can be used to drive an if-then-else chain of logic within an
encoding channel definition.

● Selected points can be explicitly materialized and used as input data for other
encodings within the specification.

● A materialized selection can also define scale extents, which is very useful
when performing zooming or panning.

Visual Encoding Example

First initialize a list selection
with the x and y scale domain,
and then apply translate and
zoom.

A materialized selection can also define scale extents, which is very useful when performing zooming or panning.

"select": {
 "region": {
 "type": "interval",
 "on": "[mousedown[event.shiftKey], mouseup] > mousemove"
 },
 "grid": {
 "type": "interval", "init": {"scales": true}, "zoom": true
 "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove"
 }

}, ...

Disambiguating Composite Selections
A selection’s events are registered on the unit’s mark
instances, and materializing a selection applies its
predicate against the unit’s input data by default.
When units are composite, however, selection
definitions and applications become ambiguous.

Disambiguating Composite Selections - Brush Example

Is there one region for the
overall visualization, or one
per cell? If the latter, which
cell’s region should be used?

"select": {
 "region": {
 "type": "interval", "translate": true, "zoom": true,
 "on": "[mousedown[event.shiftKey], mouseup] > mousemove",
 "resolve": "single" },
 "grid": {
 "type": "interval", "init": {"scales": true}, "zoom": true
 "translate": "[mousedown[!event.shiftKey], mouseup] > mousemove",
 "resolve": "single"
 }
}

Disambiguating Composite Selections - Brush Example

Composite selections are
resolved to a single global
selection: brushing in a cell
replaces previous brushes.
This is the default resolve.

Single, Independent, Union, Intersect

Disambiguating Composite Selections - Brush Example

Independent resolve: each
cell uses its own brush

Single, Independent, Union, Intersect

Disambiguating Composite Selections - Brush Example

Union resolve: points are
highlighted if they fall in any
brush

Single, Independent, Union, Intersect

Disambiguating Composite Selections - Brush Example

Intersect resolve: points are
highlighted only if they are
within all brushes

Single, Independent, Union, Intersect

Content

Intro and Background

01. 03.
Vega-Lite Compiler

02.
Vega-Lite Grammar Design

04.
Example Visualizations

• What’s Vega-lite
• Why Vega-lite

• Single View Specification
• Multi-view Composition
• Interactions

• Architecture

• Seven categories of
techniques

05.
Discussions & Conclusion

• Limitations
• Future work

Compiler Architecture
The compiler compiles the high-level Vega-Lite specification to a
low-level Reactive Vega specification for execution. There are two
challenges:

● There is no one-to-one correspondence between components
of the Vega-Lite and Vega specifications.

● To facilitate rapid authoring of visualizations, Vega-Lite
specifications omit lower-level details including scale types and
the properties of the visual elements such as the font size.

The compiler must resolve the resulting ambiguities.

Compiler Architecture - Parse
Firstly, the compiler parses a Vega-Lite specification to
disambiguate it. It does so primarily by applying rules
crafted to produce perceptually effective visualizations.
For example, if the color channel is mapped to an nominal
field, and the user has not specified a scale domain, a
categorical color palette is inferred. If the color is mapped
to a quantitative field, a sequential color palette is chosen
instead.

Compiler Architecture - Build
Secondly, the compiler builds an internal representation of
this unambiguous specification, consisting of a tree of
models. Each model represents a unit or composite view
produced by the algebraic operators described before, and
stores a series of components, effectively bridging the gulf
between the two levels of abstraction.

Compiler Architecture - Merge
Once the necessary components have been built, the
compiler performs a bottom-up traversal of the model tree
to merge redundant components. This step is critical for
ensuring that the resultant Vega specification does not
perform unnecessary computation that might hinder
interactive performance.

Compiler Architecture - Assemble
Finally, the compiler assembles the requisite Vega
specification. Selection components, in particular,
produce signals to capture events and the necessary
backing points, and list and intervals construct data
sources as well to hold multiple points. Each run-time
selection transform (i.e., trigger transforms mentioned
earlier) generates signals as well, and may augment the
selection’s data source with data transformations.

Content

Intro and Background

01. 03.
Vega-Lite Compiler

02.
Vega-Lite Grammar Design

04.
Example Visualizations

• What’s Vega-lite
• Why Vega-lite

• Single View Specification
• Multi-view Composition
• Interactions

• Architecture

• Seven categories of
techniques

05.
Discussions & Conclusion

• Limitations
• Future work

Example Visualizations-Seven categories of techniques
To evaluate expressivity, we choose examples that cover Yi et al.’s taxonomy of interaction
methods, consisting of seven categories of techniques:

● Select: to mark items of interest

● Explore: to examine subsets of the data

● Encode: to change the visual representations used

● Connect: to highlight related items within and across views

● Abstract/elaborate: to vary the level of detail

● Reconfigure: to show different arrangements of the data

● Filter: to show elements conditionally

Results & Comparisons
● Select:

Vega-Lite specifications are an order of magnitude more concise than their Vega counterparts. With
Vega-Lite, users need only specify the semantics of their interaction and the compiler fills in
appropriate default Values. With Vega, users need to manually author all the components of an
interaction technique.

● Explore & Encode:
Vega-Lite’s higher-level approach not only offers more rapid specification, but it can also enable
interactions that a user may not realize are expressible with lower-level representations

● Connect:
To move from a single interactive scatterplot to an interactive SPLOM, Vega requires an extra level of
indirection to identify the specific cell a user is interacting in, and to ensure that the correct data values
are used to determine inclusion within the brush. In Vega-Lite, this complexity is succinctly
encapsulated by the resolve keyword which can be systematically varied to explore alternatives

Results & Comparisons - Abstract/elaborate
A selection defined in one unit
specification can be explicitly given as
the scale domain of another in a
concatenated display.

Doing so creates an overview + detail
interaction: brushing in the top
(overview) chart displays only the
brushed items at a higher resolution in
the larger (detail) chart at the bottom.

Results & Comparisons - Reconfigure
By projecting the date field, the point
selection represents both a single
data value as well as a set of values
that share the selected date.

We can reference the point selection
directly, to position the red vertical
rule, and also materialize it as part of
the lookup data transform.

Results & Comparisons - Filter
As the user brushes in one
histogram, the datasets that
drive each of the other two are
filtered, the data values are
re-aggregated, and the bars rise
and fall.

The Vega-Lite compiler
automatically instantiates the
translate transform, allowing
users to drag brushes around
rather than having to reselect
them from scratch.

As selections provide a predicate function, it is trivial to use them to filter a dataset.

Content

Intro and Background

01. 03.
Vega-Lite Compiler

02.
Vega-Lite Grammar Design

04.
Example Visualizations

• What’s Vega-lite
• Why Vega-lite

• Single View Specification
• Multi-view Composition
• Interactions

• Architecture

• Seven categories of
techniques

05.
Discussions & Conclusion

• Limitations
• Future work

Limitations & Future Work
● Model architecture limitation: components that are determined during

compiling cannot be manipulated interactively, For example, a selection
cannot specify alternate fields to bin or aggregate over and more
complex selection types (e.g., lasso selections) cannot be expressed as
the Vega-Lite system does not support arbitrary path marks. Some
alternative systems such as an interpreter that instantiates its grammar
could potentially circumvent this issue.

● Limited support for highly specialized methods: specialized methods
such as querying time-series with relaxed selections cannot be
expressed by default grammar and may need to implement custom
transforms to extend the base semantics. Hopefully by making the
system open source, there could be some community-built additions that
address highly specialized methods.

“Thank you!
Any Questions?

Vega-Lite: A Grammar of interactive
graphics

Practitioner Presentation
Aniruddha Mysore

Scenarios - Need for
Visualization

• We want to set guidelines for making graphics across the
company and provide commonly used visualizations as a
library

• Should support interactive graphics

• Ideally: High-level declarative language

• Bonus: Should be supported on many platforms

• Python for data analysts, notebooks

• JavaScript for embedding on dashboards

Vega-Lite Usage Scenarios

• Visualization for a single language/framework

• Python – Altair

• Julia – Vega Lite for Julia

• Rust – Vega Lite for Rust

• R – Vega Lite for R

• Complete stack for automated visualization

The Vega/Voyager stack

Is vega-lite a good open-source package?

Navigating the Wide World of Data Visualization Libraries, Krist Wongsuphasawat

https://medium.com/@kristw?source=post_page-----798ea9f536e7--------------------------------

Possible Candidates

Would we use this?

“
When deciding which library to use, look for the appropriate abstraction level for
the time you have, your own coding comfort, the tasks you are trying to
accomplish, and the target developers and users. Then look at API design and
other factors that might be included into the consideration, such as:

• Rendering technology: SVG, Canvas, WebGL
• Performance: Bundle size, Speed, Server-side Rendering
• Others: Type-safety, License, Theming, Animation, etc.

”
Krist Wongsuphasawat

• Will go with what developers prefer

Bonus: Entrepreneur Role

Crime pays, but (good) research pays more

• Potter’s wheel (2001), Data Wrangler - visual
interaction & intelligent inference for data
transform (2011)

• Company founded 2012, product for data
transformation and visualization

• Joe Hellerstein (UC Berkeley) Jeffrey Heer
(UWash) and Sean Kandel (Stanford)

• Raised $76 million

• Visualization for data cubes and relational
databases (1999)

• Company founded 2003, products for
business intelligence and viz dashboards

• Christian Chabot, Pat Hanrahan and Chris
Stolte from Stanford University

• Sold to Salesforce for $16.3 billion

Vega-Lite: A Grammar of
Interactive Graphics

Reviewer: Qiandong Tang

In Summary

● Vega-Lite is a grammar that enables concise and high-level specifications of
interactive data visualizations

● Introduce an algebra for constructing composite views using layer, concatenate,
facet, and repeat operators

● Extend the Vega grammar to support interaction by adding selection
components and selection transformation operators

Strong Points

● Concise and portable - Domain-specific languages (DSL) (e.g. JSON) are easy to
modify and reusable

● User-friendly - Vega-Lite is easy to install and setup, providing comprehensive
documentations and tutorials

● Open-source - Vega-Lite is actively maintained and supported by a mature
ecosystem

Weak Points

● Limited expressivity - Some facet and layer combinations could create data
ambiguities that prevent Vega-Lite from rendering

● Limited extensibility - Using JSON as the underlying specification could lead it
hard to extend

● No grammar checking - Mistakes are invertible when learning new grammars;
Linting is critical to reduce mistakes from providing invalid specifications

Weak Points

● Limited expressivity - Some facet and layer combinations could create data
ambiguities that prevent Vega-Lite from rendering

● Limited extensibility - Using JSON as the underlying specification could lead it
hard to extend

● No grammar checking - Mistakes are invertible when learning new grammars;
Linting is critical to reduce mistakes from providing invalid specifications

VizQL (SQL-like syntax, SIGMOD ‘06)

A. M. McNutt, "No Grammar to Rule Them All: A Survey of JSON-style DSLs for Visualization," in IEEE Transactions on Visualization and Computer Graphics, 2022, doi: 10.1109/TVCG.2022.3209460.

Accept

Vega-Lite: A Grammar of
Interactive Graphics

Archeologist: Haotian Sun

TAKEAWAYS

● Propose a high-level grammar that allows swift specification of data
visualization more interactively.

● Propose a composition algebra and use several operators to transfer the
single-view specifications into multi-view ones.

● Use dedicated compiler to bridge the low- and high-level specifications for
Vega and Vega-lite, respectively.

● Propose a high-level interaction grammar with compositions of selections and
predicates.

The Grammar of Graphics

● “The Origin of Things”
● Propose formal grammars for statistical graphics to concisely specify

visualizations
● Many follow-ups and commercialization (Tableau, R packages,...)
● Inspire many expressive lower-level grammars, such as Protovis, D3, and

Vega, for creating explanatory and highly-customized graphics.
● Similar to this paper, Vega-Lite also represents basic plots with a set of

encoding definitions mapping data to visual components (position, color, …)
and with data transformations (aggregation, sorting, …)

PREVIOUS PAPERS - 1999

Reactive Vega: A streaming dataflow architecture for
declarative interactive visualization

● Low-level grammar for explanatory data visualization
● Input events as continuous data streams and uses Event-Driven Functional

Reactive Programming (E-FRP) to formulate composable, declarative
interaction primitives for data visualization.

● Construct a dataflow graph that can dynamically rewrite itself at runtime by
extending or pruning branches in a data-driven fashion.

● Similar to this paper, Vega-Lite uses a portable JSON syntax. A dedicated
compiler is used to convert the high-level specifications to the low-end, for
Vega-Lite and Vega, respectively. Namely, Vega-Lite specifications are
compiled to full Vega specifications.

PREVIOUS PAPERS - 2016

Towards A General-Purpose Query Language for
Visualization Recommendation
● CompassQL, a common framework for visualizing recommender systems in the

form of a specification language for querying over the space of visualizations
● CompassQL defines a partial specification that describes enumeration

constraints. It extends the Vega-Lite’s grammar with explicit enumeration
specifiers to define properties that should be enumerated.

FUTURE PAPERS - 2016

E.g., setting the mark property to M means that the
system should enumerate all possible mark types (bar,
line, area, point).

Altair: Interactive Statistical Visualizations for Python
● A declarative statistical visualization library for Python.
● Altair’s Python API emits Vega-Lite JSON data, which is then rendered in a

user-interface, such as Jupyter Notebook, JupyterLab, …
● Altair’s Python code are generated from the Vega-Lite JSON schema,

ensuring strict compliance with the Vega-Lite specification

FUTURE PAPERS - 2018

Example of an interactive Altair visualization of the weather in Seattle.

Initial Brushing Filtering

THANK YOU

Vega vs Vega-lite
https://vega.github.io/vega/examples/bar-chart/

https://vega.github.io/vega/examples/bar-chart/

Next class
Expressive Time Series Querying with Hand-Drawn Scale-
Free Sketches

Authors: Harshal, Cangdi

Reviewer: Haotian

Archaeologist: Akshay

Practioner: Siddhi

